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Motivation

• Monitoring of high-current signals is of interest for testing firesets

• Optical current monitors have several advantages over conventional 
current-voltage transformers including:

– Order-of-magnitude reduction in size, weight and power

– Immune to electromagnetic interference

– Simultaneous high-peak-current sensing (>2kA) and high-bandwidth (>200MHz) 

operation

• Optical current monitors are used commercially used for monitoring 
ac power distribution of utilities, large systems, high power 
consumption



Magneto-optical materials

• Optical current monitors to date have 
predominantly used the non-reciprocal Faraday 
rotation effect in magneto-optical crystals to 
measure changes in current-induced magnetic field

• Rare-earth iron garnets (RIGs) have strong 
Faraday rotation properties.  Bismuth-doped iron 
garnets (BIG) and yttrium-doped iron garnets (YIG) 
are commonly used.

• Magnetic field also effects light propagation and 
diffraction via scattering with magnetic domains H. Sohlstrom, Ph.D. Thesis, RIT

(YbTbBi)IG film
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Approach

• Our goal is to develop a compact, cost-effective 
optical current monitor system with low-power 
consumption using readily available fiber-optic 
components from telecom industry

• Use commercially-available fiber-optic 
components at 1.55 mm to leverage telecom 
industry, reduce costs

• Design reflection-geometry sensors to reduce 
form factor, cabling and increase sensitivity with 
double-pass transmission

• Develop sensor systems with low power 
consumption and minimal system variability due 
to fiber birefringence
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Packaged reflective optical monitor

• Custom packaged sensor was 
fabricated to enable more 
flexible testing compared to 
free space components

• Sensor consists of: 
– Aspheric lens for beam 

collimation
– 0.5-mm-thick BIG film with a 

high-reflectivity coating on 
the backside of the film
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Magnetic domains in BIG film with applied B

1.25mm

B=50G B=200G

B=300GB=150G

B=100G B=250G

B=350G

B=450G

B=400G



DC polarization analysis with magnetic field

• DC measurements taken to 
understand magneto-optical 
properties of BIG film

• Distance-controlled magnet and 
gaussmeter used to provide and 
measure externally applied 
magnetic field

• Measured dc changes as a 
function of external magnetic field 
in the following parameters: 
– Faraday rotation
– Power transmission 
– Degree of polarization (DOP)

• ASE output power = 8mW
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Faraday rotation

• Measured rotation angle for 
polarized (DOP=95%) and 
depolarized (DOP=5%) light input 
as a function of B parallel to the 
optical axis.

• Polarized light produced by 
inserting an in-line polarizer 
between ASE source and 50/50 
coupler input

• Linear change in rotation angle for 
polarized light input only 

• No appreciable change in rotation 
angle for depolarized input



Power scattering

• BIG film has high insertion loss with no external magnetic field due to power 
scattering from unaligned magnetic domains

• Reduced power scattering observed as a function of applied magnetic field 
parallel to optical axis due to increasing orientation of magnetic domains

• Increase in power transmission shows B2 dependence
• Relatively independent of input power, polarization and DOP



Degree of polarization

• Change in degree of polarization (DOP) shows periodic behavior with B. 
Increase as high as ~40% for magnetic field parallel to optical axis

• Increase in DOP also observed for perpendicular magnetic field
• Change in DOP not observed for highly polarized light input case



Sensor system considerations

• Faraday rotation mode (standard)
– Linear response
– ~10-20dB insertion loss from 

polarizers necessitates higher 
source power

• DOP mode (new)
– Power and polarization 

independent
– High-speed polarization 

analyzer required, limited 
sensing range

• Power scattering mode (new)
– Simplest configuration
– Non-linear response
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Transient current pulse testing
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• Capacitor discharge unit (CDU) produced current pulses up from 500A to 
~3kA peak current with 150-ns rise times over Kapton stripline with 10-mm-
wide conductor

• Measure corresponding optical response from fiber sensor sandwiched 
between Kapton lines

• Also evaluate optical response as a function of external magnetic field bias 



Transient sensor response

• Optical response 
observed up to 
~2500V/3000A (limit of 
CDU)

• 500-ns delay between 
current waveform and 
optical response

• Slightly broader optical 
response, negative 
current swings and 
secondary transients 
not well resolved

• Measure peak signal 
amplitude of optical 
response as a function 
of peak current under 
various external 
magnetic field 
conditions



Transient response with external magnetic field

• Transient behavior vs. external magnetic field follows dc 
properties

• At negative B, power drop observed corresponding to 
current peak until current transient crosses minimum

• Estimate that 2500V/2944A corresponds to B=~450G for 
this sensor and position

• For positive B, sensor response saturates for 
2500V/2900A signal for B>150-200G

• Estimate that this BIG film saturates at total B=600-650G



Transient sensor response summary 

• Plot peak signal amplitude vs. 
peak current for various external 
magnetic field biases

• Higher positive magnetic bias 
increases sensitivity but 
decreases dynamic range

• Negative magnetic bias increases 
sensitivity for lower currents

• Follows dc characteristics



Summary

• Presented dc and transient results on a novel non-polarizer-based optical 
current monitor which could enable lower-power sensor systems

• Analyzed power scattering, DOP and Faraday rotation effects as a
function of external magnetic field

• Current transients with 150-ns rise times where detected up to peak 
currents of ~2500V/2900A – limited by CDU range

• Sensitivity in specific current ranges can be optimized by using external 
magnet bias and/or adjusting sensor distance to stripline and optical axis 
angle

• Future work includes reducing the size of the overall sensor to enable 
sensor embedding and improve linearity of sensor response
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