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}" Motivation

Monitoring of high-current signals is of interest for testing firesets

Optical current monitors have several advantages over conventional
current-voltage transformers including:

— Order-of-magnitude reduction in size, weight and power

— Immune to electromagnetic interference

— Simultaneous high-peak-current sensing (>2kA) and high-bandwidth (>200MHz)
operation

Optical current monitors are used commercially used for monitoring

ac power distribution of utilities, large systems, high power
consumption
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Optical current monitors to date have
predominantly used the non-reciprocal Faraday

rotation effect in magneto-optical crystalsto
measure changes in current-induced magnetic field

» Rare-earth iron garnets (RIGs) have strong
Faraday rotation properties. Bismuth-doped iron

garnets (BIG) and yttrium-doped iron garnets (YIG)

are commonly used.
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* Magnetic field also effects light propagation and
diffraction via scattering with magnetic domains
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Approach

Our goal is to develop a compact, cost-effective
optical current monitor system with low-power
consumption using readily available fiber-optic
components from telecom industry

Use commercially-available fiber-optic
components at 1.55 mm to leverage telecom
iIndustry, reduce costs

Design reflection-geometry sensors to reduce
form factor, cabling and increase sensitivity with
double-pass transmission

Develop sensor systems with low power
consumption and minimal system variability due
to fiber birefringence

Magneto-optical
film

Transmission
geometry

Magneto-optical
film HR
coating

e

Reflection
geometry

Sandia
National
Laboratories



—
# Packaged reflective optical monitor

Collimating
. len HR « Custom packaged sensor was
Singie-mode \ ---, coating fabricated to enable more
) 14 flexible testing compared to
I — | free space components

« Sensor consists of:

— Aspheric lens for beam
collimation

— 0.5-mme-thick BIG film with a
high-reflectivity coating on
the backside of the film
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Magnetic domains in BIG film with applied B
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C polarization analysis with magnetic field

DC measurements taken to
understand magneto-optical
properties of BIG film

Distance-controlled magnet and
gaussmeter used to provide and
measure externally applied
magnetic field

Measured dc changes as a
function of external magnetic field
in the following parameters:

— Faraday rotation
— Power transmission
— Degree of polarization (DOP)

ASE output power = 8mW
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Measured rotation angle for
polarized (DOP=95%) and
depolarized (DOP=5%,) light input
as a function of B parallel to the
optical axis.

Polarized light produced by
iInserting an in-line polarizer
between ASE source and 50/50
coupler input

Linear change in rotation angle for
polarized light input only

No appreciable change in rotation
angle for depolarized input
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};‘ Power scattering
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« BIG film has high insertion loss with no external magnetic field due to power
scattering from unaligned magnetic domains

- Reduced power scattering observed as a function of applied magnetic field
parallel to optical axis due to increasing orientation of magnetic domains

* Increase in power transmission shows B2 dependence
« Relatively independent of input power, polarization and DOP
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}, Degree of polarization
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« (Change in degree of polarization (DOP) shows periodic behavior with B.
Increase as high as ~40% for magnetic field parallel to optical axis

« Increase in DOP also observed for perpendicular magnetic field
« Change in DOP not observed for highly polarized light input case
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¥> Sensor system considerations

« [Faraday rotation mode (standard)
— Linear response

— ~10-20dB insertion loss from
polarizers necessitates higher
source power

« DOP mode (new)

— Power and polarization
independent

— High-speed polarization
analyzer required, limited
sensing range

« Power scattering mode (new)
— Simplest configuration
— Non-linear response
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_— ' Transient current pulse testing

Magnet
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« Capacitor discharge unit (CDU) produced current pulses up from 500A to
~3KA peak current with 150-ns rise times over Kapton stripline with 10-mm-
wide conductor

* Measure corresponding optical response from fiber sensor sandwiched
between Kapton lines

« Also evaluate optical response as a function of external magnetic field bias
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}; Transient sensor response

« Optical response
observed up to

el N | ~2500V/3000A (limit of
10- Current waveforms - CDU)
9
_ « 500-ns delay between
m— current waveform and
~ 7 optical response
= A [ © + Slightly broader optical
c —ibooviesza | @ response, negative
k) 2000V/2272A 5 G current swings and
é AR, B secondary transients
5 Optical signal response T 3 2 nOt We” reSOIVed
2 « Measure peak signal
nll amplitude of optical
8.01 response as a function

of peak current under
various external

magnetic field
conditions
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ransient response with external magnetic field
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Transient behavior vs. external magnetic field follows dc
properties
At negative B, power drop observed corresponding to
current peak until current transient crosses minimum
Estimate that 2500V/2944A corresponds to B=~450G for
this sensor and position
For positive B, sensor response saturates for
2500V/2900A signal for B>150-200G

Estimate that this BIG film saturates at total B=600-650G
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¢ Transient sensor response summary
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Plot peak signal amplitude vs.
peak current for various external

v ° / magnetic field biases
,/A/ - « Higher positive magnetic bias
increases sensitivity but

, . decreases dynamic range

0 500 1000 1500 2000 2500 3000 * Negative magnetic bias increases
Current (A) sensitivity for lower currents

 Follows dc characteristics
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&' Summary

« Presented dc and transient results on a novel non-polarizer-based optical
current monitor which could enable lower-power sensor systems

* Analyzed Tloower scattering, DOP and Faraday rotation effects as a
function of external magnetic field

« Current transients with 150-ns rise times where detected up to peak
currents of ~2500V/2900A — limited by CDU range

- Sensitivity in specific current ranges can be optimized by using external
magnet bias and/or adjusting sensor distance to stripline and optical axis
angle

- Future work includes reducing the size of the overall sensor to enable
sensor embedding and improve linearity of sensor response
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