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Abstract

Flame-sampling molecular-beam mass spectrometry of premixed laminar low-pressure flames
has been demonstrated to be an efficient tool to study combustion chemistry. In this technique,
flame gases are sampled through a small opening in a quartz probe and after formation of a
molecular beam, all flame species are detected simultaneously using mass spectrometry. The
present review focuses on critical aspects of the experimental approach including probe sampling
effects, different ionization processes, and mass separation procedures. Flame-sampling
molecular-beam mass spectrometry has greatly benefited from adding the capability of isomer-
resolved measurements by employing tunable vacuum-ultraviolet radiation for single-photon
ionization, thus facilitating isomer identification. This review also offers an overview of recent
combustion chemistry studies of flames fueled by hydrocarbons and oxygenates. The identity of
a variety of intermediates in hydrocarbon flames, including resonantly stabilized radicals and
closed-shell intermediates, is described, thus establishing a more detailed understanding of the
fundamentals of molecular-weight growth processes. Furthermore, molecular-beam mass
spectrometric studies of reaction paths in flames of alcohols, ethers, and esters, which have been
performed to support the development and validation of kinetic models for bio-derived

alternative fuels, are reviewed.
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1. Introduction

Combustion can be thought of as a self-sustaining reacting flow with temperature and
pressure-sensitive reactions, in which chemical energy is converted into heat. From a chemistry
perspective, combustion processes are very complex systems, which involve hundreds or even
thousands of individual compounds and reactions. These processes usually take place over a
wide range of pressures and at temperatures of up to several thousands of kelvins.

Combustion of fossil fuels — coal, oil and natural gas — currently provides about 85% of
the energy consumed worldwide. At present, most of the world’s transportation energy is
supplied by diesel and gasoline-fueled internal combustion engines, which are major contributors
of airborne pollutants, including particulate matter (PM, soot), polycyclic aromatic hydrocarbons
(PAH), oxides of nitrogen (NOy), CO, the greenhouse gas CO,, and unburned volatile
hydrocarbon byproducts. Efforts to improve combustion efficiency and to reduce the formation
of these pollutants, inherent in the use of petroleum-derived fuels, include improved engine
designs, advances in emissions control technologies and the use of cleaner burning fuel
formulations. Advances in molecular-level descriptions of combustion processes have
contributed to the success of such efforts in recent years.

Two principal themes of current combustion chemistry research have emerged in the past
several years. First, while extensive research has yielded a good understanding of NOy
combustion chemistry,[1] soot formation processes are by comparison relatively poorly
understood.[2] It is believed however, that PAH’s, which themselves pose serious risks to human
health,[3, 4] are precursors to soot. As the formation of the first aromatic ring is essential to PAH
growth processes, research efforts have focused on the formation routes of benzene and other

aromatic species in flames fueled by a variety of different hydrocarbons.[5, 6] Secondly,



dwindling fossil fuel resources and tightened regulations for emissions from internal combustion
engines have stimulated a considerable interest in biomass-derived and oxygenated fuels and fuel
additives.[7-11] Such alternative fuels not only lower net greenhouse-gas emissions due to their
closed carbon cycle and reduce dependence on conventional petroleum, but may also yield
reductions in emissions of PAH’s when oxygenated fuels are used as replacements for
conventional petroleum-based fuels [10, 12-15]. Especially clean-burning renewable oxygenated
fuels such as alcohols, ethers, and alkyl esters (biodiesel) are considered to be important
replacements for conventional gasoline and diesel fuels.[7-9, 16] Current combustion chemistry
research explores the key reaction mechanisms in the oxidation processes of these simple
oxygenated compounds.

In general, practical combustion devices are not well suited for direct investigations of
complex chemical reaction mechanisms. These devices are turbulent in nature and the
description of turbulent flows combined with comprehensive detailed chemical kinetics
modeling is still a formidable unsolved problem. The development and validation of kinetic
models of combustion chemistry has instead evolved historically from many experimental
sources including laminar flame speed measurements, ignition delay measurements and optical
detection of species in shock tubes and rapid compression machines, jet-stirred reactor
experiments, pyrolysis and oxidation experiments in flow reactors, reaction product sampling
with single-pulse shock tubes, species measurements for laminar burner-stabilized flames and
co- and counter-flow diffusion flames, and ignition temperature measurements in non-premixed
counter-flow diffusion flames. For examples see Refs. [17-21].

The development of flame-sampling molecular-beam mass spectrometry, in use since its

inception by Homann, et al. in 1963,[22] enables the quantitative detection of both radical and



stable reaction intermediates. The expansion of the flame gases through a quartz nozzle into a
lower-pressure region leads to the formation of a molecular beam and allows the detection of
virtually all flame species. The sampling technique also allows the selective and sensitive
detection of most combustion intermediates without prior knowledge of their identities. Even
larger compounds, which are currently not detectable using laser-based diagnostics, can readily
be detected and identified. Sampling of gases along the axis of the premixed laminar low-
pressure flame results in quantitative mole fraction profiles of all flame species. Such data can
then be used to test combustion chemistry models and to determine key reaction pathways. Not
until the kinetic models are verified against a range of precise measurements under carefully
characterized conditions in a premixed laminar flame, can the models be applied with confidence
to more sophisticated practical combustion devices.

Flame-sampling molecular-beam mass spectrometry has had a significant impact on our
understanding of fundamental chemical combustion processes in the more than thirty years after
publication of Biordi’s review paper in 1977.[23] In the past several years, substantial progress
has been achieved by supplementing electron-ionization molecular-beam mass spectrometry (EI-
MBMS) with isomer-specific measurements using photoionization molecular-beam mass
spectrometry (PI-MBMS), employing vacuum-ultraviolet photon beams from synchrotron light
sources.[24]

This review concerns itself with the recent experimental progress in flame-sampling
molecular-beam mass spectrometry of premixed laminar low-pressure flames and with the
unprecedented insights into combustion chemistry gained from flame studies. This article is
organized as follows: A comprehensive discussion of the flame-sampling MBMS technique in

section 2 is followed with a review of the conclusions from specific studies of flames fueled by



hydrocarbons and oxygenated fuels in section 3. One focus is on newly identified species and
their role in aromatics formation and molecular-weight growth processes. In section 4, we draw

conclusions and make suggestions for future research.

2. Experimental Section

2.1. Premixed Laminar Low-Pressure Flames

Combustion scientists successfully employ a variety of different model flames in their
laboratories.[25] These laboratory flames are generally classified as premixed or non-premixed
and laminar or turbulent. In non-premixed flames, the fuel and the oxidizer are initially unmixed,
they approach the flame front from opposite sites and mix by molecular diffusion. In a premixed
flame, the fuel has been mixed with the oxidizer before they reach the flame front. As a result,
the flame speed of premixed flames is limited solely by the chemistry, while in non-premixed
flames the speed is predominantly determined by the rates limited by the rates of diffusion.

An example of a premixed laminar low-pressure flame is shown in Fig. 1. The unburned
mixture of fuel and oxidizer is delivered to the flame system through a water-cooled burner,
typically a large-diameter porous plug made out of stainless steel or bronze. The flame is
composed of three regions: a) The preheat zone, which is between the reaction zone and the
burner surface, b) the reaction zone, also called luminous zone, which is clearly visible in Fig. 1
as the bright blue zone, and c) the postflame zone, which is the furthest from the burner surface
beginning after the reaction zone.

The largest gradients of species concentrations and temperature exist in the preheat zone.
As the gas mixture approaches the flame front, it is heated by conduction from the reaction zone

and radiation from the reaction and postflame zones. Chemical reactions and heat release are



negligible at this stage; transportation processes, however, play a significant role, i.e., reactants
diffuse towards the reaction zone, while intermediates from within the reaction zone diffuse
towards the burner surface. Once temperatures are hot enough to sustain combustion, chemical
reactions take place in the reaction zone. The thickness of this zone is inversely proportional to
the pressure: about 3-10 mm for typical pressures of 10-100 Torr. The gases emerging from the
reaction zone enter the postflame zone where only a limited number of reactions take place and
the stable combustion products are formed.

Since they are burner-stabilized and premixed, those flames tolerate the physical
intrusion of sampling probes, like the one shown in Fig. 1, much better than diffusion flames. By
maintaining stable flows and uniform cooling of the burner, a reproducible flame is formed in
which radial gradients are negligibly small and species concentrations at a defined position are
time-invariant. In this spatially one-dimensional flame, changes need to be followed only as a
function of the axial distance from the burner. The stability and quasi one-dimensional structure
of laminar premixed flames make them very attractive for laboratory-based investigations of
combustion mechanisms and detailed kinetic modeling. However, it should be kept in mind, that
in extrapolating results from low-pressure flames to high-pressure conditions, changes in the
reaction mechanism may occur.[26]

Typical mole fraction profiles for reactants, intermediates, and products in laminar low-
pressure premixed flames are shown together with a typical temperature profile in Fig. 1. Most
of the chemical reactions, which are responsible for the heat release or the formation of
pollutants, are strongly dependent on the temperature.[5] Therefore, the experimentally

determined temperature profiles are a prerequisite for any detailed kinetic modeling of the well-



defined laboratory flames. Accurate methods for temperature measurements are currently based
either on laser techniques [27-36] or thermocouples.[37-44]

A key figure for the characterization of flames is the equivalence ratio of a combustion
reaction, usually denoted by ¢. It is defined as the actual starting fuel/oxidizer ratio divided by
the ratio required for complete combustion to fully oxidized products, i.e., H,O and CO, for
hydrocarbon flames. A stoichiometric flame is specified by ¢ = 1; leaner or richer conditions are
characterized by ¢ <1 or ¢ > 1, respectively. Sometimes the carbon-to-oxygen (C/O) ratio is
given in addition to or instead of the equivalence ratio. The C/O ratio is defined as the sum of all

carbon atoms involved in the combustion process divided by the sum of all oxygen atoms.

2.2. Flame Sampling And Probe Distortion

A typical probe sampling set-up, which is shown in Fig. 2, consists of a low-pressure (10-
100 Torr) flame chamber, a sampling probe, a skimmer, and a detection system, usually some
form of mass spectrometer.[23, 45] The purpose of this sampling system is to extract flame gases
with a free-jet rapid expansion designed to reach collisionless free-molecular flow on a time
scale short compared to that of chemical reactions, thereby “freezing” the chemical composition
of the sampled gases to (ideally) closely match unperturbed flame conditions

The sampling probe and skimmer act to create a collisionless molecular beam in two
stages. In the first stage free-molecular flow is accomplished by expanding flame gases through
a small (250-500 pum) orifice in a quartz probe to a pressure ca. 10 Torr. A second stage of
expansion to a pressure ca. 10° Torr is provided by a conical skimmer of 1-2 mm aperture,
appropriately located in the free-molecular flow region downstream of the sampling probe. The

resulting molecular beam enters the ionization region where the species are ionized using



electron- or photoionization techniques. The resulting ions are subsequently separated using a
mass spectrometer. The described differentially pumped system is essential, as a low pressure of
about 10 Torr is required for the ionization techniques described in the following section.
Quartz is the preferred material for the probe because of its low heat conductivity, its
temperature stability, and its chemical inertness.

In comparison with laser based optical diagnostics,[25, 27] which are called “non-
intrusive”, the flame-sampling techniques are referred to as “intrusive” as the large sampling
probe causes variations in the flow field and in the concentration and temperature profiles.[46,
47] For example, it has been found that concentration profiles or radical species determined by
mass spectrometry are more sensitive to the probe effects than those of stable species.[46] While
heterogeneous recombination of radicals at the probe surface are a likely cause, recombination
reactions of radicals on the inner surface of the sampling orifice appears to be negligible. To
reduce surface recombination reactions, Biordi et al. cleaned the probes by treatment with hot
nitric acid solution followed by hydrofluoric acid solution.[45]

Stepowski et al. [48] showed with OH LIF that the presence of a quartz nozzle decreases
the OH concentration in the preheating zone of the low-pressure C3Hg-O, flame investigated.
Downstream of the reaction zone, where the OH concentration gradient is small, no significant
perturbations were observed. These effects were explained by a perturbation of the diffusion
field by the probe. Smith and Chandler [49] examined the effect of a flame-sampling probe on
the structure of a H,-O; flame doped with small amounts of HCN. They used LIF to study the
perturbations of the relative CN concentration profile and concluded that both flame chemistry

and diffusion play important roles in the observed distortion of the CN profile. In accordance



with the results from Stepowski et al,[48] upstream diffusion blockage of the radical itself
seemed to dominate, when sampling close to the burner, where distortions are the largest.

The existence of a thermal perturbation induced by a sampling probe has now been well-
established. Probe-induced perturbations of the temperature of up to 500 K have been observed
by Pauwels et al. [50] in a stoichiometric methanol-air and by Hartlieb et al. [36] in a fuel-rich
C3He-O, flame. Somewhat smaller differences between temperature profiles measured with and
without the presence of the quartz probe have been observed for example by Desgroux et al.[51]
They found distortions of up to 150 K in a low-pressure near-stoichiometric (¢ = 1.08) methanol-
air flame and that the temperature gradient is less pronounced in the reaction zone when the
probe is present. Similar differences of approximately 200 K have been observed by Bastin et al.
in a sooting acetylene flame.[52, 53] All the results indicate that it would be surprising if the
rather simple procedure of lowering the unperturbed temperature profile by 100 K [54, 55]
would be applicable to flame modeling of a large variety of flames of different fuels,
stoichiometries, and pressures.

Related closely to the distortion of the temperature profile is an axial shift of the
concentration profiles when sampling within a concentration gradient. In other words, the
position from which the sampled gases are drawn is not exactly defined and the calibration of the
distance-from-burner axis is difficult to achieve.[56] It appears that the probe is actually
sampling flame gases a few orifice diameters upstream of its physical position.[45, 46, 48, 57,
58] Shifting the profiles by a few orifice diameters is a widely accepted correction method.

A quantitative description of the nozzle effects on the flame structure remains currently
unfeasible. However, those changes in the flame structure are outweighed by the fact that

sampling techniques are the only viable detection methods which allow for the selective and
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sensitive detection of all combustion intermediates simultaneously. Biordi et al. concluded from
their empirical characterization of flame perturbation, that quartz nozzles with an opening angle
of ~40° obtain flame data of sufficient quality to permit quantitative analysis.[23, 45]

Another important aspect of the flame-sampling technique is the “temperature” in the
molecular beam. Kamphus et al. used resonantly enhanced multiphoton ionization (REMPI)
measurements on NO and benzene for the characterization of the rotational temperature in
molecular beams sampled from premixed laminar low-pressure flames.[59] They found
rotational temperatures of 300-400 K virtually independent of the initial temperature. The fact
that premixed low-pressure flames typically have Knudsen numbers (ratio of the initial mean
free path to orifice diameter) as large as 0.03 probably accounts for the modest cooling and
possibly the substantial effects of wall-collisions on the cooling. Measurements of the vibrational
temperature or the kinetic energy distribution in the molecular beams have not yet been
described. However, the results of Kamphus et al. indicate that the expansion does not fall neatly
into one of the limiting cases, of either the formation of a supersonic or an effusive molecular
beam. Moreover, the dimensions of the flame-sampling part do not vary greatly between
different laboratories, therefore, the results of Kamphus et al. are likely to be not just peculiar to

the instruments employed in their study but of general significance.

2.3. Ionization Processes

After flame gases are sampled through the quartz probe and after the formation of the
molecular beam, the flame species are analyzed using mass spectrometry. The first step in the
mass spectrometric analysis of the flame-sampled gases is the production of ions from the

respective compound. The three different ionization techniques, which are widely used in flame-
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sampling studies of low-pressure flames are shown schematically in Fig. 3: electron ionization
(ED),[60-62] formerly called electron impact ionization, resonance enhanced multiphoton
ionization (REMPI),[63] and single photon ionization.[64]

The experimental result, i.e. the quantitative mole fraction profiles, are independent of the
chosen ionization method. In Fig. 4, profiles of benzene in a fuel-rich propene flame (C/O =
0.77, ¢ = 2.3) measured with EI, REMPI, and single-photon PI, are compared. Within the
experimental uncertainties, all three ionization methods lead to identical results.

In electron-ionization sources, electrons are produced through thermionic emission by
electrically heating a wire filament (tungsten, rhenium or mixtures of thorium and iridium or
thorium and rhenium) and subsequently accelerated through the ionization region towards an
anode. The radical and molecular flame species are then ionized through interactions with the
electrons whose energy exceeds the species’ ionization energy (Fig. 3a). It is distinguished
between adiabatic and vertical ionization energies. While the adiabatic ionization energy refers
to the formation of the molecular ion in its ground vibrational state, the vertical ionization energy
applies to the transition of the molecular ion without change in geometry.

For most molecules the probability to get ionized is relatively low if the electron energy
is just slightly above the molecule’s ionization energy. With larger electron energies the
ionization probability increases steadily until it reaches a wide maximum which appears to be
around 70 eV. However, all flame species can easily be ionized with energies below 20 eV, thus
operating the electron ionization source at 70 eV would likely lead to highly excited ions which
would undergo extensive fragmentation. In simple gas mixtures, fragmentation processes may
actually be useful as it provides structural information. In flame studies, however, fragmentation

is a tremendous problem since one cannot know whether a particular ion signal corresponds to
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the molecular ion or from ionization and dissociation of larger molecules. Therefore, most
researchers compromise between signal strength and selectivity when they employ electron
energies as near to the ionization energy as possible.

The technique of electron-ionization molecular-beam mass spectrometry (EI-MBMS) has
been applied successfully for many flame studies, for example Refs. [22, 23, 53, 54, 65-69].
Table 1 lists relevant low-pressure flame measurements of the last 30 years using probe-
sampling molecular-beam mass spectrometry.

Besides extensive fragmentation a significant limitation of EI-MBMS is the poor energy
resolution of the ionizing electron beam, typically E/AE < 20. This low energy resolution is
likely to be unsuitable for the determinations of isomeric composition. Instead, photoionization
(PI) techniques, such as single-photon ionization [64] and resonance-enhanced multiphoton
ionization (REMPI) [63] can be used, since they usually cause less ion fragmentation and offer
better sensitivity and selectivity.

With REMPI, the ionization energy is transferred to the molecule with two or more
photons (Fig. 3b). It typically involves a resonant single or multiple photon absorption to an
electronically excited intermediate state and subsequent absorption of another photon which then
achieves ionization of the molecule. Lasers can supply such high photon densities that molecules
excited by a first photon may absorb a second one with high probability. In Fig. 3, a commonly
used (2+1) REMPI scheme is shown, indicating that two photons are absorbed in the first step
and one extra photon is needed for ionization.

An important feature of resonance-enhanced multiphoton ionization is that the excess
energy of the photons absorbed in the neutral molecule above the ionization threshold is usually

too small to result in fragmentation processes. This so-called “soft ionization” results normally in
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totally fragment-free mass spectra. In flame studies, REMPI processes have been greatly used for
the detection of aromatic species like benzene, substituted benzenes, and PAH’s.[70-78] As an
example, the upper trace of Fig. 5 shows a (2+1) REMPI spectrum of toluene in a fuel-rich
propene flame. From comparison with a cold gas toluene spectrum (lower trace), it was
concluded that this spectrum was produced indeed by toluene.[78] REMPI measurements can
also be used for the detection of smaller radicals, like CHj3, which can not be detected by
fluorescence techniques.[79]

In the single-photon ionization process, the target molecules are ionized by individual
photons whose energy exceeds the molecule’s ionization energy (Fig. 3¢). To ionize most typical
flame intermediates with three or more heavy atoms and most radicals, energies of 6-10 eV are
typically required. Most commonly tunable vacuum-ultraviolet (VUV) laser light is generated by
two-photon resonance enhanced sum and difference-frequency mixing of dye laser radiation in
rare gases and metal vapors as nonlinear medium.[80-82] A very convenient source of 10.5 eV
photons is frequency tripling in xenon of the 355-nm third harmonic of Nd:YAG lasers.[83, 84]
In principle, VUV laser radiation based on four-wave mixing schemes can cover the full range of
6-19 eV.[85] However, small gaps of low intensities exist in the tuning curve for VUV laser and
the use of a tunable VUV laser source to cover a wide energy range as required in many
experiments remains difficult and very time-consuming. Nevertheless, laser-based VUV single-
photon photoionization has been used to study flame chemistry.[86-93] Happold et al. used an
ArF laser (193 nm = 6.4 eV) to detect soot precursor compounds in sooting premixed low-
pressure C;Hy-O, flames.[94]

Present VUV lasers are not ideally suited for single-photon mass spectrometric studies of

flames because of their high intensity, short laser pulse durations, and low repetition rates. The
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high laser intensities lead to significant complications from multiphoton ionization and
photofragmentation, and the low average powers severely limit the signal-to-noise ratio of
photoionization mass spectrometric measurements. These limitations led Cool et al. to the design
and operation of a flame-sampling molecular-beam mass spectrometer developed for use with
synchrotron radiation.[24, 95] A first experiment was set-up at the Chemical Dynamics Beamline
of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, later
copied at the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China.[96] The much
higher average power of the quasicontinuous synchrotron light yields a typical 200-fold increase
in the signal-to-noise ratio for the detection of photoions compared with VUV laser sources. The
low intensity of the synchrotron light produces just “soft ionization” without the complications
of multiphoton absorption. These capabilities, complemented by the good energy resolution and
the tunability of the synchrotron radiation, have been applied to the measurement of isomeric
compositions of flame species and some remarkable examples are discussed in section 3 of this
review paper. A detailed description of the synchrotron-based PI-MBMS experiments is

presented in section 2.6.

2.4. Mass Separation

Once the ions have been produced, they are separated according to their mass-to-charge
ratios m/z. For flame-sampling mass spectrometric studies, quadrupole mass filters [97] and
time-of-flight (TOF) devices [98-101] have been used. These two mass analyzers are best
compared by (a) the upper mass limit, which is defined as the highest value of the m/z ratio that
can be measured, (b) the transmission, which reflects the ratio of the number of ions detected to

the number of ions produced in the source, and (c) the mass resolution, commonly defined as
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m/Am, where m corresponds to m/z and Am represents the full width of the peak at half
maximum. For quadrupoles, the upper mass limit is about m/z = 4000, while linear TOF mass
spectrometers have no upper mass limits. Time-of-flight mass analyzers, which measure an
entire spectrum at all times, are characterized by their high transmission efficiency, which leads
to very high sensitivities. TOF mass spectrometers allow to measure relative peak intensities
accurately even though source conditions may vary. However, the most important drawback of
the linear TOF analyzers is their poor mass resolution: a maximum of only ~1000 is achievable,
compared with ~4000 for quadrupole mass spectrometer.

To improve the mass resolution of time-of-flight instruments, a reflectron is normally
used. This device is defined by a series of grids and ring electrodes which create a retarding field
that acts as an ion mirror by deflecting the ions and sending them back through the flight
tube.[102, 103] The reflectron corrects the energy dispersion of the ions that leave the source. A
resolution of m/Am ~3000 for a reflectron TOF mass spectrometer is easily achievable.

An example of a TOF mass spectrum is given in Fig. 6, which shows data from a fuel-
rich cyclopentene flame recorded at 2.75 mm distance from the burner at an ionization energy of
11.1 eV.[104] Tons of flame species with mass-to-charge ratios ranging from 15 (CH;3") to 92
(C7/Hg") are detected simultaneously and their signal intensities are correlated to the species’

concentrations.

2.5. Electron And Photoionization Cross Sections
For quantitative determinations of flame species mole fraction profiles from the raw mass
spectrometric data, absolute photon or electron ionization cross sections are required for each

species. Cool et al. proposed a data reduction procedure to analyze PI-MBMS data.[105] They
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showed that spatial profiles of absolute mole fraction of all flame species are directly
measureable when photoionization cross-sections are known over an appropriate range of photon
energies.

The ionization cross sections, which express the efficiency for ionization after
interactions with electrons or photons, are molecule-specific and a function of the photon or
electron energy. It is distinguished between partial and total cross sections. Partial cross sections
describe the efficiencies to form a particular ion, while the total cross section is the sum of all
partial cross sections. The total absolute number of ionization cross sections is often given in
units of a Megabarn (Mb), 1 Mb = 10"% cm’.

Electron ionization and photoionization cross sections can be measured directly using a
gas mixture of known composition which contains the target species and a reference species with
a known cross section. Some general trends in electron and photoionization cross sections can be
discussed using propane as an example (Fig. 7). For electron ionization, the ionization energy is
very difficult to measure, since the thermally generated electrons posses a Gaussian energy
distribution (in this case FWHM = 2.4 eV), which creates a rather gradual transition and not a
sharp onset at propane’s ionization energy. Moreover, above a certain threshold, the ion signal
seems to increase monotonically and linearly with the energy of the ionizing electrons.[106, 107]
In comparison, single-photon ionization techniques allow an accurate determination of the
ionization energy as the photons have a much narrower energy distribution (E/AE ~400 for the
synchrotron radiation and E/AE ~10000 for VUV laser sources) — Fig. 7(b). As can be seen in
Fig. 7, fragmentation can become an issue above certain electron and photon energies. For
electron ionization, the efficiencies with which particular fragments are formed increase

monotonically with the electron energy. This behavior is not necessarily evident in
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photoionization. For example, the partial cross section of CsHg' seems to reach a plateau above
11.6 eV. Knowledge of these partial photoionization cross sections is of particular importance to
account for ion fragments of a given mass-to-charge (m/z) ratio that may interfere with the
detection of parent-ions of the same m/z value. Propane just exemplifies this situation; other
combustion intermediates are likely to cause similar interferences that must be considered when
species mole fraction profiles are determined. Partial and total cross sections are being measured
not just for quantitative mole fraction calculations but also to meet the challenge of properly
choosing ionization energies to avoid potential interferences.[108, 109] In some cases, i.e.
radical species, it is very difficult to measure accurate ionization cross sections and only a
limited number of reliable data is available.[110-112]

The number of experimentally determined electron-ionization cross sections for
combustion relevant species is limited. Therefore, theoretical calculations of cross sections
appear to be necessary. Predictions of electron-ionization cross sections have largely relied on
rather simple additivity rules [113-115] and more rigorous, semi-classical methods like the
Deutsch-Mirk (DM) formalism [116, 117] and the binary-encounter-Bethe (BEB) method.[118]

Basically two models have been introduced to aim at generating reliable molecular
ionization cross sections for photoionization. In Koizumi’s model, the total ionization cross
section is composed of several spectral components characterized by specific ionization
energies.[119] Bobeldijk et al. proposed that the molecular photoionization cross section is

approximated by the sum of all the cross section of atom pairs.[120]

2.6. Synchrotron Light Sources And PI-MBMS Experiments
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In the past several years the PI-MBMS studies of low-pressure laminar flames have
greatly benefited from employing tunable, bright vacuum-ultraviolet beams from synchrotron
light sources in Berkeley, USA and Hefei, China. Synchrotrons make use of the fact that when
charged particles are accelerated, they emit light. For example, electrons can be accelerated to
high speed to achieve final energies that are typically in the GeV range. Forcing the electrons
then to circle on closed loops in ultrahigh vacuum constitutes an acceleration toward the inside
of the curve, and thus the electrons emit radiation.

At the ALS, a 10-cm period undulator beamline [121] is used to provide photon energies
ranging from 7.8 to 24 eV under normal 1.9 GeV operation. A gas filter suppresses higher-
energy undulator harmonics.[122] A 3-m Eagle monochromator at Endstation 3 of the Chemical
Dynamics Beamline delivers about 2-5x10"* photons/s. At NSRL, synchrotron radiation from a
bend magnet of a 800 MeV electron storage ring is monochromated with a 1-m Seya-Namoioka
monochromator delivering ~5x10'" photons/s.[123] The working energy resolutions
E/AE (FWHM) ~ 250-400 at the Chemical Dynamics Beamline, and E/AE ~500 at NSRL permit
estimates of apparent ionization energies with a precision sufficient for the identification of
individual isomers of flame species.

The experiments at the ALS in Berkeley and at the NSRL in Hefei provide unprecedented
data throughput.[95, 96] The ease with which the photon energy may be precisely tuned near the
ionization thresholds for flame species is a feature unmatched by VUV laser and electron
sources. Synchrotron based PI-MBMS experiments permit data for a full characterization of a
flame to be taken basically within a single day. Selective flames investigated by PI-MBMS are

listed in Table 1. Detailed reports of the identification of many species newly detected in flames,
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of species mole fraction profiles, and their comparisons to flame models are reviewed in this
paper. We therefore introduce the experimental set-ups in Berkeley and Hefei in more detail.

A schematic picture of the molecular-beam sampling apparatus used at the ALS in
Berkeley is shown in Fig. 8. A Wiley-McLaren linear (1.3 m) time-of-flight mass spectrometer
[99] is used with a mass-resolution of about m/Am ~400 and sensitivity reaching ppm levels.[95]
A similar set-up is used at NSRL, however, with modified ion optics. This change potentially
reduces the background ion signal, eliminates secondary ionization processes, increases ion
detection efficiency, and improves mass resolution. In combination with a reflectron time-of-
flight mass spectrometer, a mass resolution of about ~1400 is achieved.[124]

Flame-sampling molecular-beam mass spectrometry with photoionization by tunable
vacuum-ultraviolet light enables the detection and separation of isomers based on their unique
photoionization spectra. For example, the mole fractions of the two CsH, isomers, propadiene
(allene) and propyne, can be determined individually for hydrocarbon flames. The isomers are
discriminated against each other according to their different photoionization efficiencies as a
function of photon energy (Fig. 9).[24] First, note that although the argon concentration in the
investigated flame is over two orders of magnitude larger than those of the minor species at m/z
= 40. Essentially no background interference signal is present, demonstrating good suppression
of higher energy components of the ALS photon beam. Second, note that the flame-sampled
photoionization efficiency (PIE) curve matches the PIE spectrum of allene for photon energies
lower than 10.4 eV, the ionization energy of propyne. Above 10.4 eV, both species contribute to
the flame-sampled PIE curve. This example shows how photoionization mass spectrometry with
bright, easily tunable synchrotron radiation can be used for the unique identification of important

intermediates in molecular weight growth. Third, note that the room temperature and flame-
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sampled photoionization efficiency spectra can be compared, and that the observed thresholds
have been found to be identical in shape within the experimental signal to noise ratios.[24]
Possible ionization of hot bands that would lower the apparent ionization energy is negligible.
The inset in Fig. 9 shows the isomer-resolved mole fraction profiles of both C3H4 isomers.

In Fig. 10(a) the total number of possible isomers of simple hydrocarbons of the general
formula C,Hy are shown. The calculations have been limited to linear molecules and ring
structures with more than 4 C-atoms. Needless to say, most of the theoretically conceivable
structures are not likely to be detected in flames, however, it is obvious that the total number of
isomers increases exponentially with the molecular size. Figure 10(b) shows a two-dimensional
plot of the ionization energies of several species with near or equal masses which can be
separated by their characteristic ionization energy. Some generally considered flame species in
the mass range from 40 (allene and propyne) to 78 (fulvene and benzene) with ionization
energies between 8 and 11 eV are shown. For example, at m/z = 44, ethenol (CH,CHOH) and
acetaldehyde (CH3CHO) can easily be separated.[125, 126] Further examples will be discussed
in section 3.

These PI-MBMS instruments are configured to collect data in two modes. In the first, the
photon energy is fixed, and the burner is scanned to produce mass spectra at each burner height,
or in the second, the burner height is fixed and the photon energy is scanned to record
photoionization efficiency spectra.[95, 127] The first data is subsequently analyzed to produce
species mole fraction vs. burner height profiles for comparison to models, while the second mode
is essential to identify species by their ionization threshold as well as their mass.[24, 125, 128,
129] In favorable cases multiple species at a single m/z ratio have been identified by observing

multiple thresholds.

21



3. Flame Chemistry

The quantitative flame-sampled mass spectra and temperature profiles are subsequently
used to improve combustion chemistry models. For example, flame data has been used to extract
rate constants of several important reactions.[130-135] Significant advances were also made by
identifying key combustion intermediates, thus allowing the elucidation of fundamental reaction
paths. In this section, recent MBMS studies focusing on the understanding of the formation of
aromatic species and their growth to PAH’s and soot are discussed. Furthermore, flame-sampling
MBMS work concerning the combustion chemistry of oxygenated fuels, e.g. alcohols, ethers,

and esters, is reviewed.

3.1. Hydrocarbon Flames
3.1.1. Resonantly Stabilized Radicals In Aromatic Ring Formation

It is now well accepted that small, unsaturated hydrocarbon radicals, particularly
resonantly stabilized ones, are critical elements of the gas-phase chemistry that first lead to
aromatic species and ultimately to soot formation in rich flames.[2, 5, 136] These resonantly
stabilized radicals are characterized by multiple electronic structures corresponding to the same
nuclear structure. That is, at least one unpaired electron is delocalized and spread out over two or
more sites in the radical. Resonantly stabilized radicals are thermodynamically more stable than
non-resonantly stabilized radicals. Their larger formation and slower destruction rates compared
with non-resonantly stabilized radicals, result in higher concentrations.[5] From the combustion
chemistry point of view, the most important resonantly stabilized radical is propargyl (CsHs),

oCH,-C=CH <> CH,=C=eCH. Its reactions with another propargyl or with an allyl (C;Hs)
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radical are the most commonly proposed cyclization steps and are believed to be the main source
of the “first aromatic ring” in flames burning aliphatic fuels and the rate-limiting steps in soot
formation processes.[5, 136-139]

However, a number of other reactions, including isomers of C3H,, C4Hs, C4Hs, CsH3, and
CsHs have been considered as possible cyclization steps.[2, 5, 6] The isomeric composition of
those radicals has been elucidated in recent years by PI-MBMS studies of low-pressure flames in
combination with high-level ab-initio calculations. The results are reviewed in the following
paragraphs.

C3H;: Possible isomers of C3H, are shown in Fig. 11. The singlet-cyclopropenylidene
(cyclo-'C3H,) is the energetically most stable Cs;H, isomer, while triplet-propargylene
(CHCCCH) is the second most stable form, with ca. 11 kcal mol" higher energy. The singlet state
of propadienylidene (‘H,CCC) lies another 2 kcal mol™ higher than *HCCCH.[140-142] Miller
and Melius suggested that "HCCCH could react with CsHj; to form phenyl, thus providing a
conceivable cyclization step.[136] An accurate flame model analysis of the role of C;H; in flame
chemistry requires a reliable characterization of its isomeric distribution. However, flame-
sampled data from laminar low-pressure flames using electron-ionization did not permit
distinction among several Cs;H, isomers.[142, 143] Using photoionization mass spectrometry
with tunable vacuum-ultraviolet synchrotron radiation, Taatjes et al. studied the isomeric
composition of CsH, sampled from a fuel-rich cyclopentene flame.[142] The comparison of the
experimental photoionization efficiency spectra with simulated Franck-Condon envelopes
suggests the presence of both "HCCCH and cyclo-'C3Ha.

Taatjes et al. concluded that the presence of "HCCCH is probably a consequence of the

reaction of hydrogen atoms with propargyl.[142] The energetically most stable cyclo-'C3H, is
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the least favored product in that reaction, however, it can be formed through collisional
rearrangement of various singlet isomers, namely 'H,CCC, '"HCCCH and cyclo-'HCCCH, which
are formed in minor channels.[144]

C,H; and C4Hs: There has been a longstanding debate regarding the possible importance
of the C4H; and C4Hs radicals in ring-formation processes. The C4H; and C4Hs isomers widely
considered in combustion models are shown in Fig. 11. The n-isomers of C4Hs; and C4Hs
(¢CH=CH-C=CH and ¢CH=CH-CH=CH;) are not resonantly stabilized and are less stable by
about 12 kcal mol™ than the corresponding resonantly stabilized i-isomers (CH,=eC-C=CH <>
CH,=C=C=eCH and ¢CH,-CH=C=CH, <> CH,=CH-eC=CH;).[136, 145-147] For C4Hs, there
are two additional resonantly stabilized isomers to be considered in flame chemistry:
CH;-eC=C=CH, <> CH;-C=C-eCH,; (l-methyl-allenyl) and CH;3;-eCH-C=CH <«
CH;-CH=C=eCH, both of which can be considered as methyl-substituted propargyl radicals.

Especially the additions of C,H; (acetylene) to the n-C4H; and n-C4Hs isomers have been
proposed as an important cyclization step under combustion conditions.[2, 6, 148-152]
Westmoreland et al.,[153] Wang and Frenklach,[149] and Senosiain and Miller[154] have
analyzed the potential energy surfaces for those reactions. It is shown that these reactions do not
require any H-atom transfers from one C-atom to another and that the additions to the n-isomers
have lower-energy barriers than those for the corresponding reactions of the i-isomers.[136, 154,
155] However, Miller and Melius [136] and Klippenstein and Miller [156] pointed out that
thermochemistry and formation chemistry favor i-C4Hs and that the concentrations of n-C4Hj
and n-C4Hs are simply too small for their reactions with acetylene to be effective benzene
formation pathways. In high-temperature reaction zones of rich flames, n-C4Hs can be easily

converted to the more stable i-isomer by H-atom assisted isomerization.[5, 136]
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Hansen et al. identified C4H; and C4Hs isomers in fuel-rich allene, propyne,
cyclopentene, and benzene flames by combining synchrotron-based PI-MBMS studies with ab
initio-based Franck-Condon simulations.[145] On the basis of calculated ionization energies,
frequencies, and force constants, the Franck-Condon analysis suggests that mostly i-C4Hj3 is
detected at m/z = 51 and that i-C4Hs, CH;CCCH,, and/or CH;CHCCH isomers are present at m/z
= 53. Potentially rather small amounts of n-C;H3 and n-C4Hs together with large differences in
vertical and adiabatic ionization energies made it difficult to detect those isomers.

The detection of the i-C4H; and i-C4Hs isomers points out clearly that their reactions with
acetylene deserve testing in chemical kinetics flame modeling. Indeed, Walch showed previously
that the i-C4H; + C,H, reaction would yield phenyl (or o-benzyne + H),[155] while Miller and
Melius suggested that the reaction of i-C4Hs with acetylene was a plausible cyclization step
under certain flame conditions.[136] Senosiain and Miller concluded from their theoretical study
that although the rate coefficient for n-C4Hs+ C,H, is considerably larger than that for i-
C4Hs + C,H,, it is the latter reaction that plays the more important role in flame chemistry.[154]
This conclusion is largely based on the very fast H-atom assisted isomerization of the n-isomers
to the i-forms. The i-C4Hs + C,H, reaction forms fulvene + H without undergoing any H-atom
transfers or going through any multi-centered transition states after the initial complex is formed.
Subsequently, the fulvene produced is relatively easily converted to benzene by H-atom assisted
isomerization.[157]

The role of the newly identified methyl-substituted C4Hs isomers (CH;CCCH, and/or
CH;CHCCH) in ring formation processes requires further investigation. CH;CHCCH appears to
be completely absent from current flame models. However, the reactions CH;CCH; + CsH; and

CH;CCH; + CH3CCH; could form benzyl + H or toluene and o-xylene, respectively, through a
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sequence of steps analogous to those by which C;Hj; + C3H3 reaction form benzene and
phenyl + H.[137, 139, 158]

CsH; and CsHs: In a study related to the identification of the C4H; and C4Hs radicals in
fuel-rich flames, Hansen et al. used an identical approach to identify CsH; and CsHs
isomers.[ 128] For CsHj3, the presence of both the H,CCCCCH (i-CsH3) and the HCCCHCCH (n-
CsH3) isomers was revealed. Electronic structures for the resonantly stabilized i- and n-CsH3
radicals are shown in Fig. 11. CsHs was identified as mainly cyclo-CsHs (cyclopentadienyl
radical), although some small signal was detected below its characteristic ionization energy of
8.4 eV.[128] Contributions from the resonantly stabilized linear /-CsHs, CHCCHCHCH,, have
been later identified by Yang et al.[159]

The role of Cs radical species in molecular weight growth processes is largely uncertain.
By far the most important resonantly stabilized Cs radical is cyclo-CsHs (cyclopentadienyl
radical), which has been widely accepted to form naphthalene through a self-recombination
reaction,[2, 5, 6, 139, 157, 160] or to form fulvene through reaction with methyl radicals.[157,
161, 162] As a consequence, cyclopentadienyl is believed to be an important intermediate in the
growth of higher hydrocarbons, PAH, and soot in rich flames. Based on electronic structure
calculations of Mebel et al.,[163] Pope and Miller suggested that the reaction of the resonantly
stabilized i-CsH; (H,CCCCCH) with CHs; could be partially responsible for benzene
formation.[138] Both i- and n-CsH3 isomers are substituted propargyl radicals. Analogous to the
propargyl recombination and similar reactions proposed for 1-methyl-allenyl (CH;CCCH,), i-
CsHj3 could undergo reactions with radical-substituted propargyl (RCCCH,) radicals or propargyl
(R = H) to form phenylacetylene (C¢HsCCH), methyl-substituted phenylacetylene (CH3-CgsHa-

CCH), or diethynylbenzene (HCC-CsH4-CCH).
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3.1.2. Isomer-Resolved Measurements Of Various Combustion Intermediates

Besides for those key radical species, the isomeric identity has been resolved for a variety
of closed-shell, stable, intermediates in hydrocarbon flames employing the synchrotron PI-
MBMS technique. Within the series of C4Hy (x = 4,6, and 8) several isomers have now been
unambiguously identified and can be determined quantitatively. For example, butatriene,
CH,=C=C=CH,, the cumulenic isomer of the well-known intermediate vinylacetylene,
CH,=CH-C=CH, has been observed in flames fueled by hydrocarbons.[104, 164-166] For C4Hsg,
contributions from 1,3-butadiene (CH,=CH-CH=CH,), 1-butyne (CH=C-CH,-CH3), and 2-
butyne (CH3-C=C-CHj3;) have been separated based on their different ionization energies, as seen
in Fig. 10(b).[104, 166] In a similar fashion, contributions from 1-butene (CH,=CH-CH,-CH3),
2-butene (CH3-CH=CH-CH3;), and acrolein (CH,=CH-CHO) to signal at m/z = 56 have been
seperated.[104, 127, 166] Interestingly, 1-butene, which is a potential product of the reaction of
allyl with methyl radicals, was found to be present in stoichiometric and fuel-rich allene flames
but not in flames fueled by its isomer propyne.[127, 166]

According to Fig. 10(a), there are generally more isomers to be considered for Cs
intermediates than for Cy4 species. A variety of different closed-shell isomers of CsH4, CsHg, and
CsHg may appear in fuel-rich hydrocarbon flames. For example, the observed flame-sampled
photoionization efficiency spectrum for CsH4 in combination with ab-initio calculations revealed
the presence of CH,=C=C=C=CH,, CH,=C-CH-C=CH and CH3-C=C-C=CH.[128] The presence
of the latter two isomers can be expected, as they are thought to be reaction products of C;H with
allene and propyne, respectively.[167, 168] Analogous reactions of C4H with allene, propyne,

and vinylacetalene have been proposed to explain the observation of the corresponding C;H4 and
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CsHy polyynic intermediates.[169] The role of the CsH4 isomers in molecular-weight processes
is not immediately obvious. However, by H-abstraction reactions, n-CsH; and i-CsH3 are formed,
potentially followed by ring-forming reactions as discussed in the previous section. An
interpretation of the observed flame-sampled photoionization efficiency spectra is becoming
more difficult for CsHs and CsHs. However, contributions from cyclopentadiene,
CH;-C=C-CH=CH,, CH;-CH=CH-C=CH, and CH,=CH-CH,C=CH were observed for CsHg in
model flames fueled by allene, propyne, cyclopentene, or benzene. Cyclopentene,
CH,=CH-CH-CH-CH;, CH;-C=C-CH,-CH;, and CH,=CH-CH,-CH=CH, were found to
contribute to the CsHg signal.[128]

Besides the isomer-specific measurements of various C¢He precursors, the qualitative and
quantitative determination of different C¢Hg isomers is also of paramount interest for our
understanding of flame chemistry. The lower ionization energy of fulvene (8.36 eV) compared
with benzene (9.25 eV) — see Fig. 10(b) — allows distinctive determination of mole fraction
profiles of both species independently.[104, 123, 166, 170-173] However, it should be kept in
mind, that the presence of other C¢He isomers with ionization energies between 8.36 and 9.25 eV
is impossible to be verified as long as the photoionization efficiency curve of fulvene is
unknown. Law et al. believed to detect 1,5-hexadiyne (HC=C-CH,-CH,-C=CH) in a fuel-lean
ethylene flat flame doped with allene.[174] However, its presence was later not confirmed in
pure allene and propyne flames.[166]

Various C; species, including toluene, ought to be considered in molecular-weight
growth processes in fuel-rich flames. High-level ab-initio calculations combined with flame-
sampling PI-MBMS employing synchrotron generated VUV photons were used to identify C;7Hs

and C;Hg isomers, pointing towards the existence of Cs-C; ring enlargement reactions.[175]
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Hansen et al. confirmed the presence of the five-membered CsHsCCH or CsH4CCH, and
cycloheptatriene.[104] From the chemical point of view, the C;H¢ isomers are likely to be
formed by the reactions summarized schematically in Fig. 12: (a) The initial adduct of the
CsHs + C;H; reaction can undergo an exothermic 1,3-hydrogen shift to recover the stability of
the “parent” resonantly stabilized CsHs ring and to form the CsH4CHCH, radical. It seems
plausible that the CsH4CCH; isomer is subsequently formed by hydrogen loss or abstraction. (b)
In the hydrogen-rich environment of a fuel-rich flame it is furthermore conceivable that
hydrogen atom migration around the cyclopentadiene ring takes place to convert the initial
isomer into the most stable -CH,CHCHCHC(CCH)- tautomeric species. (¢) The initial C;H5
radical can undergo isomerization to form the resonantly stabilized cycloheptatrienyl and benzyl
radicals, subsequently forming cycloheptatriene and toluene.[175, 176] The C;H; radical species
are quite stable and thus they are good precursor candidates for forming multiring structures,
including indene and naphthalene.[160, 176, 177] The newly identified flame species and the
described reactions, leading from Cs to Cy or Cj species through C; intermediates, reveal a
molecular growth path through Cs-C; ring enlargement reactions.

Several problems arise when interpreting observed flame-sampled photoionization
efficiency spectra of large species: a) As mentioned above, the total number of isomers increases
exponentially. b) More isomers are becoming potentially important as differences in heats of
formation decrease. ¢) Similar structural features of the isomers can result in almost identical
ionization energies and undistinguishable photoionization efficiency spectra. d) lonization
energies of all conceivable isomers are not known completely and need to be either measured or
calculated employing quantum chemistry. €) Photoionization efficiencies are not as well known

as for smaller combustion intermediates. Consequently, contributions from isomers with
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ionization energies above the observed threshold can not be ruled out completely. Regardless of
those severe problems, the NSRL group characterized a variety of high-mass species in a series
of different low-pressure flames fueled by hydrocarbons and by gasoline.[123, 164, 170, 171]
Obviously, these first assignments could not been based on the observed photoionization

efficiencies and ionization thresholds alone, but also on current chemical understanding.

3.1.3. Experimental and Modeling Flame Studies Of Benzene Formation

Species identification, as described in the previous sections, can just be the first step to
further deepening the current understanding of combustion processes. In a second step, flame
modeling based on detailed chemical kinetic mechanisms should be applied to elucidate the
importance of various reactions. In the last years, experimental MBMS data from premixed
laminar low-pressure flames have been extensively used to investigate formation routes to
aromatic species.

Numerous MBMS studies exist on premixed laminar low-pressure flames fueled by
methane [132, 178-183] and the C, species acetylene [77, 133, 153, 184, 185], ethylene [55, 130,
165, 179, 186, 187], and ethane.[134, 181-183] Pope and Miller [138] chose data from premixed
laminar low-pressure flames fueled by acetylene,[188] ethylene,[130] and propene [189] to
explore benzene formation pathways. They concluded that in all three flames, the only major
formation pathways for benzene or phenyl were the result of combination of C; radicals, i.e.
propargyl + propargyl and propargyl + allyl. Contributions from addition of C,4 radicals to C,;H,
appeared to be not significant. In a related study, Richter and Howard [190] confirmed propargyl
recombination to be the dominant benzene formation pathways in fuel-rich acetylene [153, 191]

and ethylene [130] flames. For the acetylene flame, this observation has been verified later by
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Rasmussen et al.,[192] who estimated a high-temperature, low-pressure rate constant for the
propargyl recombination from the flame measurements. Richter and Howard’s conclusion that
the reactions of n-C4H; and n-C4Hs with C,H, are found to play no significant role in the
formation of single-ring aromatics in both flames refutes earlier modeling studies by Wang and
Frenklach for the same acetylene flame.[148] These models could now be compared with new
experimental data sets of a rich acetylene flame by Lamprecht et al. [184] or an isomer-specific
data set of a stoichiometric ethylene flame from Zhang et al.[165] Results of Delfau and Vovelle
have shown that polyacetylenic hydrocarbons cannot be considered as active intermediates
responsible for the formation of soot in C,H,-O; flames.[193]

The above-mentioned propargyl + propargyl recombination reaction was also found to be
the dominant source of benzene in rich flames fueled by propene (CsHs).[68, 74, 77, 184, 189]
Besides C3;Hg, two isomeric forms of CsHy, i.e. allene (CH,=C=CH,) and propyne (CH3-C=CH)
have been used as fuels in premixed laminar low-pressure flames to investigate benzene
formation routes. Law et al. [174] added small amounts of allene to a fuel-lean ethylene flat
flame and performed both EI- and PI-MBMS experiments. The modeling of that flame suggested
that the C3H3 recombination reaction is the major formation pathway of benzene. This study was
followed by an accurate PI-MBMS experiment and detailed modeling of rich flames fueled by
only allene or propyne.[166] These allene and propyne flames are of considerable interest

because both isomers lead immediately to the propargyl radical, that is, in rich flames, both fuels
are consumed by hydrogen abstraction: CsHy (allene or propyne) + H = CsH; + H.

The temperature profiles and mole fraction profiles for major species were found to be
quite similar for the isomeric fuels, as illustrated in Figs. 13(a) and (b). This observation supports

the feasibility to elucidate fuel-specific reaction pathways when using isomeric fuels. This
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approach allowed for the identification of isomeric differences in both flames and for the

tracking of the H-assisted conversion from allene to propyne and from propyne to allene: C3Hy4
(allene) + H = Cs;H4 (propyne) + H.[194] The experimental and modeled profiles of allene in the

propyne flame and propyne in the allene flame are shown in Figs. 13(c) and (d). It can be seen
that more propyne is formed in the allene flame than allene is formed in the propyne flame. This

can be understood in light of the slightly higher thermodynamic stability of propyne and the
dissociation of propyne: C3H4 (propyne) + H = CHj; + C,H,. As a consequence, less propyne

can be converted into allene. This dissociation reaction is also responsible for the observed
smaller propargyl concentration in the propyne flame than in the allene flame. Figures 13(c) and
(d) compares experimental results for C3Hz with the modeling results and an excellent agreement
is observed. The smaller propargyl concentration in the propyne and the larger concentration of
allyl in the allene flame (allyl can be directly formed from allene but not from propyne by H-
addition) lead ultimately to smaller concentrations of benzene in the propyne flame, as seen in
Figs. 13(e) and (f). The slight overprediction of the mole fraction of benzene in the models for
both flames indicates the use of a rate constant for propargyl + propargyl recombination which is
too fast.[137]

Recently, the focus of combustion research has shifted from those small (C;-Cs)
hydrocarbons towards larger, more complex hydrocarbons that are found in most liquid fuels.[6]
For example, larger alkenes are constituents of engine fuels and are also important intermediate
species in the dehydrogenation process of the parent alkanes. The benzene formation chemistry
in flames fueled by 1,3-butadiene has attracted some attention.[150, 195, 196] Cole et al. [150]
and Hansen ef al. [196] used the EI- and PI-MBMS techniques, respectively, to map the

composition of rich flames. The latest modeling suggested that propargyl + propargyl and
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contributions from i-C4Hs + C,H, contribute to the benzene formation.[196] In an experimental
and modeling study of 1-pentene (CH,=CH-CH,-CH,-CH3) combustion at fuel-rich conditions,
Gonzalez Alatorre et al. [197] concluded, that the fuel decomposes easily to form C; and C;
fractions. Consequently, the dominant pathway for benzene formation was inferred to be the
recombination of propargyl radicals.

In view of the potential importance of Cs species, e.g. naphthalene or benzene formation
through reactions of cyclo-CsHs,[2, 5, 6, 138, 157, 177, 198] studies of cyclopentene (cyclo-
CsHg) flames are of significant interest. The fuel cyclopentene is attractive for studies because
the abstraction of hydrogen atoms forms cyclopentadienyl radicals, thus, in this flame the
importance of Cs intermediates should be enhanced compared to Cs; species. However, a
modeling study of an EI-MBMS measurement of Lamprecht ez al. [199] indicated that benzene
(and fulvene) formation are dominated by the propargyl + propargyl self-combination with only
minor contributions from the cyclo-CsHs + CHj reaction.[200] This result can be understood in

light of the easy formation of propargyl radicals in cyclopentene flames, as they are readily
formed as a decomposition product of cyclo-CsHs radicals: cyclo-CsHs < linear-CsHs = C,H, +

C;H;. The importance of propargyl recombination in cyclopentene flames was later confirmed
by Kamphus et al. modeling REMPI-MBMS experimental results of a rich cyclopentene
flame.[74] Other pathways leading to benzene or phenyl + H, i.e. C4Hyx + C,H, and CsHs + CHj3
have been found to be of little or no importance. A fuel-rich flame of 1,3-pentadiene
(CH,=CH-CH=CH,-CH3), an isomer of cyclopentadiene, has been investigated by Atakan et al.
employing EI-MBMS.[201] According to their analysis, pathways including Cs; species

(C3H;3 + C3H3 and C3H;3 + C;3Hs) are dominant pathways towards C¢Hg in a 1,3-pentadiene flame.
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However, they point out that reactions of C,H, with C4Hs and of cyclo-CsHs with CH3 may be
relevant as well.

Although the critical role of resonantly stabilized radicals has been emphasized in the
literature [5, 136-138, 158] and in the previous sections and paragraphs, those reactions do not
need to dominate necessarily. In an experimental and modeling study of a stoichiometric
cyclohexane flame, Law et al. found that benzene is formed largely be dehydrogenation of
cyclohexane through cyclic intermediates.[202] This process is shown schematically in Fig. 14.
The 1,3-cyclohexadiene has been unambiguously identified in their work, while no evidence of
the 1,4-isomer has been found. Measured burner profiles of C¢Hi2, CsHio, C¢Hs, and CsHg, in
combination with a fulvene-to-benzene ratio much smaller than expected from
propargyl + propargyl recombination, suggest the importance of the cascading dehydrogenation.
Parallel modeling studies by Zhang et al. [203, 204] and Silke et al. [205] propose generally
similar ideas of benzene formation via dehydrogenation. Especially, the detailed modeling in
Ref. [204] of the flame reported by Law et al.,[202] provided a detailed insight into the major

reaction pathways, fuel consumption, and benzene formation.

3.1.4 Flame Chemistry Beyond The First Aromatic Ring

Growing concerns about negative health effects of combustion generated compounds and
particles motivated the investigation of molecular-weight growth processes in flames. For studies
of the formation of polycyclic aromatic hydrocarbons (PAH’s) in flames, it is advantageous to
use a fuel that produces these compounds in sufficient concentrations, e.g. aromatic species like
benzene. Naphthalene, the smallest PAH, was used as a fuel by Homann and coworkers to study

the formation of large molecules, including fullerene and small soot particles.[70, 206, 207]
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Benzene is currently assumed to be one of the most important soot precursors in rich
hydrocarbon flames.[208] It is therefore not surprising that flames by benzene have been
described experimentally and theoretically in numerous publications, starting with the pioneering
work of Bittner and Howard.[54] Several detailed kinetic modeling studies are based on the
experimental mole fraction profiles of the ¢ = 1.8 flame presented in their work.[190, 209-214]

Isomer-specific results from two very similar benzene-oxygen flames have been reported
by Qi et al. (¢ = 1.66) and Yang et al. (¢ = 1.78),[123, 164] employing tunable synchrotron
photoionization molecular-beam mass spectrometry. They matched observed ionization
thresholds with known ionization energies of several isomers to identify key combustion
intermediates. However, as mentioned above, especially for the larger molecules, the assignment
to just one isomer can be not more than a first guess, since other isomers, with larger ionization
energies, can no be ruled out completely. Nevertheless, their extensive list of species and their
mole fraction profiles build a useful foundation for more detailed modeling. Compared to the
studies by Bittner and Howard,[54] the NSRL group found a number of new isomers. Taking the
newly observed intermediates into consideration probably leads to a significant advancement of
the modeling efforts. Defoeux et al. [215] used EI-MBMS to detect profiles of species up to
CyHj, in a fuel-rich (¢ =2.0) benzene-oxygen flame. They saw a substantial increase in the
maximum concentrations of PAH’s when comparing their data with the somewhat leaner flame
(¢ = 1.8) studied by Bittner and Howard.[54]

A ¢ = 2.0 benzene-oxygen flame at low pressure was also investigated by Homann and
coworkers.[71, 72, 76] They combined molecular-beam sampling with REMPI and time-of-flight
mass spectrometry to study the formation of PAH’s with 18-70 carbon atoms per molecule. Up

to CosHi», they observed a nearly exponential decrease in PAH concentrations with increasing
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number of C atoms. This decrease is followed by an increase in concentration up to about Cs
and a subsequent smooth decrease to still larger species.

Fuel-rich combustion is widely used for the synthesis of carbonaceous material, including
fullerenes.[73, 216-219] However, flame-sampling techniques as described in this review article
are likely not to be suited to investigate sooting flames as the small particles tend to clog the
small opening in the quartz sampling probe.

In somewhat related studies, Huang et al. [170] and Li et al. [171] studied fuel-lean and
rich gasoline-oxygen flames using VUV photoionization MBMS. However, because of the
complex composition of the gasoline fuel,[220] the amount of unambiguous results on flame
chemistry is limited. Nevertheless, their work represents an important first step to identify

combustion intermediates in flames of practical fuels.

3.2. Oxygenated Flames

In recent years, the studies of hydrocarbon flames with molecular-beam mass
spectrometric sampling techniques have been complemented by studies of flames of oxygenated
fuels. As discussed in the Introduction, the pronounced interest in those alternative fuels stems
mostly from environmental and health concerns of the emissions from internal combustion
engines. Flame-sampling molecular-beam mass spectrometry can help to understand the
oxidation chemistry of small alcohols, ethers, and model esters. It is also useful to identify key
chemical reaction mechanisms responsible for the observed reductions in polycyclic aromatic
hydrocarbons, particulate matter, unburned hydrocarbons, and carbon monoxide when

oxygenated fuels are used.

3.2.1. Combustion Chemistry In Flames Fueled By Alcohols, Ethers, And Esters
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Alcohols: There has been some considerable interest to use alcohols, especially methanol
and ethanol, as alternatives to conventional fuels. Methanol, CH;OH, is the simplest alcohol and
it can be used as a possible fuel for engines. It is advantageous over petroleum based
conventional fuels because of a lower ignition delay, a higher burning velocity and reduced
propensity to knock.[7] However, only a few fundamental combustion studies in premixed
laminar low-pressure flames are reported. Especially methanol-air flames have been investigated
by a variety of different techniques, including electron-spin resonance (ESR),[50, 221, 222]
flame-sampling with subsequent gas chromatographic analysis,[50, 223, 224] and EI-
MBMS.[225] This technique was also employed by Vandooren and van Tiggelen to study fuel-
lean low-pressure methanol-oxygen and methanol-hydrogen-oxygen flames,[226] which
subsequently have been examined mechanistically.[227] Detailed information on the principal
paths of methanol consumption and deduced rate constants for reactions involved in the
oxidation of methanol were reported. The combustion chemistry of methanol is fairly
straightforward: It converts easily to formaldehyde (CH,0) and subsequently to CO.[228, 229]

Ethanol (C;HsOH), the second smallest alcohol, is widely used as a transportation fuel in
internal combustion engines. It is used as a fuel extender for petroleum-derived fuels and as an
octane enhancer.[230] Ethanol is mainly produced from renewable biomass resources; its use can
potentially balance the emission of carbon dioxide. The consumption of ethanol as an alternative
fuel is supposed to increase the next few years, thus warranting a critical evaluation of its
combustion chemistry.

Surprisingly, there are only few data available on ethanol flame structures. Tanoff et al.
used continuous microprobe sampling followed by electron-ionization mass spectrometry from a

fuel-lean ethanol-oxygen flame to measure reliable concentrations of reactants, products, and
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some intermediates.[231] Kasper et al. investigated two ethanol-oxygen flames with
stoichiometries of ¢ = 1.00 and ¢ = 2.57 by EI-MBMS.[75] All major species and families of
hydrocarbon and oxygenated species in the C;-C; range were detected in the pure ethanol flames
and absolute mole fractions were determined. Concentrations of the propargyl radical have been
above the detection limit only in the fuel-rich flame, while they have not been detected in the
stoichiometric flame. Benzene was below the detection limit in both ethanol flames using EI-
MBMS, however it was detected using REMPI-MBMS in the rich flame. Leplat ef al. combined
EI-MBMS measurements of a low-pressure stoichiometric ethanol flame with kinetic modeling
to deduce main consumption pathways in ethanol combustion.[232] In their study, the models of
Dunphy et al.,[233] Norton and Dryer,[234] Dagaut et al.,[235] and Marinov [236] have been
used, resulting in a good agreement for only the main species profiles.

The early fuel-consumption pathways of ethanol are shown schematically in Fig. 15.
Oxidation is typically initiated by hydrogen abstraction, which in the case of ethanol can occur at
three reaction sites, leading to the formation of 3 different C,HsO radicals. Although all
pathways are likely to occur, the formation of the CH3CHOH radical is preferred because the CH
bond at the a-carbon is the weakest. As indicated in Fig. 15, the C,HsO radicals are subject to
subsequent [-scissions to form a stable molecule and a radical species. Ethene, ethenol,
acetaldehyde and formaldehyde are thus readily formed in ethanol oxidation processes.

The situation is becoming more complex for C; and C4 alcohols. Propanol exists in two
isomeric forms, the n-propanol (CH3;CH,CH,OH) and the iso-propanol (CH;CHOHCH3;), in
addition, there are a total of four different isomers of butanol, 1-butanol (CH;CH,CH,CH,OH),

2-butanol  (CH3;CH,CHOHCHj3;), iso-butanol (CH3;C(CH3;)CH,OH), and fert-butanol
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((CH3);COH). Butanol can be produced from biomass, which is then called biobutanol, and it
can be considered as an alternative fuel with properties superior to those of ethanol.[237]

Although some work on the combustion of methanol and ethanol has been performed,
detailed and systematic studies on the combustion chemistry of larger alcohols are largely
lacking. A comprehensive experimental VUV PI-MBMS study of low-pressure premixed n- and
iso-propanol flames has been reported by Li et al.[173] The identification of various flame
species and the reported mole fraction profiles of lean and fuel-rich flames extend our current
knowledge of the combustion chemistry of alcohols. However, the proposed formation pathways
require validation by kinetic modeling studies. The effects of the fuel structure on the
composition of butanol flames has been studied by Yang et al[172] They employed single-
photon VUV PI-MBMS to identify various intermediates in four different ¢ = 1.71 flames fueled
by one of the four butanol isomers. The authors described in detail the detection of various enols,
including ethenol, propenols, and butenols. Special attention has been paid to the respective
intermediate pool of the four flames, based on the chemical structure of the fuel. Their results
show that the higher-mass oxygenated species are strongly affected by the fuel structure.
However, several hydrocarbons have been found to be independent of the fuel structure.

Ethers: As a result of its high cetane number and low sooting characteristics, dimethyl
ether (DME, CH3OCHj3) has been proposed as a promising alternative diesel fuel and fuel
additive for reducing particulate and NOy emissions.[16, 238] The large-scale generation of
DME via synthesis gas (CO + H,) from non-petroleum based feedstocks, including coal, natural
gas, and biomass, is presently explored as a promising alternative to conventional petroleum-
derived fuels.[16] The composition of three different laminar low-pressure flames of DME have

been studied with flame-sampling MBMS employing single-photon and electron ionization.[86,
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239] Recent kinetic modeling has been essential to identify the key reaction pathways in the
DME oxidation process;[21, 240-242] the DME combustion can be considered as very well
understood. In Fig. 16(a) and (b) experimental and modeled mole fraction profiles of some key
intermediates (CH,O, C,Hg, C,H4, C;Hz, CHy4, CH3, and HCO) are compared for a fuel-rich (¢ =
1.20) low-pressure dimethyl ether flame.[239] A very good agreement between experimental
data and kinetic model is observed. The results of the reaction path analysis are summarized
schematically in Fig. 16(c). DME is mainly consumed through H-atom abstraction. The resulting
CH3OCH; subsequently decomposes by B-scission to form CHs; + CH,O or reacts with O, to
form 2CH,O + OH. Other pathways to formaldehyde are the reactions of CHs; + O to form
CH,0 + H and the dissociation of CH30. Formaldehyde is subsequently oxidized to CO, via
HCO and CO. Methyl radicals, primarily formed through decomposition of CH3;OCHo,
recombine to form ethane, which generates ethyl radicals through subsequent reaction with H,
OH, and O. Further hydrogen abstractions lead eventually to acetylene, which is oxidized further
to yield CO.

Methyl fert-butyl ether (CH3;0C(CHs);, MTBE) was one of the most frequently used
oxygenate additives in gasoline, as it was used to enhance fuel octane.[243] Using an EI-MBMS
study of three premixed MTBE flames at low pressures with equivalence ratios ranging from
0.18 to 1.84, van der Loos et al. [135] deduced the rate coefficients of H-atom abstraction from
MTBE by highly reactive species like H, O, and OH. The use of flames burning at three different
equivalence ratios facilitated the rate coefficients deduction: a lean MTBE-H,-O; flame has been
used to determine the rate coefficient of the reaction with O atoms, the rich flame is appropriate
to deduce the rate coefficient of the reaction with H atoms, while the stoichiometric flame has

been used to determine the rate coefficient expression of MTBE with OH. Furthermore, they
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showed that almost all the MTBE conversion proceeds through isobutene formation, whereas the
role of acetone remains negligible in the mechanism of MTBE oxidation in H»-O, seeded flames.
In a related study, Yao et al. [244] used VUV PI-MBMS to explore the influence of MTBE
addition to laminar low-pressure gasoline-O, flames. However, the practical importance of
MTBE combustion studies has become insignificant, as due to its toxicity to freshwater
organisms,[245] MTBE is now mostly replaced by ethanol or DME.

Methyl And Ethyl Esters: Long-chain fatty acid methyl or ethyl esters are the main
components of biodiesel, which is a renewable, increasingly important transportation fuel. The
source of the fat or oil determines the nature of the hydrocarbon chain, while the alcohol used in
the transesterification process dictates the type of ester.[10, 246] Experiments and modeling
studies of real biodiesel are unfeasible as of today. Instead, the research focuses on short chain
methyl and ethyl esters. Those molecules have relatively simple structures and are well-suited for
combustion studies as they retain the functional ester group. The hydrocarbon backbone is
expected to exhibit a similar chemistry to long-chain hydrocarbons.

Investigations of premixed laminar low-pressure flames of various biodiesel surrogates
can explore the reaction pathways that account for fuel-specific differences in the production of
aldehydes, ketones, CO, prompt CO,, and the hydrocarbon precursors to PAH and soot. For
example, the combustion chemistry of the isomeric fuels methylacetate (CH;COOCH3) and
ethylformate (HCOOC,Hs) has been studied by OBwald et al. [247] employing VUV PI-MBMS.
Comparison of identical flames of structural isomers allows detailed analysis of the influence of
functional groups on the fuel consumption pathways. Differences in initial fuel destruction
pathways are immediately visible, highlighting the influences of fuel structure on the combustion

mechanisms.
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Although the temperature profiles and mole fraction profiles for the major species (Ha,
H,0, CO, O,, Ar, CO», fuels) were found to be quite similar in both flames, OBwald et al. [247]
pointed out differences in the intermediate species pools, some of which are summarized in
Fig. 16. For example, the direct formation of C,H, by H-abstraction of a primary hydrogen from
the ethoxy group of ethylformate, followed by B-scission, was identified as a possible source for
the enhancement of C, and C4 species in the ethylformate flame — Fig. 17(a). Furthermore, the
H-abstraction from the methoxy group of the methyl ester and from the ethoxy group of the ethyl
ester lead preferentially to the formation of formaldehyde in the methylacetate flame and
acetaldehyde in the ethylformate flame, respectively — Fig. 17(b). However, detailed modeling

studies are needed to further assess the importance of different reactions pathways.

4. Conclusions and Outlook

Flame-sampling molecular-beam mass spectrometry of premixed laminar low-pressure
flames allows for studies of combustion processes on a molecular level. The experimental
approaches, e.g. flame geometry, sampling probe, ionization techniques and mass separation,
have been described. Recent advances from the experimental aspect have been highlighted. For
example, great progress has been made (a) in observing the effects of probe-induced
perturbations and (b) employing tunable vacuum-ultraviolet synchrotron radiation for single-
photon ionization. The first aspect permits a quantitative analysis of the flame data, while the
latter aspect facilitates isomer-resolved measurements.

From the combustion chemistry perspective, recent flame studies have been focused on
molecular-weight growth processes in hydrocarbon flames and reaction paths in flames of

oxygenated, alternative fuels, like alcohols, ethers, and esters. Taking advantage of the tunability
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of VUV synchrotron radiation, isomeric forms of several resonantly stabilized radicals, which
are potentially important in aromatic ring formation processes, have been resolved. For example,
triplet propargylene CHCCCH), i-C4Hs, i-C4Hs, CH;CCCH, and/or CH;CHCCH, i- and n-CsHs,
and /- and cyclic-CsHs have been unambiguously identified in a variety of different fuel-rich
flames. Furthermore, isomer-specific measurements of C;-C; closed-shell species have been
summarized, including identification of various CsHy isomers, CsHsCCH and/or CsH4CCH, for
the sum formula C;Hs, and cycloheptatriene besides toluene at C;Hsg. Although the investigation
of flames fueled by oxygenated species has just begun, the considerable advances which have
been made so far, are described. For example, the combustion chemistry of ethanol and its
isomer DME can be considered as very well understood. Experimental data exist for flames of
larger molecules, including alcohols, ethers and esters, however, detailed chemical models for
flames of those molecules are essential to follow their combustion chemistry.

Single-photon ionization by tunable VUV synchrotron radiation has been proven to be of
particular importance in order to address combustion chemistry problems based on the isomeric
nature of the reactants and products. However, access to beamtime at synchrotron user facilities
is highly competitive and restricted. Maybe future laboratory-based laser light sources will be
able to provide easily-tunable, high-resolution vacuum-ultraviolet radiation of suitable intensity
for photoionization measurements. Furthermore, the energy resolution of the ionizing
synchrotron photons will not be sufficient to resolve very similar isomers, whereas laser-based
photoioinization typically can provide superior energy resolution. Another critical aspect from
the experimental point of view is a more quantitative description of probe induced disturbances.

The two-dimensional flow field created by the sampling probe should be included into the
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modeling of those laminar premixed flames in order to ultimately develop more reliable
combustion chemistry models.

In combination with constantly improving modeling capabilities, many outstanding
problems in combustion chemistry can be unraveled by flame-sampling molecular-beam mass
spectrometry. Future work is likely to include many more studies of hydrocarbon flames, with
the focus being on larger, more structurally complex hydrocarbons that are present in liquid
fuels. The flame chemistry of larger hydrocarbons can differ significantly from those of smaller
molecules, especially in view of the production of precursors to aromatic species by
unimolecular decomposition processes. Now that the formation of benzene can be considered as
well understood, future research supposedly shifts towards the chemistry beyond the first
aromatic ring in order to understand the formation of PAH’s. In addition, the combustion
chemistry of oxygenated compounds, e.g. alcohols, ethers, and esters will receive increasing
interest, especially with respect to potential undesired emissions. These alternative non-
petroleum based fuels will become more common in the future as replacements for or additives
to conventional gasoline and diesel fuels. Also, not only oxygenated compounds can be abundant
in biomass-derived fuels but also nitrogen-containing species. Therefore, advantage is likely to
be taken of the increasing experimental capabilities in order to systematically study the

combustion chemistry of N-containing fuel surrogates.
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Table 1:

List of selected studies reporting flame-sampling molecular-beam mass spectrometric measurements of premixed laminar low-

pressure flames

Fuel (IUPAC) Stoichiometry ¢ (Pressure/Torr) Method Reference
Hydrocarbon Fuels
Methane (CH,) 1.00 (20) El [181]
0.92 (20), 1.17 (20), 1.42 (30), 1.68 (40), 1.94 (60) EI [132]
1.60 (31) El [178]
0.69 (40), 1.00 (40), 1.18 (40) EI [182, 183]
Acetylene (CoHy) 1.93 (37.5) EI [77, 184]
2.40 (20) EIl [153, 191]
1.00 (15), 1.50 (15), 2.00 (20), 2.25 (26) EI [133]
2.50 (20) El [188]
2.60 (20) El [185]
Ethylene (C,Hy) 0.70 (30) El [174]
1.00 (20) VUV PI [165]
1.00 (22.5), 1.25 (26.25), 1.50 (30), 1.75 (37.5), 2.0 (37.5)  EI [186]
0.75 (30) El [55]
1.90 (20) El [130]
1.8 (20), 2.0 (20), 2.1 (20), 2.2 (20), 2.6 (20), 3.0 (20) EI [193]
Ethane (C,Hy) 1.00 (20) El [181]
1.00 (15), 1.50 (20), 2.00 (50), 2.25 (70) EI [134]
1.00 (40) EI [182, 183]

67



Allene (C3H4) 1.8 (25) VUV PI [128, 145, 166, 169]
Propyne (C3;H4) 1.8 (25) VUV PI [128, 145, 166, 169]
Propene (Cs;Hg) 1.80 (37.5), 2.33 (37.5) EI [68, 77, 184, 189, 24¢

2.33(37.5) REMPI [74]

0.23 (30) EI [249]
Propane (Cs;Hs) 1.8 (30) VUV PI [105]
1,3-Butadiene (C4Hs) 2.4 (20) EI [150]
Butane (C4H) 0.21 (25.3) EI [250]
iso-Butane (C4H) 0.21 (25.3) EI [250]
1,3-Pentadiene (CsHg) 2.16 (37.5) EI [201]
Cyclopentene (CsHg) 1.68 (37.5),2.16 (37.5), 2.63 (37.5) EI [77, 199]

2.16 (37.5) REMPI [74]

2.0 (37.5) VUV PI [104, 128, 142, 145,
1-Pentene (CsHjo) 2.32 (37.5) EI [77,197]
Benzene (CeHe) 1.0 (20) REMPI [76]

1.66 (35) VUV PI [123, 128, 145]

1.78 (30) VUV PI [164]

1.8 (20) EI [54]

2.0 (37.5) EI [215]

2.4 (40) EI [216]
Cyclohexane (CsH2) 1.0 (30) VUV PI/EI [202]
n-Heptane (C7H ;) 0.7 (45), 1.0 (45), 1.5 (45), 2.0 (45) EI [251, 252]
iso-Octane (CgHjsg) 0.7 (45), 1.0 (45), 1.5 (45), 2.0 (45) EI [251]

Oxygenated Fuels

Carbon Monoxide (CO) 1.00 (50) EI [253]



Formaldehyde (CH,0) 0.22 (22.5) El [131]
Acetone (C,H0) 0.76 (15), 1.83 (30) VUV PI [173]
Methanol (CH,O) 0.36 (40), 0.89 (40) EI [226]
Ethanol (C,HgO) 1.00 (37.5), 2.57 (37.5) REMPI / EI [75]
1.00 (37.5) El [232]
1-Propanol (C3HsO) 0.75 (15), 1.80 (30) VUV PI [173]
2-Propanol (C3H;0) 0.75 (15), 1.80 (30) VUV PI [173]
1-Butanol (C4H,00) 1.71 (30) VUV PI [172]
2-Butanol (C4H;(0) 1.71 (30) VUV PI [172]
iso-Butanol (C4H;00) 1.71 (30) VUV PI [172]
tert-Butanol (C4H;00) 1.71 (30) VUV PI [172]
Dimethyl ether (DME) (C,H40) 0.98 (30), 1.20 (30) VUV PI/EI [86]
1.2 (30), 1.68 (20) VUV PI [239]
Methyl tert-butyl ether (MTBE) (CsH;,0)  0.18 (30), 1.00 (30), 1.84 (30) EI [135]
Methylacetate (C3HgO,) 1.82 (30) VUV PI [247]
Ethylformate (C3HO») 1.82 (30) VUV PI [247]
Methylmethacrylate (CsHsO,) 0.75 (20) VUV PI [254]
Nitrogen Containing Fuel
Pyrrole (C4HsN) 0.55 (25), 1.84 (25) VUV PI [255]
Fuel Mixtures
Methane/N, (CH4/N») 1.0 (39) El [256]
Methane/Toluene/N, (CH4/C7Hg/Ny) 1.0 (39) EI [256]
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1,3-Butadiene/H, (CsH¢/H)
Butane/H; (C4H,¢/H>)
iso-Butane/H, (C4H;o/H)
Benzene/H; (CsHe/H3)
Ethylene/Allene (C,H4/C3H4)
Acetylene/Propene (C,H,/CsHpg)
Methanol/H, (CH,O/H;)
Methanol/N, (CH4O/N3)
Propene/Ethanol (C3H¢/C,HsO)

Gasoline
Gasoline/MTBE

1.44 (30)
0.17 (20.3)
0.17 (20.3)
1.79 (22)
0.69 (30)
2.16 (37.5)
0.21 (40)
1.00 (100)

C/O = 0.77: 2.35 (37.5), 2.37 (37.5), 2.38 (37.5),
2.40 (37.5), 2.42 (37.5)

C/O = 0.60: 1.83 (37.5), 1.85 (37.5), 1.86 (37.5), 1.88
(37.5), 1.93 (37.5), 1.98 (37.5), 2.12 (37.5), 2.30 (37.5)

0.75 (15), 1.73 (30)

VUV PI

EI

EI

EI

VUV PI/EI
EI

EI

EI

VUV PI/EI/
REMPI
EI / REMPI

VUV PI
VUV PI

[87]
[250]
[250]
[257]
[174]
[201]
[226]
[225]
[75, 248]

[75]

[170, 171]
[244]
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Figure Captions:

Figure 1:

Photograph and schematic structure of a flat premixed laminar low-pressure flame. Temperature
and mole fractions of reactions, products, and intermediate species are given as function of
height above the burner. In the photograph, a widespread reaction (luminous) flame zone and the

quartz nozzle used for molecular beam sampling are seen as well.

Figure 2:
Schematic diagram of an experimental setup for molecular beam sampling in low pressure

flames.

Figure 3:
[lustration of different ionization techniques: a) Electron lonization, b) Resonantly Enhanced
Multi-Photon Ionization (REMPI), and c) VUV Single-Photon lonization. See text for further

details.

Figure 4:

Mole fraction profile of benzene in a fuel-rich propene flame measured with flame-sampling
molecular-beam mass spectrometry employing electron ionization (EI), resonantly enhanced

multi-photon ionization (REMPI), and single-photon ionization.

Figure 5:
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2+1 REMPI spectrum of m/z = 92 in a fuel-rich propene flame (upper trace) and a toluene cold
gas flow (lower trace). The inset shows a UV absorption spectrum of toluene vapor. Figure is

from [78].

Figure 6:
Time-of-flight mass spectrum recorded with photons of 11.1 eV at 2.75 mm distance from the
burner in a fuel-rich cyclopentene-O, flame. All peaks are easily assigned to various common

combustion intermediates.

Figure 7:

(a) Electron ionization cross section of propane (CsHsg) at electron energy of 8-20 eV. Data from
Refs. [106, 107] and calculated using the BEB method are compared with experimental ion
signal data. In addition, contributions from fragment ions are shown. (b) Photoionization cross
section from 10.5-12.5 eV. Partial cross sections of individual fragment ions are shown together

with the total cross section.

Figure 8:

The flame-sampling photoionization molecular-beam mass spectrometer for use with
synchrotron generated VUV photon beams. The burner can be translated along the molecular-
beam axis to sample flame species at various distances from the burner face. Typical flame
pressures and orifice diameters of the quartz probe are 20-40 Torr and ~300 pum, respectively.

Turbo pumps keep the pressures in the first stage, the ionization chamber, and the vertically
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aligned flight tube below 107, 10, and 107 Torr, respectively. Ions are detected using a

multichannel plate (MCP) detector.

Figure 9:

A flame-sampled photoionization efficiency spectra for m/z = 40 as sampled from a rich
cyclopentene-O, flame and the comparison with cold-flow photoioinization efficiency spectra of
allene and propyne. Both C3;H4 isomers are easily identified. The inset shows the isomerically

resolved C3H4 mole fraction profiles for the same flame.

Figure 10:

(a) Number of total conceivable isomers of the hydrocarbons with the general structure C.H,.
Only closed-shell molecules are considered and cyclic species are taken into account only for
four-membered rings or bigger. (b) Ionization of several isomers or near-equal mass species
between m/z = 40 and m/z = 80. The specific ionization energies can be used to identify the

species and to perform concentration measurements independently from each other.

Figure 11:
Molecular structures of selected isomers of C3H,, C4Hs, C4Hs, CsHs, and CsHs. For resonantly

stabilized isomers, only one possible electronic structure is shown.

Figure 12:

Possible product formation of reactions between cyclopentadienyl (CsHs) with acetylene (C,H,).

(a) The initial adduct undergoes a 1,3-H shift and H-atom elimination to form the CsH4CCH,, or

73



(b) it undergoes H-atom elimination and subsequent H-atom migration. (c) In a ring-opening

reaction it may form cycloheptatrienyl which can isomerize to form benzyl.

Figure 13:

Isomer-specific differences in flames fueled by the C;H4 isomers allene (left column) and
propyne (right column). Mole fraction profiles of the main species (H,, H,O, CO, O,, fuel, Ar,
CO,) are shown in (a) for the allene flame and in (b) for the propyne flame. Little or no
differences are observed between the flames fueled by the C;Hs isomers. (¢) Mole fraction
profiles of propyne and propargyl in the allene flame and (d) mole fraction profiles of allene and
propargyl in the propyne flame. Propyne is more pronounced in the allene flame than allene in
the propyne flame. More propargyl is formed in the allene flame than it is the propyne flame. (e)
The experimentally observed and modeled C¢Hg profile in the allene flame is compared with (f)
the somewhat lower mole fraction of C¢Hg in the propyne flame. Symbols denote experimental

results, while modeling results are represented by solid lines.

Figure 14:
Formation of benzene from cyclohexane via cyclohexene and 1,3-cyclohexadiene and the

respective radical intermediates.

Figure 15:
Early reaction pathways in the combustion of ethanol. Abstractions of hydrogen atoms lead to
three different C,HsO radicals and subsequent (-scissions form ethene, ethenol, acetaldehyde,

and formaldehyde.
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Figure 16:

Experimental (lines and symbols) and modeled (lines) mole fraction profiles of (a) CH,O, C,Hg,
C,H4, and C;H; and (b) CH4, CH3, and HCO in a fuel-rich (¢ = 1.20) low-pressure dimethyl
ether flame. A very good agreement between experimental data and kinetic model is observed.

(c) Schematic diagram of the key reaction pathways.

Figure 17:
Experimental mole fraction profiles of C,Ha, C;H,, H,CO, and CH3CHO in fuel-rich (¢ = 1.82)
low-pressure flames fueled by the structural isomers ethylformate (HCOOC,Hs) and

methylacetate (CH;COOCH3).[247]
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Figure 4:
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Figure S:
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Figure 6:
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Figure 8:
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Figure 10:
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Figure 11:

C4H,:

C,Hj:

C,H::

CoHy:

CgH.:

i » H
— —  — \
d=% H—C~cz=C—H Je=c=c:
\H propargylene H
cyclopropenylidene ﬁ;@ﬁggfggg&iﬁi
H H
H—C\ é/ H—d
N AN N\
/C—CEC—H >C—CEC—H \_C—CEC—H
H H
cis n-C4H, trans n-C4H4 i-C4H4
H
¢, M l "o
o/ AN M 5C—Cy
VAR SN /N \
H /C H H /C—H N\ c
cis n-C4Hg trans n-C4Hz i-C4H5
H H H
C—CEC—C{ H__..\-C—C°
4 \H Hl \C
N
1-methyl-allenyl C\
H
I-|| H
C H—C=C—C=C— 0\
C/ -\C H
& N\ i-CgHy
C C\
H
n-CgHs
H—C=C C/H Ii'
e alE H C
/7 N\ \ 7
H H C—C
/ N\
I-CgHs H H
cyclo-CsH5

86



Figure 12:
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Figure
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Figure 14:
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Figure 15:
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Figure 16:
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Figure 17:

0.050

0.018

0.045 +

0.040 +

0.035 4

0.030 4

0.025 4

0.020 4

Mole Fraction

0.015 4

0.010 4

0.005 4

Ethyiformate Flame
—O—CyHy /2

% CyHy
Methylacetate Flame
—— C,Hy
—h—C,H,

Ethylformate Flame
—{—H,C0

—/'~ CH4CHO
Methylacetate Flame
——H,CO

—— CH,CHO

I 0.016

F0.014

F0.012

0.010

I 0.008

I 0.008

I 0.004

I 0.002

0.000

0.000

| IS NN B N B R EEn R R m m |
3 4 5 5] 7 8 9
Distance from Burner / mm

P
T

L] 7 8 9

Distance from Burner / mm

Mole Fraction

92



