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List of nanostructures and the related materials 

Nanostructure Chemical 
Composition

Potential Application Structural 
Parameter

Mesoporous 
structure

SiO2, Al2O3, ZrO2, 
CeO2, Zr-phosphate, 

etc

Photon/electron devices, 
catalysts & catalyst 
supporters, sensing 

materials, adsorbents, 
etc. 

Pore geometry, 
pore size

Nanotubes TiO2, carbon, etc Photon/electron devices, 
catalysts, sensing 

materials, etc.

Pore size, wall 
thickness, tube 

length

Core-shell 
structure

Iron oxides 
(especially 

magnetite), metallic 
particles, etc

Chemical separation, 
Photon/electron devices, 

catalysts, medical 
treatments, etc.

Particle size, shell 
thickness and 

coverage

Nanoparticle & 
nano-rods

TiO2, iron oxides, 
metallic iron, metallic 

Pd, etc

Catalysts, 
photon/electron devices, 

environmental 
remediation, cosmetics

Particle size, 
morphology

Nanotechnology is anticipated to be a trillion dollar industry by 2015. 



Environmental & Health Concerns of Nanomaterials



Biological Effect of Carbon Nanotubes

Poland et al., 2008, Nature Nanotechnology





Stability of Colloid Suspension

SNL, 2007
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Colloid Transport & Filtration
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Technical Gaps for Evaluating the 
Impacts of Nanomaterials

• The key factors controlling the mobility of nanomaterials 
are the chemical properties of particle surfaces including 
the point of zero charge (PZC), acidity constant, and 
sorption capability.

• These properties are also important for mechanistic 
understanding of the uptake, persistence, and biological 
toxicity of nanoparticles inside living cells.

• Given the number of new nanomaterials daily emerging, 
to determine their surface chemical properties 
individually is a formidable task, if not impossible.   



Structure-Function Relationships

Nanostructures

Surface 
chemistry of bulk 

material 

Surface 
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Synthesis of TiO2 Nanotubes and nanorods



Titration Results
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Distribution of Acidity Constant
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Distribution of Acidity Constant
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Concluding Remarks

• Like natural colloids, nanomaterials released into aquatic 
environments will experience a sequence of 
transformations including coagulation, settling, and 
filtration, which will ultimately control the bioavailability of 
these materials. 

• The key factors controlling the mobility of these materials 
are chemical properties of particle surfaces including the 
point of zero charge (PZC), acidity constant, and 
sorption capability. 

• It is possible to predict these properties based on the 
underlying nanostructures.


