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Background and Objectives

• Capillary diversion around 
tunnel may cause “drift 
shadow” effect

• Previous models evaluated 
drift-shadow effect

– Philip et al. (1989)
• Analytical Solution

– Houseworth et al. (2003)
• Dual-permeability model

– No comparisons to data

• Simulate drift-shadow tests 
(Altman et al., 2008) with dual-
permeability models
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Experimental Design

from Altman et al. (2008)
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X-Ray Imaging Results

X-ray absorption images of the 500-micron aperture test cell taken (A) before and 
(B) 5 h after the start of experiment at 0.01 ml/min and (C) 1, (D) 2, (E) 3, and (F) 5 
h after start of experiment with 0.23 ml/min flow rate. Image of cell without tracer (A) 
shows porous pumice fragments as darker areas. From Altman et al. (2008).
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Computational Domain
Dual-Permeability Model
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Model Parameters

• Matrix properties taken from Flint (2003) and 
Altman et al. (2006)

– Porosity, permeability, van Genuchten  and n

• Fracture properties calculated as a function of 
fracture aperture
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Model Boundary Conditions

• Lateral and top boundaries were no-flow

• Elements located within the drift specified as 
seepage boundaries (zero capillary pressure)

• Bottom boundary specified as gravity drainage 
flow (no capillary-pressure gradient)

• Simulated water injection rates and fracture 
apertures were varied

Aperture
(microns)

Low Injection Rate 
per Port (mL/min)

High Injection Rate 
per Port (mL/min)

100 0.01 0.12

250 0.01 0.24

500 0.01 0.23
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Model Results & Comparisons
Distribution of Normalized Outflow

Less than ~1% of flow observed to enter drift during test
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Model Results & Comparisons
Distribution of Normalized Outflow
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Simulated Fracture Saturation
500 micron aperture, 0.23 ml/min
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Capillarity in a Smooth Fracture Plane
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Capillary Pressure Curves
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Impact of Fracture
Capillary Pressure
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Model Results & Comparisons
Distribution of Normalized Outflow with Reduced

Capillary Pressure (Linear, Pmax = 200 Pa)
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Impact of Mesh 

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Bin

N
o
rm

a
liz

e
d
 O

u
tf
lo

w

Data - 0.01 ml/min

Orthogonol Mesh

Unstructured Mesh

Under Drift

250 micron aperture

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Bin

N
o
rm

a
liz

e
d
 O

u
tf

lo
w

Data - 0.24 ml/min

Orthogonol Mesh

Unstructured Mesh

Under Drift

250 micron aperture

0.01 ml/min 0.24 ml/min



19

Overview

• Background and Objectives

• Experimental Summary

• Modeling Approach & Results

• Conclusions



20

Conclusions

• Capillary diversion and drift shadow can be 
modeled by existing dual-permeability models

• Distribution of flux beneath the drift depends on 
magnitude of fracture capillary pressure

– van Genuchten curves with unbounded capillary 
pressures yielded more uniform fluxes

– Linear curves with reduced maximum capillary 
pressures yielded better matches to data

• Orthogonal and unstructured meshes yielded 
similar results



21

Backup Slides
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Image Analysis

Controlled
Light Source

X-Ray Film

CCD Camera
Digitize X-Ray 

Film

Calculate
Porosity
C/Co(t)

Grey-Level
Adjust Film

From digitized film know light intensity (I) at each pixel

From image of
Dry Sample

Id i,j

From images of 
samples taken during 

the experiment

I(t) i,j

From image of
Saturated Sample

Is i,j

Pixel Size = 0.3 mm x 0.3 mm

Tidwell, V. C., and R. J. Glass Jr., WRR, 1994.

Tidwell, et al., Journal of Contaminant Hydrology, 2000. 

Altman, et al., Journal of Contaminant Hydrology, 2004.
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X-Ray Imaging Formulation
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