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ABSTRACT

Models of geophysically important properties of the Earth, such as seismic velocity, Q and density, can become
large and complex when those properties vary in three dimensions within the model. We have developed a system
to represent the distribution of seismic properties in the Earth that can accommodate a wide range of local to global
scale 3D Earth models with spatially variable resolution. A 2D grid of nodes is tessellated using either triangles or
quadrilaterals and a profile is defined at each 2D grid node that extends from the center of the Earth to the surface.
The surface of the model corresponds with the topographic/bathymetric surface of the Earth, which is referenced to
the surface of the GRSS80 ellipsoid. Each profile can be separated into a number of layers defined by interfaces
across which geophysical properties may be discontinuous. Within the layers between interfaces, the vertical
distribution of geophysical properties may be defined by a number of continuous sublayers, by arbitrary order
polynomials or by various types of splines. Layer thicknesses can vary laterally and zero thickness layers and layer
pinch-outs are accommodated. The distribution of nodes is very flexible, allowing model resolution to vary over a
wide range in 3 dimensions. In this paper, we present detailed descriptions of the software algorithms used to
construct, store and interpolate these models.



OBJECTIVE

Complex models representing the three dimensional distribution of seismological properties within extensive areas
of the Earth are becoming ever more common in seismological endeavors. Notable examples include the global
Crust 2.0 model (Laske et. al., 2008), the broad regional WENA model (Western Eurasia and North Africa;
Pasyanos et al. 2004), and WINPAK3D model (India Pakistan; Reiter et al, 2001). The prevalence of such models
has come about in part as a result of the dramatic improvement in computational capabilities in recent years.
Computer systems able to handle large (gigabyte), geographically extensive models that represent properties from
deep in the Earth to its surface are now commonly available.

Unfortunately, the level of sophistication of model representation has not kept pace with the models themselves.
Many models are still based on regularly spaced grids that lead to increasing densities of nodes towards the poles
and deep within the Earth. These simplistic representations are employed not because they match the structure of
the Earth, but because they are easy to implement and use. However, these representations are inherently inefficient
and they are particularly ill-suited to global scale models. To develop global models that can be accessed and used
quickly, a model representation is needed that is designed specifically to fit the real ellipsoidal, laterally and radially
heterogeneous structure of the Earth. In this paper we describe an Earth model representation that enjoys global
coverage in both radial and geographic dimensions, and variable resolution that reflects the state of knowledge of
underlying parameters rather than ease of interpolation. As described in detail below, our representation involves a
two dimensional tessellation of triangles on the surface of a unit sphere, with radial profiles of Earth properties
defined at points on the sphere where three or more triangles intersect. We also describe the types of information
that must be stored in order to completely represent the model, and methods for interpolating information from the
model.

COORDINATE SYSTEM

Before we can describe the model representation, we first define the Earth-
centered coordinate system used to define the positions of points relative to
the Earth. Points are defined by a unit vector, x = { xy, x;, x,}, with its
origin at the center of the Earth, and radius, », measured in km from the
center of the Earth. As illustrated in Figure 1, this coordinate system is
oriented such that x, points from the center of the Earth towards the point
on the surface with latitude and longitude 0°, 0°; x; points toward latitude,
longitude 0°, 90° and x; points toward the north pole.

Figure 1 — Earth centered Cartesian
EARTH MODEL REPRESENTATION coordinate system.

The Earth model representation we describe here consists of a 2 dimensional, multi-level tessellation of triangles
which completely covers the surface of a unit sphere without gaps or overlaps. The highest level of the tessellation
consists of large triangles which are subdivided into ever smaller triangles at lower levels of the tessellation. At the
vertices of the triangles, which all reside at the surface of the unit sphere, Earth properties are defined along radial
profiles that extend from the center of the Earth to its surface. We first describe how the tessellation is constructed,
and then how to find an estimate of the value of an Earth property at an arbitrary point in the Earth by interpolating
values stored in the model.

Definitions

To facilitate description and manipulation of the tessellation, the following terms are defined:

e Ifvertex Vis a corner of triangle 7, then V' is a member of T and T contains V.
e  Given vertex V; that is a member of triangle 7, then V; is the next vertex in T if one arrives at V; by
traversing the edge of 7 that leaves V; in a clockwise direction as viewed from outside the unit sphere.



e Triangle Thas edges, E;, i=1,3, where E; connects vertices V; and V}, where V; is the next vertex in T after
Vi and V} is the next vertex in T after V;. Note that given a vertex V;, E; is the edge of T that does not
contain V.

e Triangle N, is the i’th neighbor of triangle T if N; is the triangle on the other side of edge E..

Each vertex should maintain a triangle membership list, i.e., a list of the triangles of which it is a member.
Each triangle 7" should maintain the following information:

1. references to the 3 vertices which are members of T
references to its 3 neighbors

3. references to three new vertices. These should default to null, but may be set to instantiated vertices if 7 is
subdivided, as will be described shortly.

4. areference to a descendent triangle, if there are any. If 7 is subdivided, as described later, the reference
can refer to any of the triangles that are descendents of 7.

5. aBoolean flag indicating whether or not 7'is ‘marked’. All triangles start out ‘unmarked’.

Tessellation Construction

Construction of each level in the tessellation involves

1. identifying the vertices involved in the given level of the
tessellation,

2. connecting the vertices together to define triangles that
completely span the surface of the unit sphere,

3. for each vertex, populating its triangle membership list,

4. for each triangle, establishing which triangles are its neighbors.

The first level of the tessellation consists of a regular icosahedron, which
is a convex regular polyhedron composed of twenty congruent,
equilateral triangles that meet at twelve vertices (Figure 2). Using the
coordinate system defined earlier, the coordinates of the twelve vertices
of a regular icosahedron are given in Table 1.

Figure 2 — A regular icosahedron
consisting of 12 vertices and 20
congruent equilateral triangles.

Table 1 — Vertices of a regular icosahedron.

Vertex Vo V3 V2
0 0.000000000000000 0.000000000000000 1.000000000000000
1 0.894427190999916 -0.000000000000000 0.447213595499958
2 0.276393202250021 0.850650808352040 0.447213595499958
3 -0.723606797749979 0.525731112119134 0.447213595499958
4 -0.723606797749979 -0.525731112119134 0.447213595499958
5 0.276393202250021 -0.850650808352040 0.447213595499958
6 0.723606797749979 -0.525731112119134 -0.447213595499958
7 0.723606797749979 0.525731112119134 -0.447213595499958
8 -0.276393202250021 0.850650808352040 -0.447213595499958
9 -0.894427190999916 0.000000000000000 -0.447213595499958
10 -0.276393202250021 -0.850650808352040 -0.447213595499958
11 0.000000000000000 0.000000000000000 -1.000000000000000

These vertices are connected together to form 20 congruent, equilateral triangles as shown in Figure 3. The 20
triangles are numbered from 0 to 19 and the order in which the vertices are connected together is given in Table 2.



http://en.wikipedia.org/wiki/Twenty

Table 2 — Connectivity of initial tessellation.

Triangle | Vertex 0 | Vertex 1 | Vertex 2
0 0 2 1
1 0 3 2
2 0 4 3
3 0 5 4
4 0 1 5
5 2 7 1
6 3 8 2
7 4 9 3
8 5 10 4
9 1 6 5
10 1 7 6
11 2 8 7
12 3 9 8 Figure 3 — Icosahedral net illustrating one possible node and
13 4 10 E) triangle numbering scheme.
14 5 6 10
15 7 11 6
16 8 11 7
17 9 11 8
18 10 11 9
19 6 11 10

As each triangle listed in Table 2 is instantiated, a reference to the triangle is added to each of its vertex’s triangle
membership list.

Triangle Neighbor Identification

Once a set of vertices have been combined into a set of triangles at a given level of the tessellation, and the vertices
have updated their triangle membership lists, it is necessary to discover, for each triangle 7 at the current level of the
tessellation, references to the triangles N;, i=1,3, that are the

neighbors of 7. This is accomplished by performing the / N\ VRN
following operations for each vertex V; in T (see Figure 4): \ / \ ///
\ / N; \ /
1. Identify the other two vertices in T, V; and V}, such that A\ \_/
V; is the next vertex after V; and V} is the next vertex . @ R @
after V. / AN ;S \
2. Mark each triangle in V;’s triangle membership list that / N\ / \
resides at the same level of the tessellation as 7. /o NN /SN \

3. Search through the triangles in V}’s triangle
membership list. Exactly two triangles will be marked:
the original triangle 7, and the neighbor of 7 that lies
across the edge E;, thereby allowing N, to be identified.

4. Unmark all the triangles which were marked in step 2.

Figure 4 — Algorithm for identifying triangle
Ts i’th neighbor, N;. Triangles containing a
black dot are triangles that have bee marked.

Descendent Level Construction

From a given level of the tessellation, a lower level can be constructed by subdividing some or all of the triangles of
the given level into smaller triangles. Variable resolution is achieved by only subdividing a subset of the triangles at
the higher level of the tessellation. Construction of a new, lower level from a given higher level is a 3 step process.

Step 1

Visit each triangle T at the lowest level of the tessellation. If it is determined that 7 should be subdivided, then visit
each edge E;, of T. If there is not already a new vertex positioned in the middle of £, then

1. instantiate a new vertex, V,, in the middle of £,
2. add areference to V,, to T"s list of new vertices



3. add areference to V, to Ts i’th neighbor, V;’s list of new vertices.

After all the triangles at the current level of the tessellation have been visited, each triangle will have had 0, 1, 2 or 3
new vertices added to its list of new vertices.

Step 2

Each triangle T at the current level of the tessellation is visited
a second time and the number of new vertices added to its
edges is identified. If 3 new vertices were added, then T'is
divided into 4 new triangles, as illustrated in Figure 5a. If 2
new vertices were added, then there are two distinct ways that
T can be divided into 3 new triangles, as illustrated in Figure
5c and 5d. The choice can be made arbitrarily. If a single
new vertex was added, then 7 is divided into 2 new triangles

:) 3 \ VN
as illustrated in Figure 5b. If no new vertices were added to 7, c) : z d) ! :

then a new triangle is instantiated that has the same three
vertices as 7. It is necessary to create this new triangle, even
though it has the same vertices as 7, because the new triangle
will ultimately reside on a different level of the tessellation
and have different neighbors than 7.

One of the newly created triangles must be identified as the Figure 5 — An illustration of some of the ways in
descendent of 7. If 7' was divided into 3 or 4 new triangles, which a triangle can be subdivided into smaller
then the center one should become s descendent. Otherwise ~triangles. a) 3 new vertices, b) 1 new vertex, ¢ and
there is either no choice to make, or the choice is arbitrary. d) 2 new vertices.

Once all the new triangles have been created and each old triangle’s descendent identified, then all the new triangles

are added to a new level of the tessellation. The third and final step of the creation of the new level of the
tessellation is to determine each triangle’s three neighbors as described above.

PROPERTY PROFILES AT VERTICES

At each vertex of the tessellation, a radial property profile is defined which is comprised of some number of major
layers. All property values within a major layer must be radially continuous but property values may be
discontinuous across major layer boundaries. Examples of major property discontinuities within the Earth are
sedimentary layer boundaries in the upper crust; boundaries between the upper, middle and lower crust; the Moho,
the 410 km discontinuity, the 660 km discontinuity, the core-mantle boundary (CMB) and the inner core boundary
(ICB). The radial property distribution within a major layer can be constant, or it can vary. Currently, variations
can be defined by a number of sublayers, by a polynomial in radius, or by a cubic spline. Support for other
distributions could easily be added.

Property values within each layer, and the radii of the layer boundaries, may be different along profiles at adjacent

tessellation vertices, and layers may pinch out to zero thickness. Since linear interpolation between adjacent profiles
is employed, as described next, property values and interface radii will be laterally continuous.

MODEL INTERPOLATION

Determining estimates of the property values and layer radii at an arbitrary position X in the Earth consists of the
following steps:

1. finding the triangle 7 in the tessellation such that X resides in 7 and 7 has no descendents
2. determining the interpolation coefficients in geographic dimensions



3. computing the major layer radii along an interpolated profile at the geographic position of X using the
interpolation coefficients computed in step 2

4. identifying the layer in the interpolated profile in which the radius of X resides

5. for each vertex V; of T, interpolating the value of the desired property at the radius of X, but constrained to
be in the layer identified in step 4

6. computing the interpolated property values at X from the three property values calculated in step 5.

These steps are now described in more detail.

Triangle Walking Algorithm

To find the triangle in which X resides, a triangle walking algorithm is implemented (Lawson, 1977). This method is
the standard approach of point searching a well behaved, convex-everywhere, 2D mesh. We initialize 7 to be an
arbitrary triangle at the highest level of the tessellation. For each edge E; in 7 we compute the scalar triple
products, = (Vk xV, )o X , where V; and ¥ are the first and second vertices of E;, respectively. Xresides in T'if

s, 20 for i =1,3. Ifs; is negative for any E; in T, then T is set equal to the neighbor that resides on the other side of

edge E; and the search continues. When 7 'is identified such that s, >0 for i =1,3, Tis checked to see if it has a

descendent. If it does, then T is set equal to the descendent and the search continues. The search ends when X
resides in 7 and 7 has no descendents.

The interpolation coefficients to be applied to the three vertices V;, i=1,3 are

, i=13 (11)

S = ZS‘/ (12)

Next, we identify the 3 property profiles P; at vertices V;, and instantiate an interpolated profile, /, at the geographic
position of point X. Then we compute interpolated values for the radii of all the major layer boundaries in 7 using

vy = § Cly (13)

where 7; and r;; are the radii of the j°th major layer boundaries in / and P;, respectively. We then identify m, the
index of the major layer in / in which the radius of X resides using bisection. Next, we interpolate property values v;
at the radius of X in profiles P; using whatever interpolation algorithms are appropriate for the property distributions
in layer m of profiles P;. The interpolations should be constrained to layer m, i.e., if the radius of X is greater than
the radius of the top of layer m in P, or less than the radius of the bottom of layer m in P;, then v; is set to the value
of the desired property at the top or bottom or layer m in P,, as appropriate. Finally, we compute the interpolated
value of the property at X

)= Zc (14)



EXAMPLE MODEL

To assess some of the advantages and disadvantages of the unstructured tessellations described here relative to more
commonly encountered structured grids, we have constructed an unstructured version of the Crust 2.0 Model of
Laske, et. al. (2008), which is represented with uniform, 2° latitude and longitude spacing. We built the unstructured
tessellation in the manner described above, with the criterion that triangles were only subdivided if they:

1. contained at least two of the original nodes from the Crust 2.0 Model, and
2. the geophysical parameter values at any two of the original nodes were different, and
3. the triangle edges were larger than 2°.

Our triangles are no smaller than 2° and at low latitudes they either contain no original nodes, or all of the original
nodes that they do contain are identical to each other. At high latitudes, where the Crust 2.0 model is very highly
sampled, many triangles do contain original nodes that are not identical in order to avoid violating the 2° minimum
triangle size constraint. Figure 6 shows an orthographic projection of the globe, centered on the boundary between
the Pacific Ocean and South America, illustrating the economies achieved over the oceans where the crustal
structure is constant over broad areas.
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Figure 6 — Orthographic projection of crustal thickness in the Eastern Pacific and South America.



Figure 7 is an azimuthal equal angle projection of the area near the pole, illustrating that the triangular cells maintain
approximately constant area, even at high latitudes, while the cells of the regularly spaced, 2° x 2° grid are
characterized by very high aspect ratios.

Figure 7 — Comparison of the unstructured triangular tessellation and the regularly spaced 2° x 2° original grid at
high latitude. The North Pole is near the left edge of the image

CONCLUSION

We have described a method for representing complex 3D Earth models based on a multi-level triangular
tessellation of a unit sphere. At each triangle vertex, geophysical properties are defined along a radial profile that
extends from the center of the Earth, through the triangle vertex and out to the topographic/bathymetric surface of
the Earth. Construction of the tessellation starts with an icosahedron and proceeds by triangular subdivision.
Variable resolution is accomplished by subdividing triangles into smaller triangles only where the distribution of the
geophysical properties represented in the model warrants additional resolution. Unlike structured, latitude-longitude
grids, resolution need not increase arbitrarily at high latitudes, making this method of model construction
particularly suitable for global scale models.

Efficient interpolation of geophysical properties at arbitrary points in the model is accomplished by implementation
of a walking triangle algorithm which starts at the highest level of the multi-level tessellation and proceeds down
through successively deeper levels until the desired position is reached.
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