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Largest US national lab
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Combustion Research Facility

Key mission
• Provide the science-base needed to 

develop predictive models for 
combustion

Facilities
• 82,000-square-foot office and 

laboratory facility
• 36 highly specialized labs

– Laser-based diagnostics
– Combustible and toxic gas handling
– Computer-controlled safety system

• 8000 square-foot computational 
laboratory

A DOE/BES Collaborative Research Facility dedicated to energy 
science and technology for the twenty-first century



Basic Science Foundation for Predictive 
Combustion Models

Mechanism Reduction &
Uncertainty Quantification

Device Validation

Turbulent Flame
Experiments

Predictive Engineering Models

High Pressure Spray

Large Eddy 
Simulation (LES)

Chemical Dynamics
& Spectroscopy

Elementary 
Chemical Kinetics

Flame Chemistry & Modeling
Theoretical 

Chemical Kinetics

Optical Diagnostics

Laminar Experiments
and Simulations

Direct Numerical
Simulation (DNS)



Temperature can be extracted from the 
measurement of the RCARS spectrum
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Specific Requirement for gas-phase CARS

• Large spatial scale processes require long distance optics
• Low number density requires high pulse energy (100 mJ for 

ns / 50 µJ for fs)

Combustion analysis
• Turbulent combusting flows typically evolve on a µs time-

scale
– Probe should be pulsed laser (ns/ps/fs) to freeze the dynamics
– Diagnostic should be capable of single-laser-shot 

implementation
– “Video-rate” data requires kHz rate measurement capability



A provocation:
Is there a winner 
for combustion 
diagnostics?

• Nanosecond CARS
– Most mature technique

• Picosecond CARS

• Femtosecond CARS 
– Probe-scan CARS

– CPP fs-CARS

• Hybrid fs / ps CARS
– Frequency filtering

– RF-locked ps laser

– SHBC

Many implementations for gas phase CARS studies

…we’ll finish with the answer



Picosecond CARS

Advantages:
• High peak power with less energy – high signal / low scatter
• Robust and “simple” systems    -field/industrial use
• Direct gas-phase collisional dephasing measurements
• High spectral resolution

Disadvantages:
• Lower signals than fs approaches
• Sensitivity to collisional 

environment
• Lower rep rate historically

– This is rapidly changing

kHz rate / 90 ps / 60 mJ



Time-delayed ps-RCARS reveals strong species-
dependence for collisional decay rates 

Probe Delay (ps)
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Probe Delay (ps)

S
p
e
ct

ra
lly

 I
n
te

g
ra

te
d
 C

A
R

S
 S

ig
n
a
l 
(n

o
rm

)
15% N2 in C2H4 at 300 K, 1 bar

Delayed probe effectively eliminates resonant 
interference from C2H4 in a fuel-rich flow



Sooting Ethylene Diffusion Flame
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Time-resolved broadband RCARS provides direct multiplexed 
measurement of pressure-broadening coefficients 

Time-domain measurements  of coherence decay rates 
are multiplexed and only require delay scan.

Frequency-domain measurement of J-dependent line 
shapes 
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Rahn and Palmer, J. Opt. Soc. Am. B 3, 1164 (1986).

Measured decay rate

decay rate = 2  Fitted lineshape
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In-situ determination of total broadening coefficents

•In a flame measurement, there is often no a 
priori knowledge of the spatial profile of major 
species concentrations

•Extremely little literature on N2-Fuel 
collisional broadening systems



In-situ determination of total broadening coefficents
In-situ determination of total broadening coefficents



• N2-N2 / N2-O2

– C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, Proc. 
Combust. Inst. 33, 831-838 (2011)

– J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, J. Chem. Phys. 135 (2011)

• N2-H2

– A. Bohlin, E. Nordstrom, B. D. Patterson, P.-E. Bengtsson, and C. J. Kliewer, J. Chem. 
Phys. 137, 074302 (2012).

• CO2-CO2

– S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, J. 
Chem. Phys. 138, 024201 (2013)

• C2H2-N2  / N2-C2H2 / C2H2-C2H2

– P. S. Hsu, H. U. Stauffer, N. Jiang, J. R. Gord, and S. Roy, J. Chem. Phys. 139 (2013)

• N2-X In-situ total broadening

– Y. Gao, A. Bohlin, T. Seeger, P.-E. Bengtsson, and C. J. Kliewer, Proc. Combust. Inst. 
34, 3637-3644 (2013)

In-situ determination of total broadening coefficents



T. Lang and M. Motzkus,  J. Opt. Soc. 
Am. B-Opt. Phys. 19 (2), 340 (2002).

Femtosecond CARS

Advantages:
• Impulsive excitation creates highest 

possible signal levels
• Collision-independent measurement 

possible
• Improved shot-to-shot precision
• Shorter integration in the time-

domain model (vs. ps-CARS)

Disadvantages:
• More sensitive/complicated setup than 

ns- or ps- CARS
• Pulse dispersion concerns / instability
• Sensitivity to probe phase noise?
• Not conducive to 2D imaging



Femtosecond/Picosecond Hybrid CARS

Time

Raman
Coherence

Ps-CARS

fs-pump/ps-probe CARS

Stokes

Pump

Probe



Advantages:
• Impulsive excitation creates highest possible signal levels
• Collision-independent measurement possible (at certain 

conditions)
• Improved shot-to-shot precision
• High spectral resolution (vs. fs-CARS)
• Shorter integration in the time-

domain model (vs. ps-CARS)

Disadvantages:
• More sensitive/complicated setup than ns- or ps- CARS
• Pulse dispersion concerns / instability

Femtosecond/Picosecond Hybrid CARS



Two-beam hybrid fs/ps 1D-CARS



Single-laser-shot 1D-CARS measurements

Φ=0.83, Re=5000

Single-shot signal image



Single-laser-shot 1D-CARS measurements

Time- and spatially dependent statistics of the 1D flame 
front gradient / thickness / position become possible



Φ=1.0, Re = 5000
Single laser shot

Φ=0.83, Re = 5000
Single laser shot

Single-laser-shot 1D-CARS measurements

•Detailed time-
resolved studies of 
transient FWI effects 
become possible 
with single-shot 
thermal field 
measurements 
using fs/ps 1D-
CARS

Φ=1.0, Re = 5000
100 laser shots



Single-laser-shot 1D-CARS measurements

Excellent spatial 
resolution may 
reveal interesting  
new features… 

…or is it just beam 
steering…



Spectrally resolved detection of 2D-CARS  
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Spectrally resolved detection of 2D-CARS  
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Spectrally resolved detection of 2D-CARS  
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120 X 125 pixels = 15000 spatially correlated spectra in a single laser shot. 

Spectrally resolved detection of 2D-CARS  
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Simultaneous planar imaging and 
multiplex spectroscopy in a single-shot

O2 O2 O2O2

• Tunable spectral dispersion, enabling multispecies detection and 
probing of a larger 2D field.

• Vector diagram to orientate each location of the spatially 
resolved measurement.

B. K. Ford, et al., Opt. Express 9, 444 (2001).B. K. Ford, et al., Opt. Express 9, 444 (2001).



Rotational quantum number J =    4        5       6        7        8       9     10     11     12     13     14     15     16

Simultaneous planar imaging and 
multiplex spectroscopy in a single-shot

Row (Y) 

Single row ~ 120 spectra
Average T = 299.6 K
Accuracy = 1.5 %
Precision = 1.4 % 

Temperature field statistics

• Pixel-to-pixel 
extraction of spectra.

• Insensitive to 
irregularities in the  
probe & excitation 
pulses spatial profiles. 



• The measurements are optimized for flame thermometry and detecting [N2]/[O2], 
i.e. narrower mask, ~2100 spectra collected simultaneously, 2D-field of 2 x 7.5 mm. 

2D-mapping of temperature and 
species in flames

N2 S(14) @ 123.18 cm-1

100 accumulated shots

2 mm
7.5 mm

• Detecting #25 N2 and #14 O2 S-branch transitions 
with small spectral interference.



• The measurements are optimized for flame thermometry and detecting [N2]/[O2], 
i.e. narrower mask, ~2100 spectra collected simultaneously, 2D-field of 2 x 7.5 mm. 

2D-mapping of temperature and 
species in flames

N2 S(14) @ 123.18 cm-1

Single shot raw data collected @ ~5 Hz

2 mm
7.5 mm

• Detecting #25 N2 and #14 O2 S-branch transitions 
with small spectral interference.
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• Imaging the spatial distribution of cold and hot N2.

2D-mapping of temperature and 
species in flames
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• Imaging the spatial distribution of cold and hot N2.

• Temperatures extracted in the range from 300K – 2000K. 

2D-mapping of temperature and 
species in flames
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• Temperatures extracted in the range from 300K – 2000K. 
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• Inhomogeneity in the 
excitation and probe laser 
profile is repeated in all the 
spectral transitions, 2D-CARS 
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these effects. 

2D-mapping of temperature and 
species in flames
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Two-beam Ultrabroadband CARS
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Two-beam Ultrabroadband CARS



Two-beam Ultrabroadband CARS
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Two-beam Ultrabroadband CARS

H2O2

1
 m

m

19 mm 

O2

•Direct CARS imaging of fuel / oxidizer 
•Thermometry directly on fuel molecule



Preliminary low temperature application 
in intense laser pulse induced plasma

Laser
pulse 

Plasma – CARS delay, 15ns – 175ns Measurement geometry

• Time-resolved measurements 
studying the propagation of the 
plasma induced shock wave. 

• Observed rotational heating. 


