
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for 
the United States Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94-AL-85000

On-line Identification of Adverse 
Water Quality Events from Monitoring 
of Surrogate Data: CANARY Software

Sean A. McKenna and David B. Hart
Sandia National Laboratories

Albuquerque, New Mexico USA
June 26th, 2008

SAND2008-3881C



Overview

• Water Security: Both physical protection of 
infrastructure (RAM-W) and enhanced monitoring 
of distribution networks (focus here)

– Where to place sensors (SPOT)

– How to detect water quality events (CANARY)

– How to rapidly determine the location of a contaminant 
source (PONI)

• Focus on general approach, but CANARY is the 
Event Detection Software (EDS) that we have 
developed provides examples in this presentation



WQ Monitoring: Future

• “Chem-lab on a microchip” 
technology promises to 
revolutionize in-situ 
monitoring of water quality

– The Goal: Inexpensive, robust, 
networked, compound specific, 
in-situ capability

– The Reality: Significant 
engineering challenges remain 
to go from laboratory 
prototypes to field deployments



WQ Monitoring: Present

• In-situ monitoring of more 
basic water quality 
parameters is happening 
now and increasing all 
the time

• Can these indirect, or 
surrogate, parameters 
provide indication of 
adverse water quality?



Monitoring Data: Dual-Use

• Increasing amounts of on-line monitoring 
data are available through SCADA 
systems

– Hydraulics (pressure, flow) and water quality

• Dual-Use (Security and Operations) 
benefits are achievable from these data

– A well-managed distribution network is a 
secure distribution network



Network Monitoring



Surrogate Parameter Response
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• Example responses of a free chlorine 
sensor to 15 different contaminants injected 
24m upstream of the sensor



Surrogate Parameter Response

• In a study of nine different types of 
contaminants injected into a test loop, Hall et 
al. (2007) found:

– “All of the contaminants injected caused at least 
one or more water quality parameters to change 
significantly”

– Sensors that responded to the largest number of 
contaminants were: Specific conductivity, TOC, 
free chlorine, chloride and ORP

Hall, J., A.D. Zaffiro, R.B. Marx, P.C. Kefauver, E.R. Krishnan, R.C. Haught and J.G. 
Herrmann, 2007, On-line Water Quality Parameters as Indicators of Distribution System 
Contamination, Journal of the American Water Works Association, 99 (1), January



Event Detection: Complications

• Detecting adverse water 
quality events in network 
monitoring data is 
complicated by variations 
in background water 
quality:

– What are we looking for?

– Suppress false events 
caused by changes in 
operations



Event Detection: Steps

• Filter:
– Use an adaptive filter to model background variations 

and predict next water quality value

• Compare:
– Compare predicted and measured values for each 

time step (difference = residual)

• Combine:
– Combine residuals across all water quality signals at 

a location to identify outliers in the data

• Aggregate:
– Aggregate results across multiple time steps to 

determine the probability of an event occurring



Event Detection: Steps
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Compare the residual at each time 
step to a threshold.   Those that 
exceed the threshold are “outliers”

Use binomial distribution to determine the 
probability of an event from the number of 
outliers over a given number of time steps
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Example Event Detection

• Example event detection 
from a location in the US

– Simulated event on top of 
measured water quality

– Water quality signals 
shown at top

– True event (magenta line) 
and CANARY response 
(blue squares) shown at 
bottom



Case Study

• Examine two locations (A & B) in a 
distribution network in the USA

• Location B is strongly affected by the daily 
mixing of water from two different sources 
(groundwater and surface water)

• Available water quality data:
– 2 minute sampling interval for 39 days (28,000 

time steps)

– Four signals: Cl, pH, Conductivity, TOC



Observed Signals: Location A

Location A: Cl and pH

Location A: TOC and Conductivity



Observed Signals: Location B

Location B: Cl and pH

Location B: TOC and Conductivity



Algorithm Training

• Background water quality conditions vary 
across the network

• Event detection algorithm parameters must 
vary to address background changes

• Examine results at both individual time 
steps and in terms of clusters of successive 
time steps



Algorithm Training Results

Window Length False Positive Measures Location A Location B

P = 360 Time Steps  (Clusters) 1182  (14) 3600    (54)

P = 720 Time Steps  (Clusters) 8        (1) 1210    (25)

P = 1080 Time Steps  (Clusters) 0        (0) 1032    (21)

P = 1440 Time Steps  (Clusters) 0        (0) 695      (16)

P = 1800 Time Steps  (Clusters) 0        (0) 557      (12)

Window Length (P) Residual Statistics Location A () Location B ()

P = 360 Mean   (Std. Dev.) 0.427  (1.089) 2.079  (7.292)

P = 720 Mean   (Std. Dev.) 0.169  (0.150) 0.463  (1.542)

P = 1080 Mean   (Std. Dev.) 0.146  (0.123) 0.351  (1.146)

P = 1440 Mean   (Std. Dev.) 0.135  (0.120) 0.292  (0.980)

P = 1800 Mean   (Std. Dev.) 0.127  (0.118) 0.228  (0.720)

Based on these results, window lengths of 1080 and 1800 were selected for locations A and B



Adding Water Quality Events

• Water quality events 
are added as 
deviations from the 
background 
measurements
– Cl values decrease

– TOC values increase

• Four event “strengths” 
are used 
corresponding to 
deviations of 20, 40, 
60 and 80% of the 
background

Example Cl events

Example TOC events

Length of each event is 1 hour (30 time steps)



Example Results: Location A

• Look at 5000 time steps (approximately 1 week) 
at Location A

• Events are marked as red dots



Example Results: Location B

• Look at 5000 time steps (approximately 1 week) at 
Location B

• Event strength = 40%
• Events are marked as red dots



Evaluating Results

• A decision is made at every time step

• There are four possible results

Estimated Actual

– Correct Decision:  Backgrd Backgrd

– Correct Decision:  Event Event

– False Positive: Event Backgrd

– False Negative: Backgrd Event



Results

Event Strength (%) Correct (%) FP (%) FN (%)

Location A

20 99.13 0.49 0.38

40 99.45 0.49 0.06

60 99.50 0.49 0.01

80 99.50 0.49 0.01

Location B

20 97.15 2.37 0.48

40 97.37 2.43 0.20

60 97.56 2.43 0.01

80 97.56 2.43 0.01

• Greater than 99% correct at Location A and greater 
than 97% correct at Location B

• FN results decrease to 0.01% or 3 of approximately 
27000 time steps examined



Summary

• On-line monitoring of surrogate 
parameters can be implemented now in 
the majority of distribution networks

– Number of installed water quality monitors is 
increasing

– Surrogate parameters react to the introduction 
of a broad range of contaminants 

– Processing of signals to recognize events 
above background variation is necessary



Summary (Continued)

• Results of example application here show

– Greater than 97% correct decisions at both locations

– Reduction of false negatives to 0.01% for larger event 
strengths

• Future Work

– Improved recognition of expected changes resulting 
from utility operations

– Automated methods for setting algorithm parameters 
at each monitoring location

– Distributed Detection: Integrating event detection 
results from multiple monitoring locations
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