

# Modeling of Epileptic Seizures using Tensor Analysis

---

---

**Evrim Acar**

Sandia National Labs., Livermore, CA

**Rasmus Bro**, Copenhagen University, Denmark

**Bulent Yener**, Rensselaer Polytechnic Institute, Troy, NY

**Canan A. Bingol**, Yeditepe University, Turkey

**Haluk Bingol**, Bogazici University, Turkey

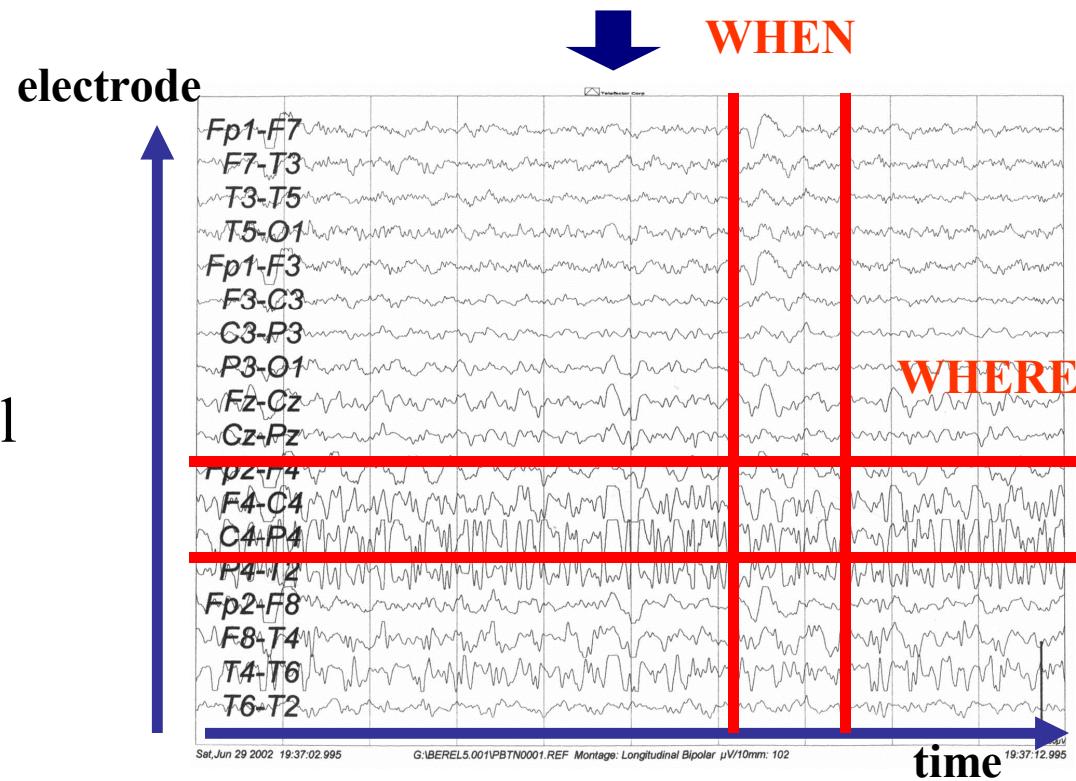
**Anthony Ritaccio**, Albany Medical College, Albany, NY



Sandia National Laboratories

# Problem Definition

- **Epilepsy:** neurological disorder characterized by recurrent, abrupt seizures.
- WHO: over 50 million people!
- Diagnosis techniques
  - Physical and neurological exams
  - Neuroimaging
  - Video-EEG monitoring



# Problem Definition (Cont.)

## Motivation:

- Visual analysis is time-consuming  
**>> saving manpower**
- Visual analysis is subjective and error-prone  
**>> objective/robust analysis**

**Goal:** Developing mathematical models that can capture a seizure structure automatically.

- Seizure recognition **(when)**
- Seizure localization **(where)**

# Overview

---

---

- **Part I: Tensor Basics**
- **Part II: Epileptic Seizure Recognition**
  - Related Work (e.g., feature extraction from epileptic EEG)
  - Methodology:
    - Construction of a third-order **Epilepsy Feature Tensor**
    - Seizure recognition using Multilinear PLS
- **Part III: Discussions**
  - Future Research Directions
  - Other studies on epileptic EEG signals

# Overview

---

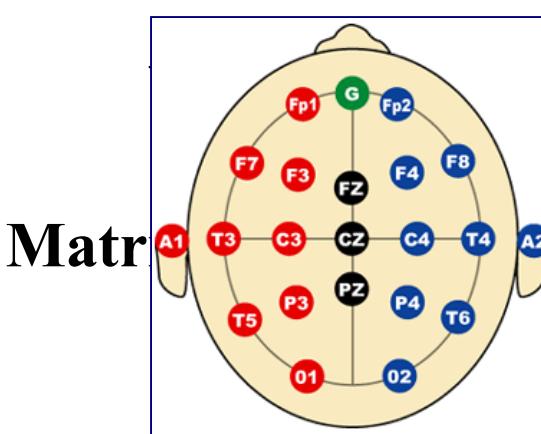
---

- **Part I: Tensor Basics**
- **Part II: Epileptic Seizure Recognition**
  - Related Work (e.g., feature extraction from epileptic EEG)
  - Methodology:
    - Construction of a third-order **Epilepsy Feature Tensor**
    - Seizure recognition using Multilinear PLS
- **Part III: Discussions**
  - Future Research Directions
  - Other studies on epileptic EEG signals

# Why tensors?

## Two-way data

- **Social networks:**  
<user, keyword>
- **Text mining:**  
<document, term>
- **Face recognition:**  
<person, pixel>
- **Neuroscience:**

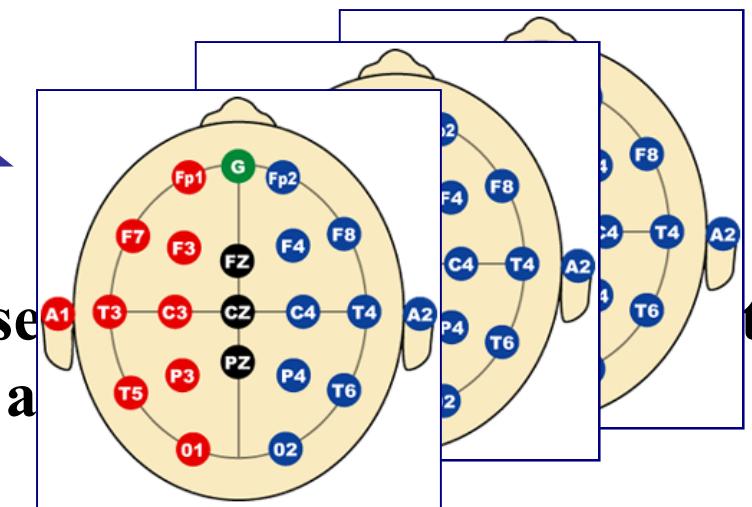


Matrix

ough to represent  
the data from a

## Higher-order data

- <user, keyword, time>
- < document, term, author>
- < person, pixel, viewpoint>

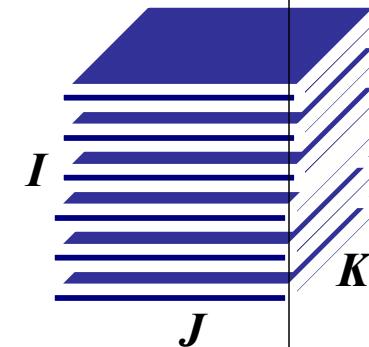


t

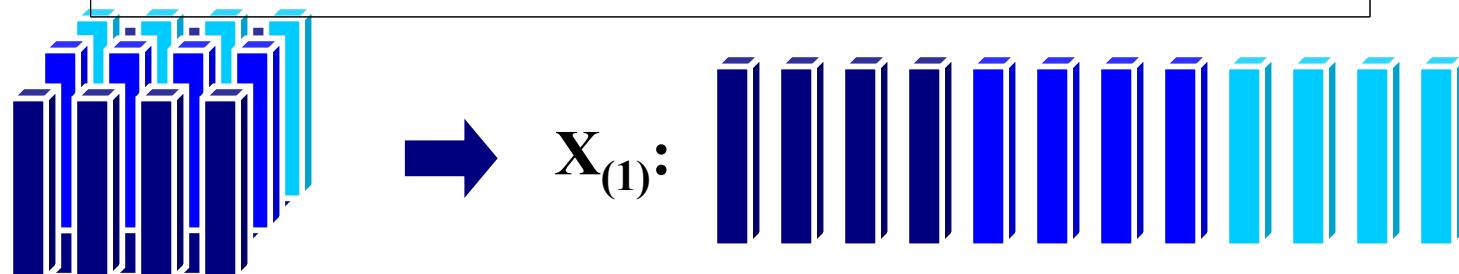
# What is a tensor?

- A tensor is a higher-order generalization of a matrix.

Example: A third-order tensor  $\underline{X} \in \mathbb{R}^{I \times J \times K}$



- Matricization (unfolding/flattening)
  - rearranging a tensor as a matrix.
  - The mode- $n$  matricization of a higher-order dataset, e.g.,  $\underline{X}$ , denoted by  $X_{(n)}$  unfolds the data in the  $n^{\text{th}}$  mode.



# Tensor times a matrix

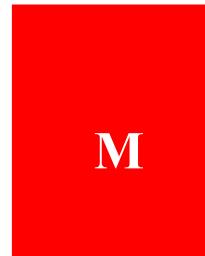
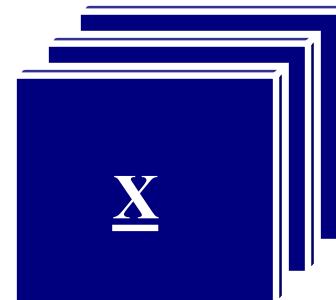
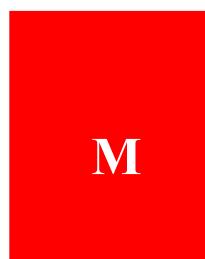
- The mode-n product of a tensor  $\underline{X} \in \mathbb{R}^{I_1 \times I_2 \dots \times I_n \times \dots \times I_N}$  with a matrix  $M \in \mathbb{R}^{P \times I_n}$  is denoted by

$$\underline{Y} = \underline{X} \times_n M$$

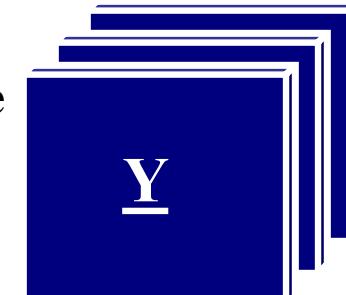
where  $\underline{Y} \in \mathbb{R}^{I_1 \times I_2 \dots \times I_{n-1} \times P \times I_{n+1} \dots \times I_N}$

## Example:

$$\underline{X} \times_1 M =$$

 $=$  $M$  $X_{(1)}$ 

reshape

 $Y$

# Overview

---

---

- **Part I: Tensor Basics**
- **Part II: Epileptic Seizure Recognition**
  - Related Work (e.g., feature extraction from epileptic EEG)
  - Methodology:
    - Construction of a third-order **Epilepsy Feature Tensor**
    - Seizure recognition using Multilinear PLS
- **Part III: Discussions**
  - Future Research Directions
  - Other studies on epileptic EEG signals

# Related Work

**Common Approach:** Divide an EEG recording into time epochs and extract features that can distinguish between seizures and other brain dynamics.



Analysis of the performance of multiple features on **single channel** EEG data

Analysis of the performance of a **single feature** on multi-channel EEG data



Time Epochs  
 $i=1,2,\dots I$

Features  
 $j=1,2,\dots J$



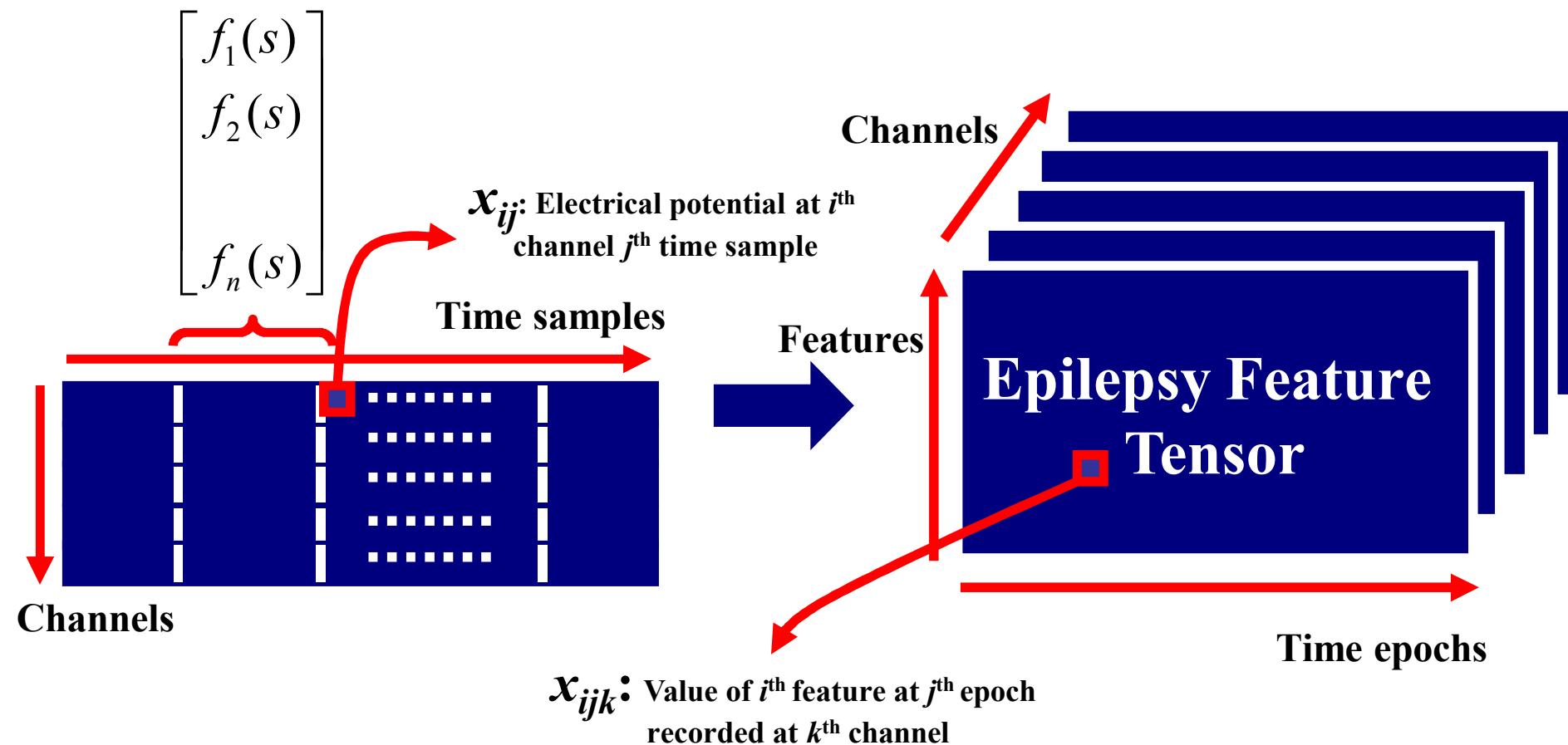
Time Epochs  
 $i=1,2,\dots I$

Channels  
 $k=1,2,\dots K$

**Our Approach:** Analysis of **multiple features** from different domains on **multi-channel** EEG data

# STEP1: Epilepsy Feature Tensor

- Construction of an Epilepsy Feature Tensor from multi-channel EEG



# Features from Multiple Domains



## Time domain

Let  $s = \{s(1), s(2), \dots, s(N)\}$  be the time sequence for a particular epoch of length  $N$ .

- Activity:  $f_1(s) = \sigma_s^2$
- Mobility:  $f_2(s) = \frac{\sigma_{s'}}{\sigma_s}$
- Complexity  
$$f_3(s) = \frac{(\sigma_{s''} / \sigma_{s'})}{(\sigma_{s'} / \sigma_s)}$$
- Mean Absolute Slope:  $f_4(s)$

## Frequency domain

Take the first difference and then compute the Fourier coefficients to construct the amplitude spectrum

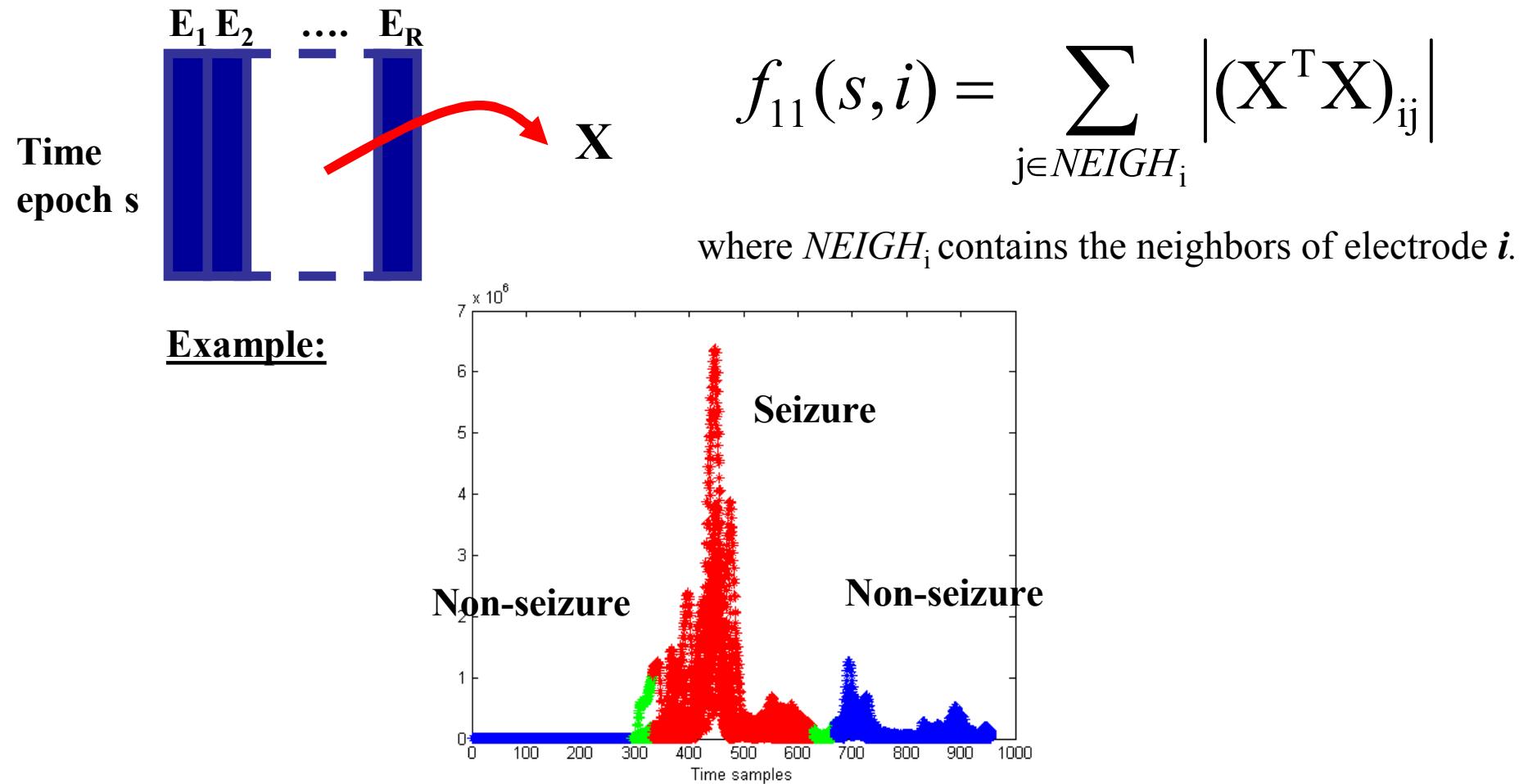
- Median Frequency:  $f_5(s)$

Compute the energy spread across different EEG bands, i.e.,  $\delta$  (0.5-3.5Hz),  $\theta$  (3.5-7.5Hz),  $\alpha$  (7.5-12.5Hz),  $\beta$  (12.5-30Hz) and  $\gamma$  ( $>30$ Hz)

- Spectral Entropy:  $f_6(s)$
- Relative Energy in each freq. band:  
$$f_7(s) - f_{10}(s)$$

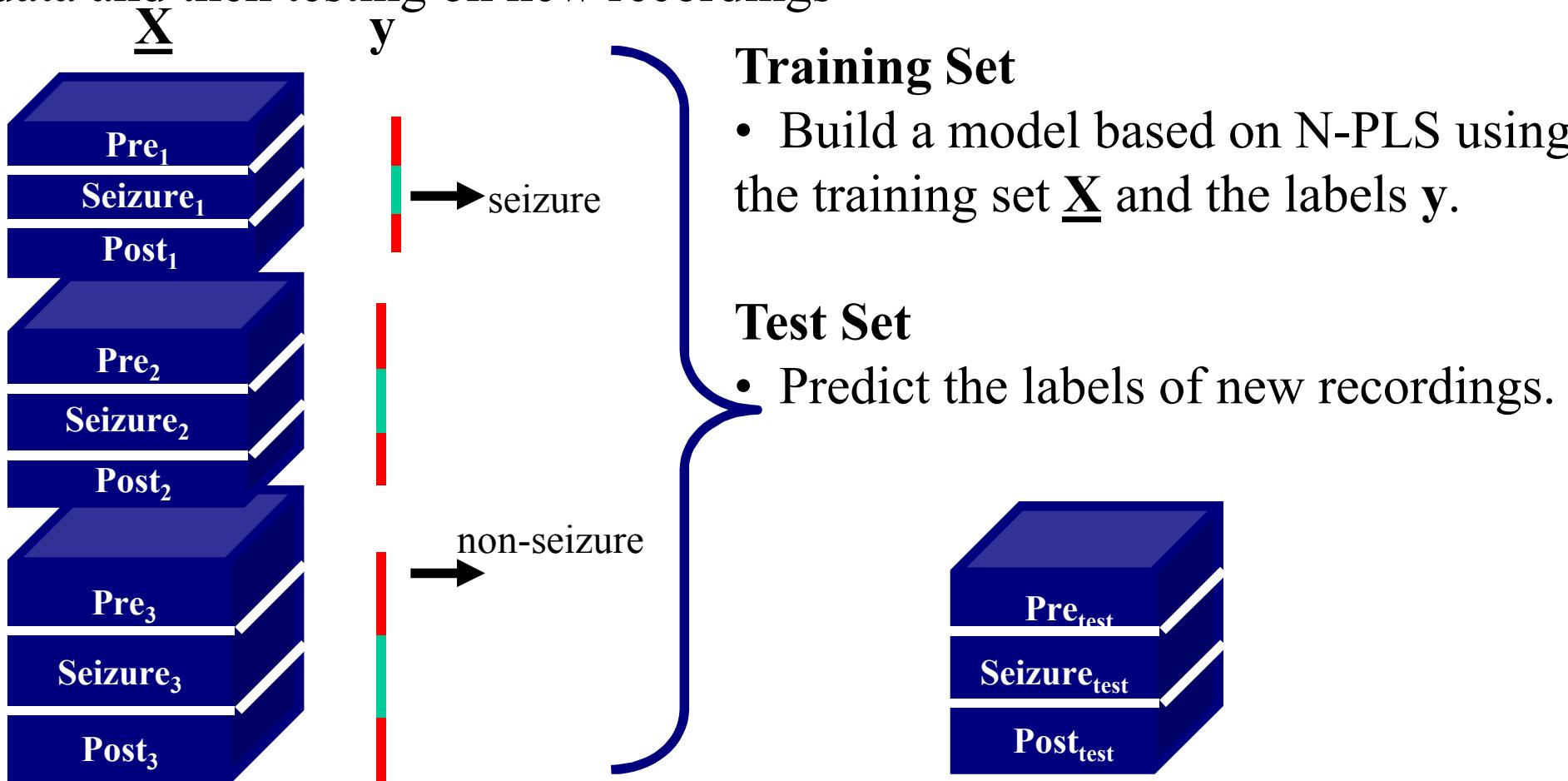
# More features

- To quantify the synchronization among channels, especially among neighboring channels as the seizure starts.

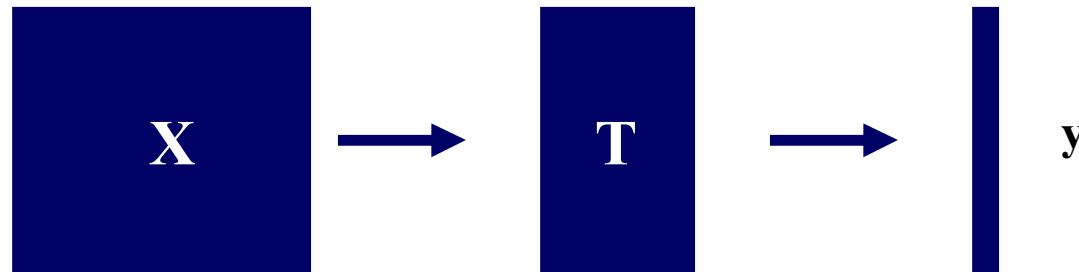


# STEP2: Seizure Recognition

- Building a mathematical model based on Multilinear PLS on available data and then testing on new recordings



# Partial Least Squares (PLS)



Let  $X \in \mathbb{R}^{I \times J}$  and  $y \in \mathbb{R}^I$  be the independent and dependent (response) variables, respectively

- Map  $X$  to a low-dimensional space and regress onto  $y$

$$y = Tb + e$$

- Determine the columns of  $T \in \mathbb{R}^{I \times K}$  (where  $K < J$ ), such that

$$\max_w \text{cov}(Xw, y)$$

where  $t = Xw$  is a column of matrix  $T$ .

# Multilinear PLS (N-PLS) (by Bro'96)

Multilinear PLS  $(\underline{X}, y, N)$

1.  $y_0 = y, X_0 = X_{(1)}$
2. for  $i = 1$  to  $N$  do
3.  $z = y_{i-1}^T X_{i-1}$
4.  $Z = USV^T$ , where  $Z(m, n) = z(m + J(n-1))$
5.  $w^J = U(:, 1)$ ,  $w^K = V(:, 1)$   
 $W^J(:, i) = w^J$ ,  $W^K(:, i) = w^K$
6.  $T(:, i) = X_{i-1} (w^K \otimes w^J)$
7.  $X_i = X_{i-1} - T(:, i) (w^K \otimes w^J)^T$
8.  $b_i = (T^T T)^{-1} T^T y_{i-1} = T^+ y_{i-1}$
9.  $y_i = y_{i-1} - Tb_i$
10. endfor

PLS  $(X, y, N)$

$y_0 = y, X_0 = X$   
for  $i = 1 : N$  do

$$W_i = \frac{X_{i-1}^T y_{i-1}}{\|X_{i-1}^T y_{i-1}\|}$$

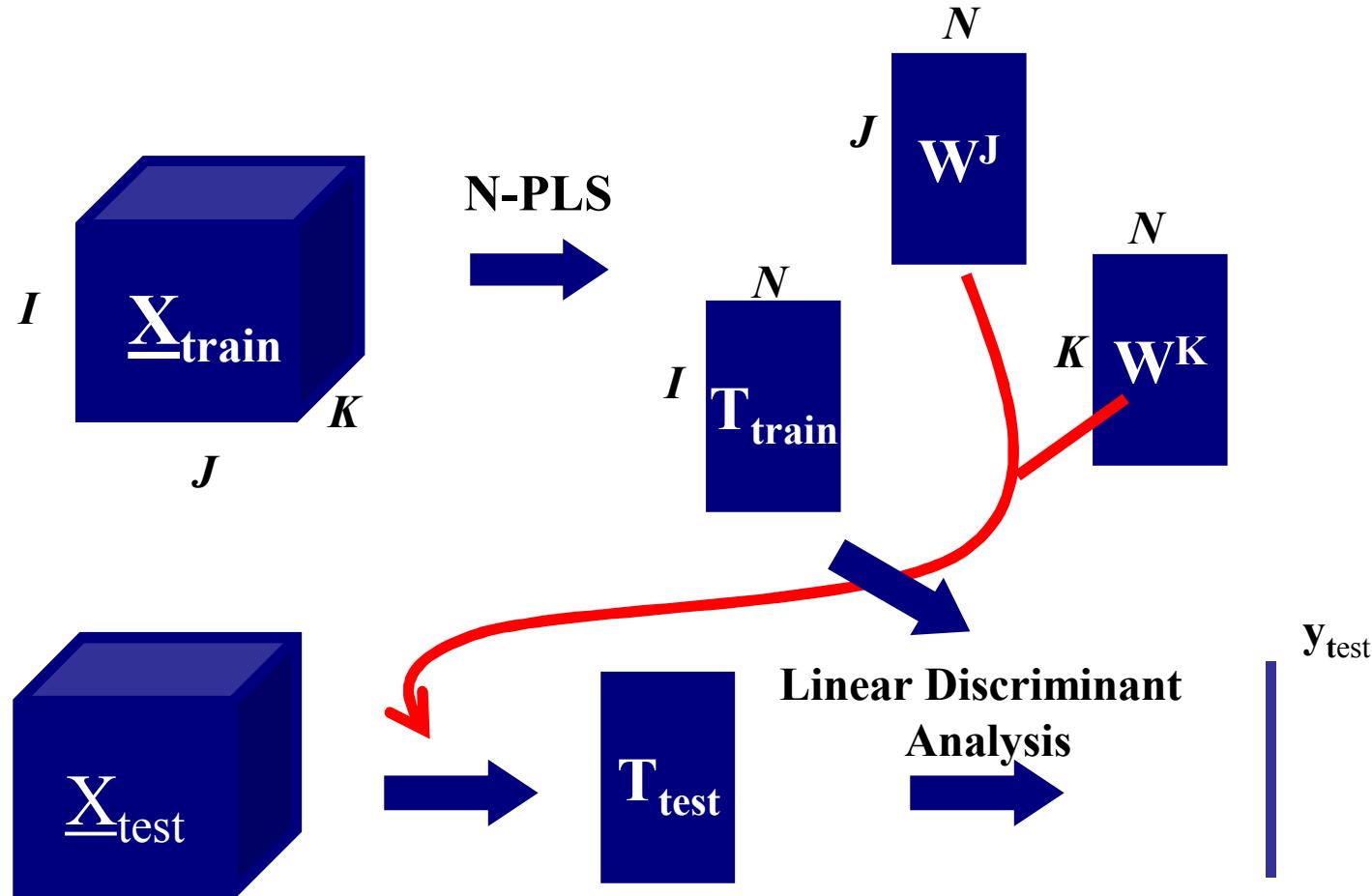
$$T_i = X_{i-1} W_i$$

$$X_i = X_{i-1} - T_i W_i^T$$

$$y_i = y_{i-1} - T_i b_i$$

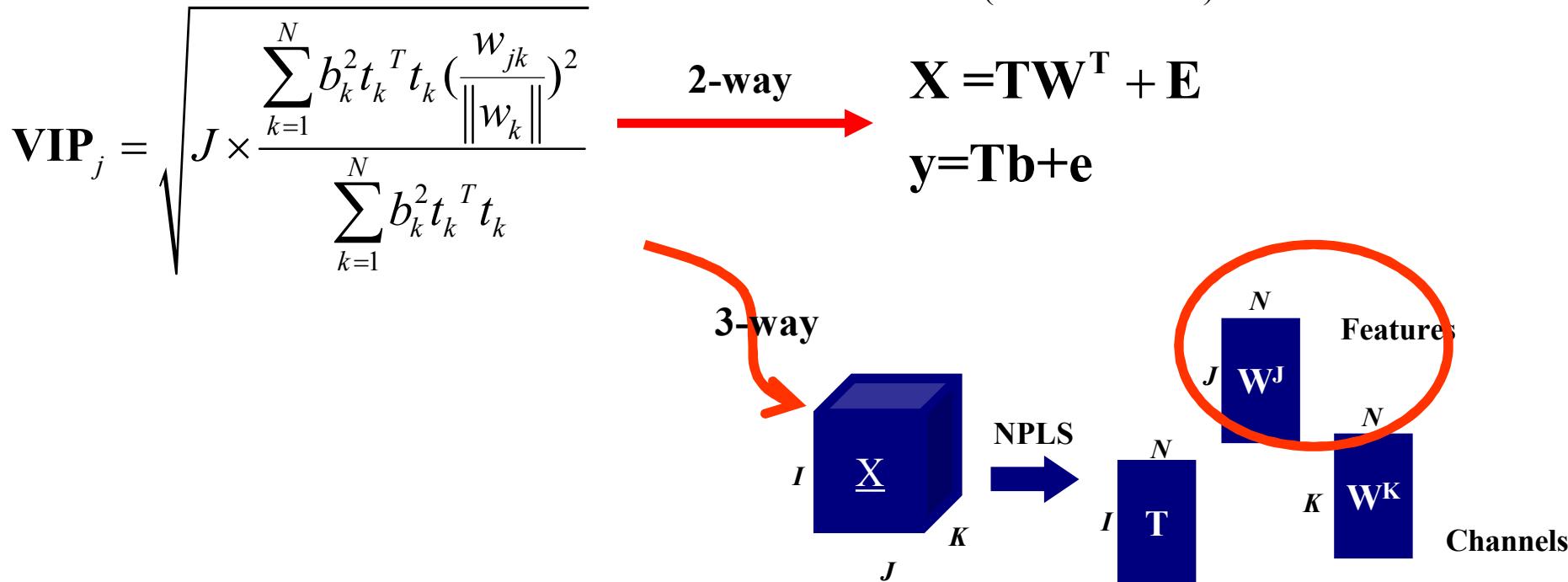
endfor

# To predict $y_{\text{test}}$ : Combine N-PLS and LDA



# Feature Selection: Generalization of VIP to 3-way

- **Goal:** Eliminate the features that are not very relevant with the classification of non-seizure and seizure epochs.
- **Approach:**  
Use the loadings to determine which variables are important  
(Variable Importance in Projection (VIP) (Word et al.'93))



Multi-channel  
EEG

Multi-channel  
EEG

Multi-channel  
EEG

Feature Extraction and Epilepsy Feature Tensor construction

Pre1  
S1  
Post1

Pre2  
S2  
Post2

Pre3  
S3  
Post3

Form training and test datasets

Feature Selection

Training  
1  
2  
Test  
3

Training  
1  
3  
Test  
2

Training  
2  
3  
Test  
1

Cross  
Validation

Use NPLS+LDA to predict the labels of test recordings

Performance evaluation



# DATA (Patient-Specific Seizure Recognition)

- Collected in the epilepsy monitoring unit of
  - Yeditepe University Hospital (Istanbul, Turkey)
  - Albany Medical College (NY, USA)
- 32 seizures from 9 patients with different seizure origins (at least 3 seizures/patient)
- Seven Features: Activity, Complexity, Mobility, Mean Absolute Slope, Spatial Information, Spectral Entropy, Median Frequency.
- Preprocessing:
  - Filter at 50Hz/60Hz
  - Scaling within features mode

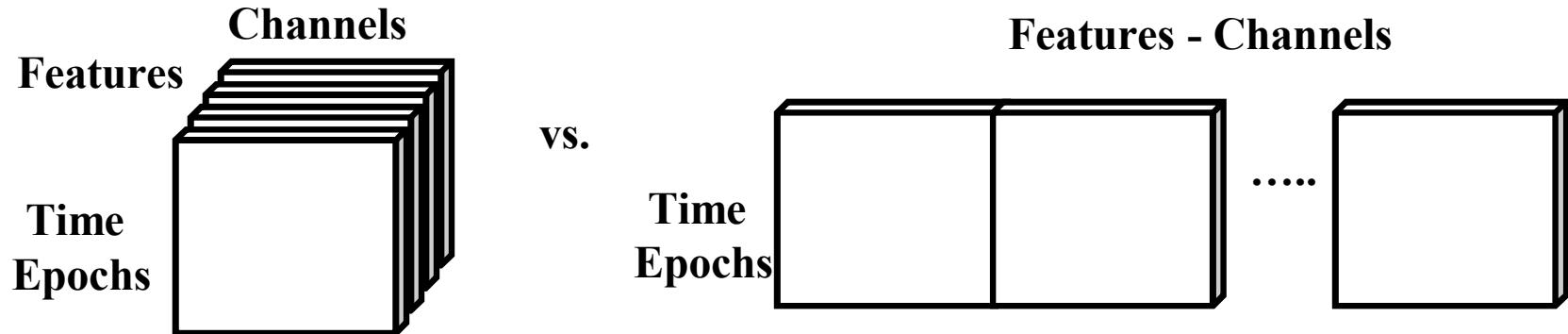
| Patient Id | Seizure Id | Size of an Epilepsy Feature Tensor |
|------------|------------|------------------------------------|
| 1          | 1          | 302 x 7 x 18                       |
|            | 2          | 386 x 7 x 18                       |
|            | 3          | 320 x 7 x 18                       |
|            | 4          | 398 x 7 x 18                       |
|            | 5          | 444 x 7 x 18                       |
| 2          | 1          | 878 x 7 x 18                       |
|            | 2          | 866 x 7 x 18                       |
|            | 3          | 902 x 7 x 18                       |
|            | 4          | 986 x 7 x 18                       |
|            | 5          | 998 x 7 x 18                       |
| 3          | 1          | 790 x 7 x 18                       |
|            | 2          | 746 x 7 x 18                       |
|            | 3          | 1034 x 7 x 18                      |
| 4          | 1          | 1174 x 7 x 18                      |
|            | 2          | 1346 x 7 x 18                      |
|            | 3          | 1170 x 7 x 18                      |
| ⋮          |            |                                    |

# Performance Evaluation

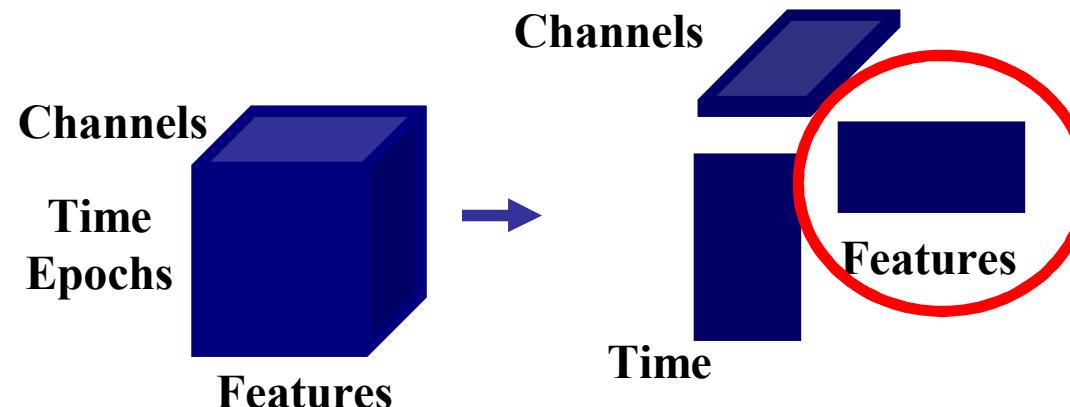
- **G-means:**  $\sqrt{Sensitivity \times Specificity}$

|          | NPLS+LDA | NPLS+LDA (FS) |
|----------|----------|---------------|
| Patient1 | 85.3%    | 86.6%         |
| Patient2 | 97.6%    | 96.7%         |
| Patient3 | 91.3%    | 91.1%         |
| Patient4 | 75.0%    | <b>77.3%</b>  |
| Patient5 | 28.6%    | <b>83.1%</b>  |
| Patient6 | 72.3%    | <b>89.3%</b>  |
| Patient7 | 97.0%    | 92.1%         |
| Patient8 | 86.0%    | 78.4%         |
| Patient9 | 84.5%    | 77.4%         |

- **Three-way vs. Two-way:**



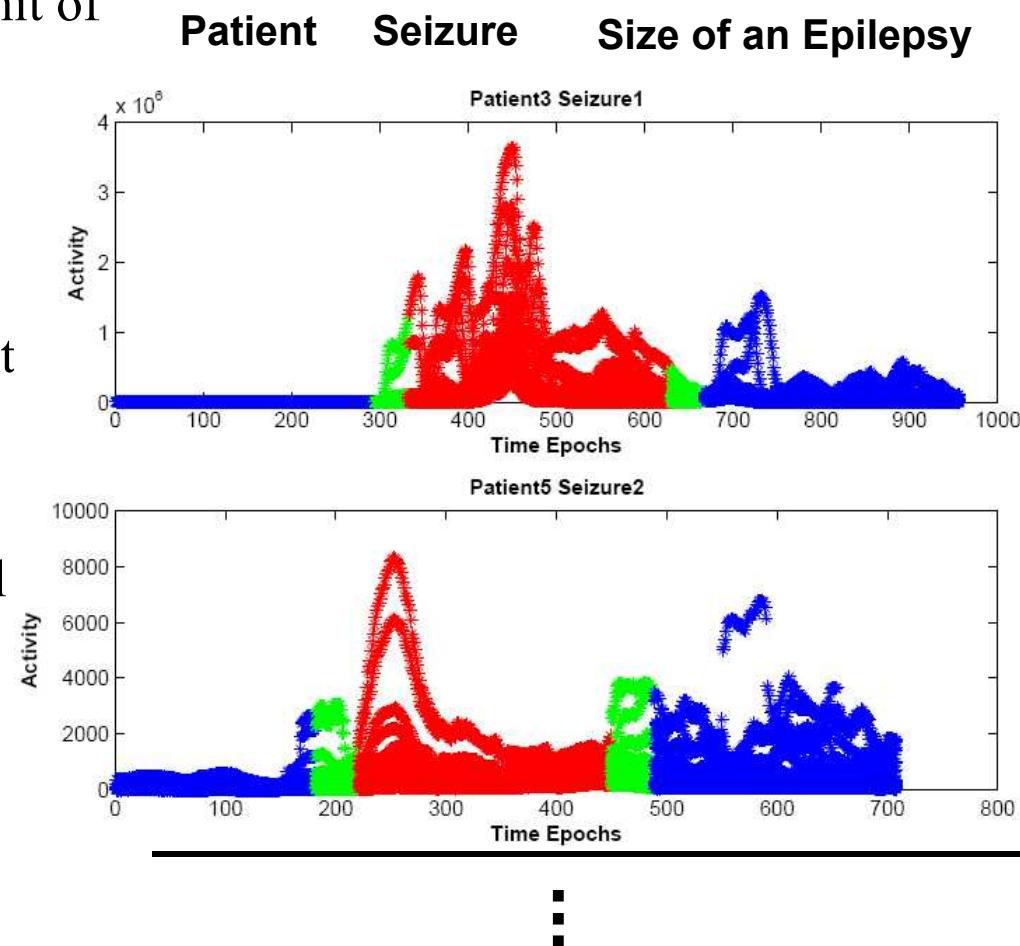
# Features



| PID | Activity | Mobility | Complexity | Mean Abs. Slope | Spatial Info | Median Freq. | Spectral Entropy |
|-----|----------|----------|------------|-----------------|--------------|--------------|------------------|
| 1   | ✓        | ✓        | ✓          | ✓               | ✓            | ✗            | ✓                |
| 2   | ✓        | ✓        | ✓          | ✓               | ✓            | ✗            | ✓                |
| 3   | ✓        | ✓        | ✓          | ✗               | ✓            | ✗            | ✓                |
| 4   | ✓        | ✓        | ✓          | ✗               | ✓            | ✗            | ✓                |
| 5   | ✓        | ✓        | ✓          | ✗               | ✗            | ✗            | ✓                |
| 6   | ✓        | ✓        | ✓          | ✗               | ✓            | ✗            | ✗                |
| 7   | ✓        | ✓        | ✓          | ✓               | ✓            | ✗            | ✓                |
| 8   | ✓        | ✓        | ✓          | ✓               | ✓            | ✗            | ✗                |
| 9   | ✓        | ✓        | ✗          | ✗               | ✓            | ✗            | ✗                |

# DATA (Patient Non-Specific Seizure Recognition)

- Collected in the epilepsy monitoring unit of
  - Yeditepe University Hospital (Istanbul, Turkey)
  - Albany Medical College (NY, USA)
- 26 seizures from 9 patients (left or right temporal)
- Eleven Features: Activity, Complexity, Mobility, Mean Absolute Slope, Spatial Information, Spectral Entropy, Median Frequency, **Relative Energy**.
- Preprocessing:
  - Filter at 50Hz/60Hz
  - Scaling within features mode
  - **Log transform**



# Performance Evaluation

- **G-means:**  $\sqrt{Sensitivity \times Specificity}$

| Patient ID | NPLS+LDA (v1) | NPLS+LDA (v2) | NPLS+LDA (v1+heuristic) |
|------------|---------------|---------------|-------------------------|
| 1          | 87.7%         | 81.4%         | 89.0%                   |
| 2          | 88.8%         | 87.0%         | 90.2%                   |
| 3          | 83.7%         | 88.1%         | 85.2%                   |
| 4          | 41.9%         | 84.7%         | 39.8%                   |
| 5          | 95.6%         | 94.9%         | 96.9%                   |
| 6          | 95.6%         | 92.6%         | 95.6%                   |
| 7          | 94.5%         | 88.1%         | 95.6%                   |
| 8          | 69.6%         | 71.1%         | 69.3%                   |
| 9          | 68.1%         | 72.8%         | 68.6%                   |
| MEAN       | 80.6%         | 84.5%         | 81.1%                   |

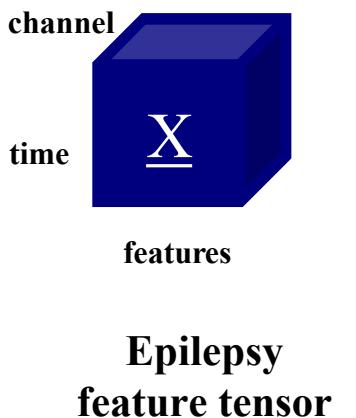
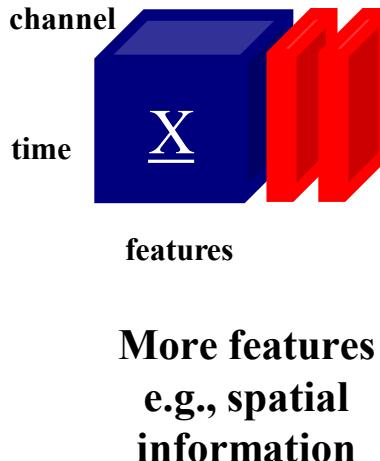
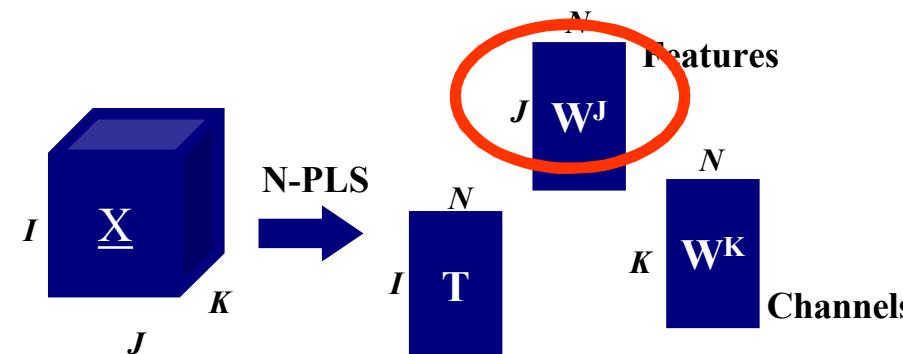
# Results

---

- Average performance of patient-specific seizure recognition over 9 patients (32 seizures) is **85.8%**.
  - better performance using feature selection
  - performance comparable with SVMs and easier interpretation
  - feature selection may improve the understanding of epileptic seizures
- Average performance of patient non-specific seizure recognition over 9 patients (26 seizures) is **80.6%**.
  - heuristics to handle false-positives may improve the performance.

# Summary

- **Epileptic Seizure Recognition:**



- Multilinear discriminant analysis based on N-PLS and LDA
- VIP extended to three-way
- Comparison with SVMs
- Patient specific and non-specific seizure recognition

# Overview

---

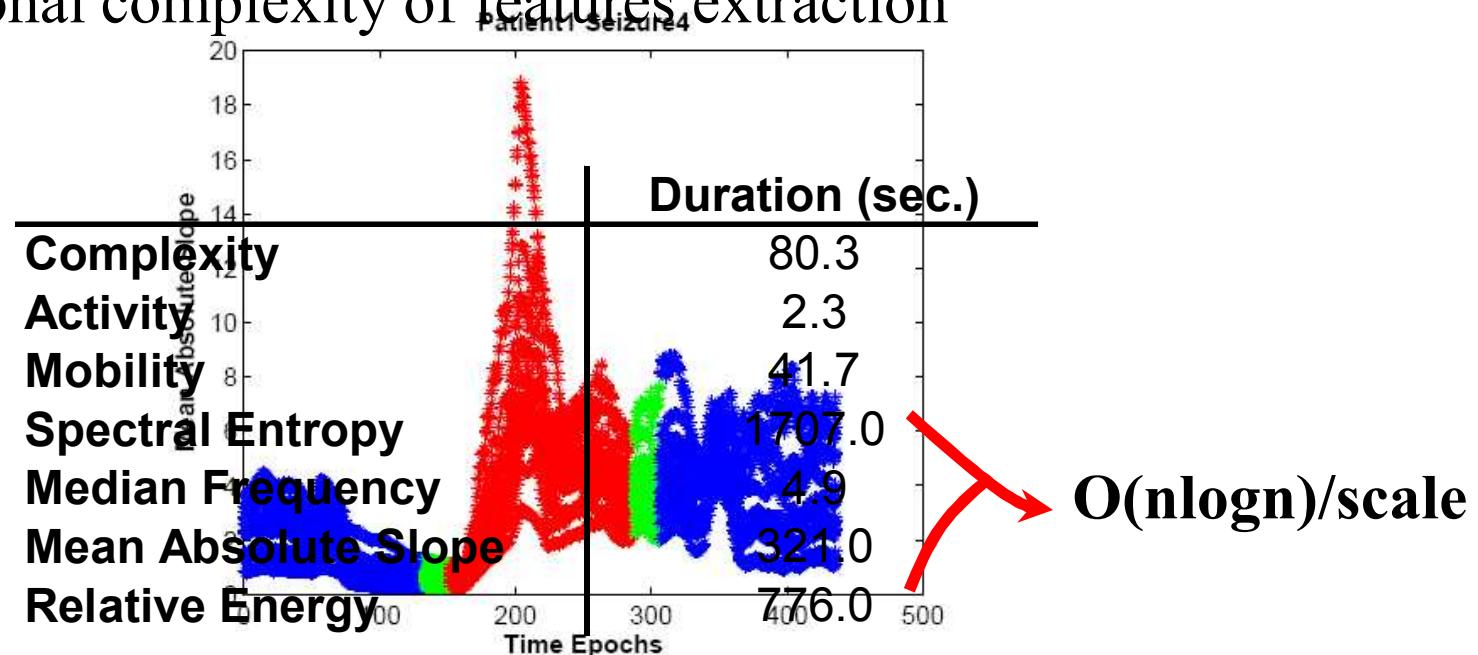
---

- **Part I: Tensor Basics**
- **Part II: Epileptic Seizure Recognition**
  - Related Work (e.g., feature extraction from epileptic EEG)
  - Methodology:
    - Construction of a third-order **Epilepsy Feature Tensor**
    - Seizure recognition using Multilinear PLS
- **Part III: Discussions**
  - Future Research Directions
  - Other studies on epileptic EEG signals

# Epilepsy Feature Tensor Construction

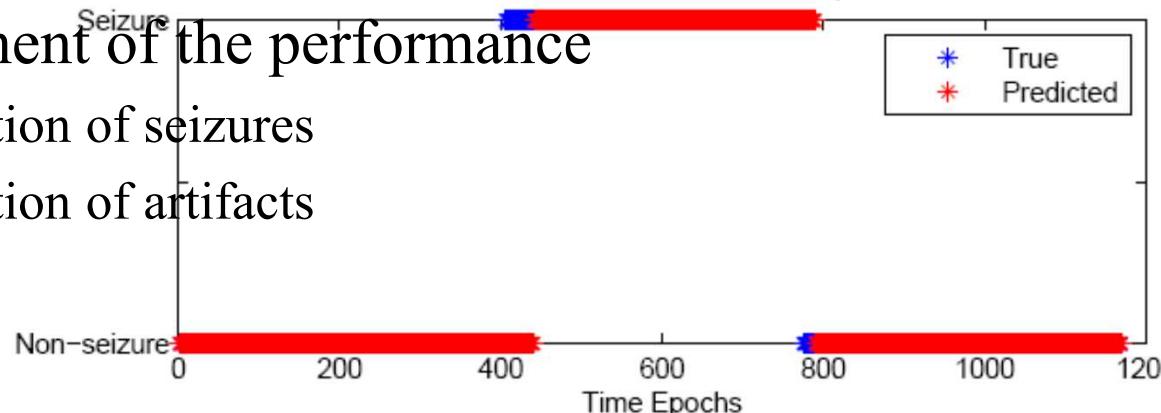
- Features can distinguish between pre-seizure and post-seizure.
- Computational complexity of features extraction

Example:

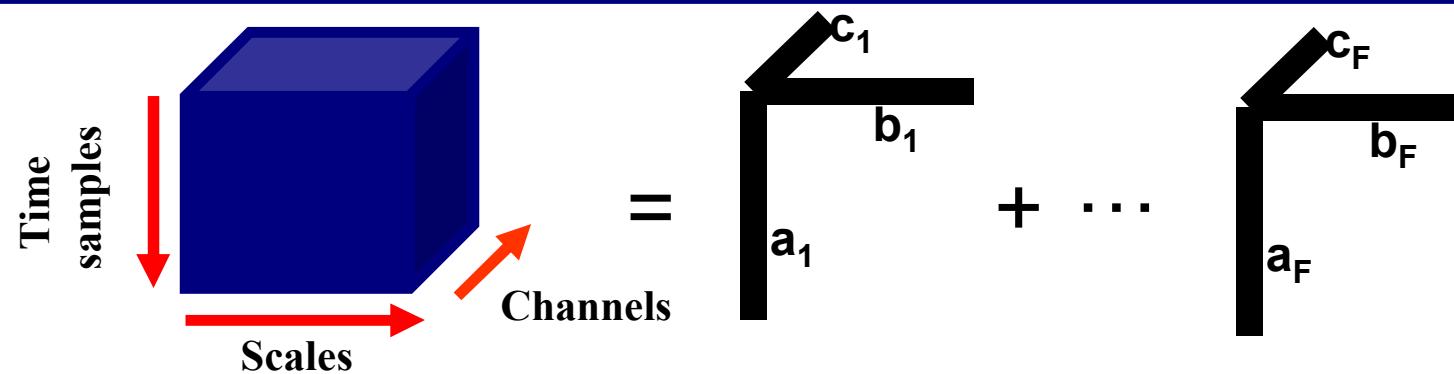


# Seizure Recognition

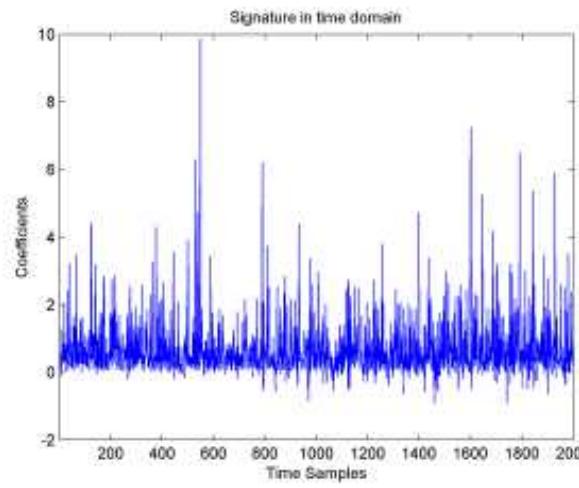
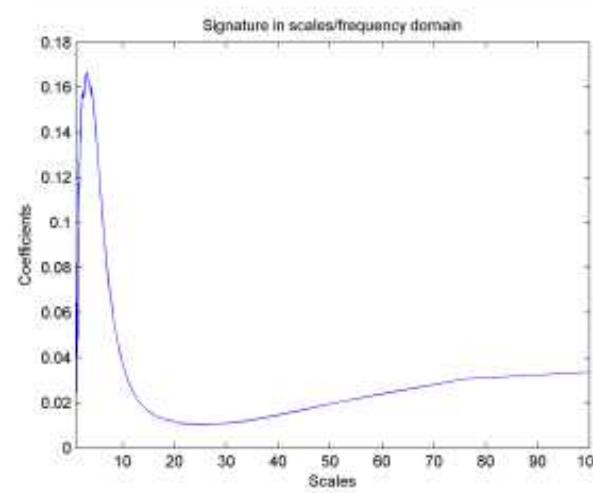
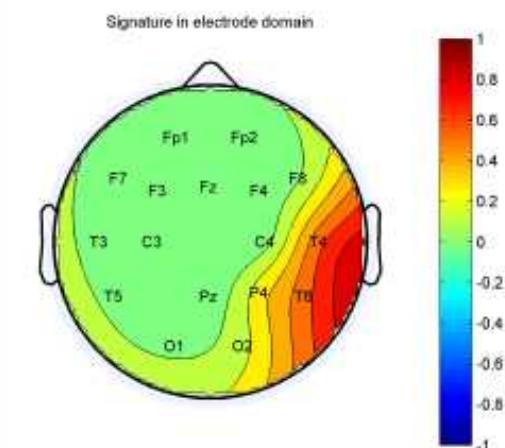
- Log transform to handle inter-patient variation not enough!
- Good test case. Inter-ictal data → should not have any false positives!
  - 4-minute test set: successful but short!
  - Large set of continuous inter-ictal EEG
- Larger annotated data archive for a thorough evaluation and improvement of the performance
  - Annotation of seizures
  - Annotation of artifacts



# Epilepsy Focus Localization



$$\underline{X} = a_1 \circ b_1 \circ c_1 + a_2 \circ b_2 \circ c_2 + \underline{E}$$



# Thank you!

---

**Evrim Acar**  
[eacarat@sandia.gov](mailto:eacarat@sandia.gov)

MATLAB scripts: [www.cs.rpi.edu/~acare/Epilepsy](http://www.cs.rpi.edu/~acare/Epilepsy)