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Problem Definition

« Epilepsy: neurological
disorder characterized by

recurrent, abrupt seizures.

WHO: over 50 million
people!

* Diagnosis techniques

— Physical and neurological
exams

— Neuroimaging
— Video-EEG monitoring
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Problem Definition

Motivation:
— Visual analysis is time-consuming
>> saving manpower
— Visual analysis 1s subjective and error-prone
>> objective/robust analysis

Goal: Developing mathematical models that can capture a
seizure structure automatically.

— Seizure recognition (when)

— Seizure localization (where)
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Overview

e PartI: Tensor Basics

* Part II: Epileptic Seizure Recognition
— Related Work (e.g., feature extraction from epileptic EEG)
— Methodology:

 Construction of a third-order Epilepsy Feature Tensor

 Seizure recognition using Multilinear PLS

e Part III: Discussions

— Future Research Directions

— Other studies on epileptic EEG signals
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Overview

e PartI: Tensor Basics
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Why tensors?

Two-way data Higher-order data

Social networks:

<user, keyword> <user, keyword, time>
Text mining:

<document, term> < document, term, author>

Face recognition:
<person, pixel> < person, pixel, viewpoint>

Neuroscience:

>

ugh to represeQ
e data from a

Matr %
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What is a tensor?

e A tensor 1s a higher-order generalization of a matrix.

Example: A third-order tensor X €

* Matricization (unfolding/flattening)

— rearranging a tensor as a matrix.
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— The mode-n matricization of a higher-order dataset, e.g., X, denoted by X,

unfolds the data in the n" mode.
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Tensor times a matrix

I x1,..

« The mode-n product of a tensor X € R"*2~»*~!v with a matrix

M e R™" is denoted by
Y = Xx, M

Example:

XX M=

reshape

—)

Y

ﬁ
1 -
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Overview

* Part II: Epileptic Seizure Recognition
— Related Work (e.g., feature extraction from epileptic EEG)
— Methodology:

 Construction of a third-order Epilepsy Feature Tensor

 Seizure recognition using Multilinear PLS
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Related Work

Common Approach: Divide an EEG recording into time epochs and extract

features that can distinguish between seizures and other brain dynamics.

¢ &

Analysis of the performance of multiple Analysis of the performance of a single
features on single channel EEG data feature on multi-channel EEG data

Time Epochs
i=1,2,...1

Time Epochs
i=1,2,...1

Features Channels
j=1,2,...J k=12,...K

Our Approach: Analysis of multiple features from different domains on
multi-channel EEG data
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STEP1: Epilepsy Feature Tensor

* Construction of an Epilepsy Feature Tensor from multi-channel EEG

fi(5) |

1>(s) Channels
le Electrical potential at it

f (S) channel j™ time sample
| /7 _

Time 1
! 54mp (€S Features

‘ Epilepsy Feature

Tensor

—

Time epochs

Channels

xl-jk: Value of i" feature at j™ epoch

recorded at £ channel
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Features from Multiple Domains

. .

Time domain

Let s ={s(1), s(2),...s(N)} be the time
sequence for a particular epoch of

length M.
o Activity:  fi(s)=0;

o)

« Mobility: f,(s)= GS'
« Complexity S
_(o./0y)

S58)= (o,/0,)

* Mean Absolute Slope: f(s)

Frequency domain

Take the first difference and then compute
the Fourier coefficients to construct the
amplitude spectrum

* Median Frequency: f(s)

Compute the energy spread across
different EEG bands, i.e., 0 (0.5-3.5Hz), 6
(3.5-7.5Hz), a. (7.5-12.5Hz), B(12.5-
30Hz) and y(>30Hz)

» Spectral Entropy: f(s)

» Relative Energy in each freq. band:
J1(8)- f1o(s)
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More features

* To quantify the synchronization among channels, especially among
neighboring channels as the seizure starts.

"B | Ji1(8,1) = Z ‘(XTX)ij

X jeNEIGH,

Time
epoch s
where NEIGH, contains the neighbors of electrode i.

w10

Example:

Seizure

Non-seizure Non-seizure

0 \
400 500 BOO YO0 8O0 900 1000

Time sarmples

-
0 100 200 300
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STEP2: Seizure Recognition

* Building a mathematical model based on Multilinear PLS on available
data and then testing on new recordings

X
- Y Training Set
* Build a model based on N-PLS using
‘—bseizure the training set X and the labels y.
Test Set

 Predict the labels of new recordings.

non-seizure




(=
Partial Least Squares (PLS)

Let XeR"™and ye R’ be the independent and dependent
(response) variables, respectively

* Map X to a low-dimensional space and regress onto y

y=Tb+e

» Determine the columns of T € R"™* (where K <J), such that

max cov(Xw,y)

where t= Xw 1s a column of matrix T.
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Multilinear PLS (N-PLS) . 1096

Multilinear PLS ) PL
Loy, =y, X, =X,

Yo= ¥

2. fori=1 to N do

; 1=y X for i=" 0

4.  Z=USV",where Z(m,n)=z(m+J(n—1)) W l Xy,
5 wJ “UGD), w5 =V(D) 1 LYl

GD=w/, WG, =w"

t. AW
6. -XZI(W ®w’) ! !
7. X =X_,-TCHW @w’) X =¥X,,-t;w,
8. b,=(T'T)'T'y,, =Ty, Y, — i1 _tibi
P Y=Y Ib, endfor 7

10. endfor




) . To predict y,,,:
Combine N-PLS and LDA

Yiest
Linear Discriminant

Analysis
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Generalization of VIP to 3-wav

* Goal: Eliminate the features that are not very relevant with the
classification of non-seizure and seizure epochs.
* Approach:
Use the loadings to determine which variables are important
(Variable Importance in Projection (VIP) g et ar793))

szt Tt (” ” 2-way X =TWT +E
VIP, = |Jx - y=Th+e

\ szt "t

k=1

Channels



Feature Extraction and Epilepsy Feature Tensor construction

s
Form training and test datasets

Feature Selection

¢ ini . Cross
Validation

Use NPLS+LDA to predict the labels of test recordings

——

Performance evaluation
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DATA

(Patient-Speciﬁc Seizure Recognition)

* Collected in the epilepsy monitoring unit of

) S ) Pati '
* Yeditepe University Hospital atient  Seizure

Size of an Epilepsy

Id Id Feature Tensor

(Istanbul, Turkey) 7 7 302 X 7 X 18
 Albany Medical College 2 386 x7 x 18
(NY, USA) 3 320 x 7 x 18

4 398 x7x18

* 32 seizures from 9 patients with different > dadx 7 x 18
) .. ) } 2 1 878 x7x18
se1zure origins (at least 3 selzures/patlent) 5 866 x 7 X 18
L _ 3 902 x 7 x18

» Seven Features: Activity, Complexity, 4 986 x 7 x 18
Mobility, Mean Absolute Slope, Spatial 5 998 x 7 x 18
Information, Spectral Entropy, Median 3 1 730 x 7 x18
Frequenc 2 746 x 7 x 18

quency. 3 1034 x 7 x 18

) 4 1 1174 x 7 x 18

* Preprocessing;: 2 1346 x 7 x 18

 Filter at 5S0Hz/60Hz 3 1170 x 7 x 18

e Scaling within features mode
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Performance Evaluation

*  G-means: \/ Sensitivity x Specificity

NPLS+LDA NPLS+LDA (FS)

Patient1 85.3% 86.6%

Patient2 97.6% 96.7%

Patient3 91.3% 91.1%

Patient4 75.0% 77.3%,

Patient5 28.6% 33.1%

Patient6 72.3% 89.3%,

Patient7 97.0% 92.1%

Patient8 86.0% 78.4%

Patient9 84.5% 77.4%

 Three-way vs. Two-way:

Channels Features - Channels

Features p-
£ VSs. [ [

Time Time
Epochs Epochs |
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Features
Channels
Channels
Time —)
Epochs
Features Time
PID | Activity | Mobility | Complexity | Mean Abs. | Spatial | Median | Spectral
Slope Info Freq. | Entropy
1 v v v v v X v
- v v v v v X v
4 v v v X v X v
5 'u/ 'd’/ y‘/ et e W '/
6 v v v X v X X
8 v v v v v X X
9 v v X X v X X
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DATA

(Patient Non-Specific Seizure Recognition)

* Collected in the epilepsy monitoring unit of

. : : : Patient Seizure  Size of an Epileps
* Yeditepe University Hospital priepsy

x 10° Patient3 Seizure1

(Istanbul, Turkey) .
» Albany Medical College 31
(NY, USA) Po
« 26 seizures from 9 patients (left or right |

temp Oral) o 100 200 atl';;-'{;J 400 500

Time Epochs

00 1000

Patient5 Seizure2

 Eleven Features: Activity, Complexity, '@
Mobility, Mean Absolute Slope, Spatial ™|
Information, Spectral Entropy, Median £ |

Activity

4000

Frequency, Relative Energy. p— g

* Preprocessing: o000 0
* Filter at 50Hz/60Hz
* Scaling within features mode
* Log transform
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Performance Evaluation

*  G-means: \/ Sensitivity x Specificity

Patient 1D

NPLS+LDA (v1)

NPLS+LDA (v2)

NPLS+LDA (v1+heuristic)

1 87.7% 81.4% 89.0%
2 83.8% 87.0% 90.2%
3 83.7% 88.1% 85.2%
4 41.9% 84.7% 39.8%
5 95.6% 94.9% 96.9%
6 05.6% 02.6% 095.6%
7 04.5% 88.1% 95.6%
8 69.6% 71.1% 69.3%
9 68.1% 72.8% 68.6%
MEAN 80.6% 84.5% 81.1%
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Results

» Average performance of patient-specific seizure
recognition over 9 patients (32 seizures) is 85.8%.
— better performance using feature selection
— performance comparable with SVMs and easier interpretation

— feature selection may improve the understanding of epileptic
seizures

« Average performance of patient non-specific seizure
recognition over 9 patients (26 seizures) is 80.6%.

— heuristics to handle false-positives may improve the
performance.
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Summary

Epileptic Seizure Recognition:

o

channel

time X
features
Epilepsy

feature tensor

atures
channel
N-PLS N
time X 1 X - , « NG
K T Channels
features J
e Multilinear discriminant analysis based on N-PLS
More features and LDA
e.g., spatial * VIP extended to three-way
information « Comparison with SVMs

* Patient specific and non-specific seizure recognition
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Overview

e Part III: Discussions
— Future Research Directions

— Other studies on epileptic EEG signals
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) = Epilepsy Feature Tensor
Construction

« Features can distinguish between pre-seizure and post-seizure.

« Computational complexity of fgaturgs.extraction

Example: 8 %
161 '

Duration (séc.)
80.3

Compléxity
Activitg 1| |
Mobility & Bl s a7
Spectral E Al o« A

Median Fy

O(nlogn)/scale

Relative Energyn = ]
p

ochs



Sandia
National _
Laboratories

Seizure Recognition

* Log transform to handle inter-patient variation not enough!

 (Good test case#Inter-ictal dat

positives!
— 4-minute test sef

— Large set of con

Non-seizur:

0
» Larger annotated data archieve

. eizu
improvement 6f

200 400

— Annotation of seizures

— Annotation of ai

Non—seizureb—

tifacts

Patient4 Seizure3

- successful but short!

tinuous inter-ictal EEG

600

the performance

1

200 400
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Time Epochs

no

800
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Epilepsy Focus Localization

v 2
E Q-l — [ I I |
; g —

Channels

Scales

X =a,ob,oc,+a,0b,0c, +E

T | T

Siginalii e in tend doirssn Fignalung in soalsadreguanoy doman

VBT Signature in elecode domnin
.l LRGN pa
044 | | o8
'-'-12'-| 104
& B | -
;: E' ot b |
prd = 1o
G Eooe |
B 42
(1
0.4
[l
ik
(e
.8
] i i i i i i i ~ i
200 afd &0 &0 00D 1200 1400 1600 1800 2000 ot

W 20 3 40 S50 /1 I S0 B 100 -1

Ting S 5
ma Sempls Eralen

Evrim Acar, Canan A. Bingol, Haluk Bingol, Rasmus Bro and Bulent Yener, Multiway Analysis of Epilepsy Tensors, Bioinformatics, 2007, 23(13): 110-i18.
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Thank you!

Evrim Acar
eacarat@sandia.gov

MATLAB scripts: www.cs.rpi.edu/~acare/Epilepsy



http://www.cs.rpi.edu/~acare/Epilepsy
mailto:eacarat@sandia.gov

