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Outline of Presentation

 Brief Biographical Note

 Where this Section Fits in the Structure of the Complex Systems 
Course

 Complex Systems and Adaptation

 Definition of Adaptation

 Why Should You Care

 Complex Behavior as Adaptive Response

 Kinds of Adaptation

 Models Showing Adaptation

 Question & Answer Session
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Brief Biographical Note on Walt Beyeler

 Education: 
 BSEE from UNM

CSYS 300 – COMPLEX SYSTEMS FUNDAMENTALS, 
METHODS & APPLICATIONS
Adaptation and Complex Systems
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 SNL Work Experience 
 1990s: Subsurface flow and transport modeling 

for GCD, WIPP; Decision analysis for directing 
characterization

 2001-current: infrastructure modeling and analysis, including

 Applying complex systems ideas to infrastructures, especially financial 
systems

 Using decision support to steer characterization
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 Fundamentals of Complex Systems

 Methods
 Modeling Techniques

 Approaches to Examining Complex 
Systems

 Applications
 Examples of the use of complex systems 

fundamentals to solve problems

 Learning how to use complex systems 
analysis tools
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Illustrations of natural and constructed network 
systems from Strogatz [2001].

Food Web

New York state’s
Power Grid

Molecular
Interaction

Why are Complex Systems 
Interesting?



Complex Systems

 Systems composed of many interacting parts

 … but every system is.  What’s distinctive?

 Both the system-level behavior and the component-level behavior 
are interesting.  How do these two kinds of behavior relate to one 
another?

 How does component-level behavior give rise to system-level 
behavior?

 How does system-level behavior shape component-level behavior?
 Engineering

 Adaptation
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Adaptation

 Definition 0 – A change in a system in response to a change in its 
environment

 …. Getting hit by a car?

 Definition 1 – A change that makes a system perform better in its 
environment

 .… What if it’s a lucky guess?

 Definition 2 – A change that makes a system perform better and that is 
made because it makes the system perform better

 Adaptation is the process by which the environment can conjure behavior 
or structure from a system

 This notion includes biological evolution, but allows other mechanisms as 
well. For example learning counts as a kind of adaptation 
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Adaptation to Environment
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• Complex systems are far 
from equilibrium

• They maintain themselves 
through interactions with 
their environment

• Adapting systems improve 
these interactions over 
time

• Adaptation is typically 
slower than “internal” 
dynamics



Adaptation to Environment
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• The environment may 
consist of other adapting 
entities, creating a mesh of 
cooperative and 
competitive relationships

• These relationships might 
become reified in some 
higher-order structure



Why Should You Care

 If it’s a part of your system and you neglect it you can be badly frustrated

 Maybe you can save work by using it to solve your problem

 Adaptation can make a system robust yet fragile
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“Big” events are not rare in such systems

Earthquakes: Guthenburg-Richter

Wars, Extinctions, Forest fires

Power Blackouts ?
Telecom outages ?
Traffic jams ?

Market crashes ?
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Explaining Complex System Behavior



External Drive
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What keeps a non-equilibrium 
system at a phase boundary?

Complex Behavior and Phase Transitions



Drive

1987 Bak, Tang, Wiesenfeld’s “Sand-pile” or “Cascade” Model

“Self-Organized Criticality”
power-laws

fractals in space and time
time series unpredictable

Cascade from
Local Rules

RelaxationLattice

Self-tuning Systems



BTW Results

Time Series of Events Power-Law Behavior
(Frequency vs. Size)

Cascade Behavior

Event 
within 

SOC 
field 

Self-organized field 
at Critical point

Slope
~ -1

“Self-Organized Criticality”
power-laws

fractals in space and time
time series unpredictable



1999 Carson and Doyle’s Highly Optimized Tolerance “HOT” 

 Robust yet 
Fragile

 Structure

 Power laws

External spark distribution

designed adapted

Simple forest fire 
example



How Adaptation Produces Complex 
Behavior in Carson and Doyle 
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Mechanisms of Adaptation

 Adaptation involves adjustment to some system feature over a time scale 
that is typically much longer than that of the dynamics of the system.

 Different kinds of system features might be adjusted:

 Composition of a population of variable individuals
A Simple Model of Herd Behavior

Abhijit V. Banerjee

The Quarterly Journal of Economics, Vol. 107, No. 3, (Aug., 1992), pp. 797-817

 Parameter of a persisting system
Spider webs designed for rare but life-saving catches

Samuel Venner and Jerome Casas

Proc. R. Soc. B (2005) 272, 1587–1592

Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map

Paul Melby, Jorg Eaidel, Nicholas Weber, Alfred Hubler

PRL, Vol 84 No 26, p5991

 Relationships among components
Spontaneous Emergence of Complex Optimal Networks through Evolutionary Adaptation

Venkat Venkatasubramanian, Santhoji Katare, Priyan R. Patkar, Fangping Mu

(http://arxiv.org/abs/nlin/0402046)
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A Generalized Complex Systems Model

 Consider the diverse problems we confront involving systems composed of adapting 
interacting components (infrastructures, ecosystems, producers of goods and services…)

 Find the most basic features and processes that are common to all systems, and that dictate 
their ability to function as individuals and as viable parts of an interacting system

 Build and understand a formal model that captures these features and processes

 Approach the motivating problems through this common formal structure

 Entities that manage resource for their own benefit, and that interact to acquire resources 
they need.

 Closure: all resources come from somewhere, and that source has its own requirements

 Basic questions:

 How does the system react to disruptions (loss of resources, producing entities, 
interconnection)?

 How do remediations change these reactions?

 Are there general insights that derive from specific system studies?

18



Essential Processes

A B

C

D

 Resource consumption and production by 
entities

 Resource exchange among entities

 Change in entities’ state as they respond to 
resource availability

 Change in entity size or capacity

 Change in connection patterns among 
entities

 Change in the kinds of entities in the systemA

• Only some of these might be relevant for 
a particular problem. Time constants 
generally increase from top to bottom, so 
that slow processes can be considered 
“frozen”.

• The framework allows us to include all of 
these processes, and to set time 
constants so that the dynamics interact



Basic Elements
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Consumed
Resource

Produced 
Resource

Entity

Consumption Production

Money

Health



Exploring Simple Patterns of Interaction
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A B

C
DSome equilibrium results 

can be derived; 
Sensitivity to exchange 
process can be studied…

Complete 
Interdependency

Using four resources minimally allows for 
input substitution and output specialization 

Six distinct 
input/output 
patterns are 
possible

What happens when one type 
is especially productive?



Competitive Exclusion
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Robustness/Efficiency Tradeoff
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Robustness/Efficiency Configuration
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Robustness/Efficiency Tradeoff
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Robustness/Efficiency Tradeoff
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Robustness/Efficiency Tradeoff
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Water Drop Adaptation
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An Illustration of the process described in Melby et al.



Summary

 Complex systems are open systems, so interaction with the environment is 
essential for their success

 Adaptation is an internal response by the system that helps the system 
persist

 Adaptation can create and tune emergent properties

 Adaptive process are slow compared to the usual dynamics of the system

 This can make them easy to overlook

 They should track the dynamics of whatever features of the environment they 
couple with.  If not….
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QUESTIONS & ANSWERS

Walt Beyeler
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Sandia National Laboratories
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webeyel@sandia.gov

http://www.sandia.gov/CasosEngineering/
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