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Summary. This paper presents a new method for partitioning an input polytope
into a conformal set of polytopes according to a subdivision pattern specified on
lower-dimensional boundaries of the input polytope. A feature of this method is that
it is applicable to any dimension. In three dimensions, for input polytopes that are
hexahedral, all members of the partition will be hexahedral as well. A further feature
of this method is that it preserves convexity; a convex input polytope will result in
a conformal partition composed of convex polytopes. Finally, the method may be
used to process large conformal meshes of input polytopes in parallel and produce
a globally conformal partition without any communication between processes.

1 Introduction

Some applications of the finite element method – such as solid mechanics
where shear of thin walls is involved – perform better with an all-hexahedral
mesh than with a tetrahedral mesh [1] by virtue of requiring fewer degrees of
freedom. However, all-hexahedral meshes can be difficult to use because

• most hexahedral mesh generators require user intervention, or fail with
some inputs, or require a significant amount of processing time compared
to tetrahedral techniques;

• current techniques for the h-refinement of hexahedral meshes require com-
munication of refinement patterns to neighboring elements and iteration
until all elements have a pattern that can be accommodated, or produce
meshes with pendant nodes; and

• it is more difficult to detect and correct hexahedra with poor geometric
quality that can cause simulations to diverge.
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As problem sizes grow, these tasks must be performed in parallel – which adds
a stiff penalty to methods requiring communication of boundary information
between portions of a model residing in different processes. What is needed is
some local, conformal refinement scheme. We have developed such a scheme
using homothetic transforms to partition a hexahedron into subhexahedra
according to some indicator function. The next section reviews homothetic
transforms, complexes, and indicator functions. These concepts allow us to
introduce a simple scheme for local refinement that always produces convex
subhexahedra given a convex input; for the sake of generality, we describe
the scheme for polytopes in an arbitrary dimension. Then we explore some
rules to produce fewer and better-quality subhexahedra. Finally, we discuss
the implications for parallel, all-hexahedral refinement and mesh generation.

2 Mathematical Background

Before describing the scheme for local, conformal refinement of polytopes,
a review of some terminology from three areas of mathematics is necessary:
homothetic transforms, complexes, and indicator functions. All our definitions
are made in a fixed spatial dimension d.

A homothetic transform (or homothecy) is a transformation H : IRd → IRd

consisting solely of translation and uniform scaling. It can thus be written

H(x) = o + c(x− o), (1)

where o ∈ IRd is the center of the scaling operation and c ∈ IR is the contrac-
tion or dilation factor. We are interested in cases where c < 1 so that points
are moved closer to one another and c > 0 to avoid a singularity or inversion.
These constraints on c mean that H will always perform a contraction. In
particular, H(x) lies on the line segment between o and x, and thus a convex
set S ⊆ IRd containing o will have H(S) ⊆ S.

Now we turn to the definition of a complex, the mathematical represen-
tation of a conformal mesh of convex polytopes. A k-plane (0 ≤ k ≤ d) is a
set

{a + x | x ∈ V }, (2)

where a ∈ IRd and the vector space V is a k-dimensional subspace of IRd.
Additionally, we define the only (−1)-plane to be the empty set ∅. Note that
a 0-plane consists of a single point, and the only d-plane is IRd. A k-region
(0 ≤ k ≤ d) is a subset of a k-plane that is not a subset of any (k − 1)-plane.
Because the intersection of two different k-planes is a subset of a (k−1)-plane,
the k-plane associated with a k-region is unique. A k-face is a k-region that is
compact and convex. Terms such as the boundary and interior of a k-face are
defined with respect to the standard topology of its enclosing k-plane (rather
than that of IRd). Note that a 1-face is a line segment.
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Before defining a complex, we note some properties of faces related to
contractive homothetic transforms. The image of a k-face f under such a
transform H is a (smaller) k-face. Further, for a contraction factor c and a
center o not in the k-plane of f , we define the sweep of f under H as⋃

c≤b≤1

{o + b(x− o) | x ∈ f }. (3)

The sweep is a (k+1)-region because the parameter b introduces an additional
dimension, and it is compact and convex because f has these properties. Thus
the sweep of a k-face is a (k + 1)-face. We will momentarily be interested in
k-faces whose boundaries are unions of (k − 1)-faces. Note that the sweep of
such a k-face f has for its boundary the union of the following k-faces: f , the
image of f , and the sweeps of the (k − 1)-faces forming the boundary of f .

A complex is a finite set C of faces such that, for 1 ≤ k ≤ d,

• the boundary of every k-face in C is a union of (k − 1)-faces in C, each
enclosed in a different (k − 1)-plane,

• every (k − 1)-face in C is a subset of the boundary of a k-face in C, and
• the intersection of any two different k-faces in C is either ∅ or a j-face in

C with j < k.

A (convex) polytope can be formally defined as a complex containing exactly
one d-face (although the term is sometimes used for the d-face itself). Every
complex is a union of polytopes associated with each of its d-faces.

An indicator function (or characteristic function) is an injective map χ
from some set of interest S to the set {0, 1}. In our application, the domain of
this map will be the set of m-faces (m fixed, 1 ≤ m ≤ d−1) of a d-dimensional
input complex. Elements of S which χ maps to 1 will be considered “marked”
for subdivision while elements of S which χ maps to 0 must remain whole as
the input complex is partitioned into output primitives.

An implicit function f is a function which is not defined explicitly, but
rather in terms of a relationship, for example of the form f(x) = 0. Under
relatively weak conditions, the locus of points that satisfy the function form a
(d− 1)-dimensional manifold embedded in IRd. Where explicit functions pro-
vide a parametric enumeration of the members of some manifold embedded
in IRd (i.e., an expression x(t) which lists all x for which f(x) = 0 with t in
some simple domain), implicit functions must be inverted to identify members
of the manifold where the equation holds. Implicit functions, and specifically
those which estimate the geometric signed distance to some manifold, are
commonly used in computer graphics as indicator functions that identify the
boundary of a surface to be rendered. Our application will use implicit indi-
cator functions to identify faces of polytopes where refinement should occur.
If some point x on an m-face of an input polytope satisfies |f(x)| < ε, the
face will be considered “marked” for subdivision. An indicator function of the
form
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χ(s) =


1

|f(x(s))|
ε(s)

< 1,

0 otherwise,
(4)

may then be used to identify polytope faces that are near the surface of some
implicitly defined level set. Note that where f is smooth, ∇f(x) is defined and
is a vector pointing away from the interior of the region bounded by f = 0.

3 Refinement Method

3.1 Basic Scheme

The goal of our method can be stated as follows: Given a complex C, an
integer m with 1 ≤ m ≤ d − 1, and a “refinement” set R ⊆ C of m-faces
selected by an indicator function, produce a new complex C ′ consisting of at
least

• all k-faces in C with k < m,
• all m-faces in C\R, and
• for each m-face f ∈ R, a plurality of m-faces whose union is f .

Our method will have the useful feature that, if every d-face in C is isomorphic
to a d-cube, then every d-face in C ′ is isomorphic to a d-cube. The method
will be stated and justified generally, and then stated concretely for the case
believed to be most useful in practice, with d = 3 and m = 1, corresponding to
edge-based refinement of hexahedral meshes. The meaning of the conditions
above is then that the edges in R are refined (split into more than one edge)
while the remaining edges are not modified, and other changes are made as
necessary to preserve conformality.

To describe the method, we define a k-target (k ≥ m) as a k-face in the
initial complex C that is a superset of a face in R. Starting with C−1 ≡ C, the
method applies the following operations sequentially for ` = 0, 1, . . . , d−m,
producing a sequence of complexes C0, C1, . . . , Cd−m ≡ C ′.

Iterate over every (d− `)-target f . Choose a contractive homothetic trans-
form H with center in the interior of f . Define a k-superface of f as a k-face in
C`−1 that is a superset of f . To construct C`, the superfaces of f are removed
from C`−1 and replaced with

• the images under H of all faces h ∈ C`−1 that are subsets of d-superfaces
of f and

• the sweeps under H of all faces h ∈ C`−1 that are subsets of d-superfaces
of f and whose planes are disjoint from the interior of f .

The indicator function can play a role in choosing the center and contraction
factor of H.
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Because the homothetic transforms are contractive and always shrink
faces, a face arising at any stage as an image cannot be be a superset of
a face in C, and one arising as a sweep of a face h is a superset of a face g ∈ C
if and only if h ⊇ g. Also, if every d-face in C is isomorphic to a d-cube, then
every (d− 1)-face in C is isomorphic to a (d− 1)-cube. The new d-faces in C0

arise as images of d-faces in C and as sweeps of (d − 1)-faces in C; both are
isomorphic to d-cubes. Continuing the process, it follows that every d-face in
Cd−m ≡ C ′ is isomorphic to a d-cube.

There is no ambiguity as to which (d − `)-target is involved in removing
a given face, because of a key separation property: Each face in C`−1 is a
superset of at most one (d− `)-target. This is true for ` = 0 because each face
in C is a superset of at most one d-face in C. Assuming that the separation
property is true up to but not including a given ` ≥ 1, so that C`−1 can be
constructed, note that every face g ∈ C`−2 that is a superset of a (d−`)-target
is either a k-target with k ≥ d − ` or a sweep, sweep of a sweep, . . . of such
a k-target. If k = d − `, then g is a superset of exactly one (d − `)-target; if
k ≥ d− `+1, then g is a superset of a (d− `+1)-target and thus g is removed
in constructing C`−1. Hence each face in C`−2 that is retained in C`−1 is a
superset of at most one (d− `)-target.

Every new face added in C`−1 is either an image (which cannot be a
superset of a target), or a sweep of a face h ∈ C`−2, where h is a subset of a
d-face p ∈ C`−2 that is, by hypothesis, a superset of exactly one (d − ` + 1)-
target f . Such a sweep is a superset of a (d − `)-target only if h is either a
k-target with k ≥ d − ` or a sweep, sweep of a sweep, . . . of such a k-target.
If k ≥ d− ` + 1, however, then h would be a superset of a (d− ` + 1)-target,
which, being a subset of p, must be f ; but h ⊇ f contradicts the condition
that the plane of h is disjoint from the interior of f . Therefore k = d − `,
and the sweep of h is a superset of exactly one (d− `)-target. The separation
property then follows.

To see that each of the constructions C0, . . . , Cd−m ≡ C ′ is actually a
complex, note that when a face is removed, it is replaced by faces with con-
sistent internal boundaries, due to the matching between images and sweeps.
The external bounding faces are either unchanged or replaced by unique tem-
plates arising from a chosen homothetic transform for a given k-target. Thus
conformality is preserved. The final complex C ′ satisfies the conditions stated
at the beginning of this section. Only k-faces with k ≥ m are ever removed,
and so C ′ contains all k-faces in C with k < m. Also, m-faces are removed
only in the last stage, with ` = d −m, when each m-target f (i.e., each face
f ∈ R) is removed. Among the added faces are a plurality of m-faces whose
union is f : the image of f , and the sweeps of the (m − 1)-faces forming the
boundary of f , under a contractive homothetic transform with center in the
interior of f . No m-face in C\R is removed.
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Fig. 1. A single input hexahedron with one edge marked.

3.2 Hexahedra

As a concrete example of the basic scheme, consider the case where d = 3, our
complex C is composed solely of convex hexahedra (isomorphic to 3-cubes),
and m = 1, i.e., χ is defined on edges (1-faces). An example would be the
hexahedron of Figure 1 with one edge marked.

Fig. 2. A homothetic transform with its center (a) interior to the convex input
hexahedron. The input hexahedron and its contracted image (b) have corresponding
2-faces (c) and (e) respectively, which can be connected along corresponding edges
by 2-faces (d) to partition the input hexahedron into a set of convex hexahedra.
The six outer hexahedra are sweeps of the 2-faces of the input hexahedron. Some
2-faces are not shown and yellow 2-faces are semi-transparent in order to illustrate
the geometry more clearly.

Whenever any edge (1-face) of an input hexahedron is marked, the hexa-
hedron is a 3-target and we first (` = 0) use an interior homothecy to partition
the input hexahedron into seven smaller hexahedra, as shown in Figure 2. Of
these seven hexahedra, six (the sweeps) share a 2-face with the input hexahe-
dron. The separation property is evident, in that each of the new hexahedra
contains at most one 2-target (input 2-face with one or more marked edges).
Each hexahedron containing a 2-target will have a 2-face-bound homothecy
applied (` = 1), followed by an edge-bound homothecy applied to any result-
ing hexahedron bounded by a marked edge of the input hexahedron (` = 2).
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The results of 2-face-bound and edge-bound homothetic transforms applied to
a rectangular prism are shown in Figure 3. Note that the hexahedra to which
we apply homothecies are not generally prismatic, but the figures are much
easier to comprehend when illustrated with prismatic hexahedra.

Fig. 3. Homothetic transforms with their centers – (a) and (c) – interior to a 2-face
or edge (1-face) of the input hexahedron, leaving a 2-face (b) or edge (d) of the
contracted hexahedron coincident with the input hexahedron.

To finish the example, the 2-face-bound and edge-bound homothecies re-
quired to subdivide the input hexahedron of Figure 1 on its single marked
edge are shown in Figure 4.

3.3 Modified Scheme for Fewer, Better-Quality Hexahedra

Although the scheme described so far is simple and general, not all the ho-
mothetic transforms carried out are always necessary. The three-step process
for edge-based hexahedral refinement (` = 0, 1, 2) is designed to enforce the
separation property at each step, but if this property happens to hold already,
one or more homothecies can be skipped without violating mesh conformality.

Specifically, if all marked edges of the input hexahedron border a single
2-face, then the interior homothecy is not needed; a 2-face-bound homothecy
can be applied directly to the input hexahedron, as in Figure 3 (left). Each
resulting hexahedron with a marked edge is then subdivided using edge-bound
homothecies. Also, if exactly one edge of the input hexahedron is marked (as
in the example above), then neither interior nor 2-face-bound homothecies
are actually needed; an edge-bound homothecy can be applied directly to the
input hexahedron, as in Figure 3 (right). Finally, if an interior homothecy is
needed but a particular input 2-face has exactly one marked edge, then the
hexahedron arising as the sweep of that 2-face does not require a 2-face-bound
homothecy to isolate the edges from one another; an edge-bound homothecy
can be applied directly to this hexahedron. If these special rules are followed,
conformality is still automatic as long as the same homothecy is used consis-
tently for all hexahedra sharing a given 2-face or edge.

Both the original and modified schemes result in a final subdivision with a
maximum of 133 hexahedra, attained when all 12 edges of the input hexahe-
dron are marked. But, over the 212 = 4096 possible sets of marked edges, the
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Fig. 4. This sequence starts after an initial interior homothecy has been applied. It
shows how two 2-face-centered and two edge-centered homothecies can be applied to
refine the edge specified in Figure 1. Left column: Homothecies are applied with cen-
ters on 2-faces (a) and (b), since they border an edge marked for subdivision. Middle
column: A larger version of the 2-face-centered homothecies. Right column: Hexa-
hedra bounded by the indicated edge are transformed to obtain edge-contractions
(c) and (d).

original scheme produces an average of 83.12 hexahedra, while the modified
scheme produces an average of 75.33 hexahedra. Not only does the modified
scheme give a more computationally efficient mesh, but because each suc-
cessive subdivision somewhat degrades the geometric quality of hexahedra,
the omission of some homothecies is expected to result in a better quality of
hexahedra in the refined mesh.

4 Future Work

While the algorithm for refining a conformal mesh of input polytopes accord-
ing to a specified set of m-face subdivisions has been discussed, its use in
a large application has not been covered. Because the indicator functions on
each face of an input complex may be independently specified, and because the
replacement rules are local to a given d-face and its subfaces, the refinement
of polytopes may take place concurrently without any communication, as long
as each process makes an identical choice of homothetic transform for a given
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shared target. If vertices induced by subdivision need to be shared by multi-
ple output polytopes, communication of unique identifiers for these vertices
is required, but this may be performed in a single stage after refinement has
occurred. This same approach has worked for simplicial mesh refinement [8].

Another topic we have only briefly mentioned is the choice of indicator
function. We are aware of simplicial refinement techniques that use the chord
distance from an edge midpoint xm to the level set of an implicit, i.e.,

inf
{
|xm − x|

∣∣ φ(x) = 0
}

< ε; (5)

the difference in the direction of the gradient vector of an implicit between
edge endpoints x0 and x1, i.e.,

∇φ(x0) ·∇φ(x1) < (1− ε) |∇φ(x0)| |∇φ(x1)|; (6)

or the value of an implicit function evaluated at an edge midpoint, i.e.,

φ(xm) < ε. (7)

But we are not aware of any that compare the direction of ∇φ to the direction
of the edge. An expression which compares these two directions in an indicator
function might be used to favor subdivision of edges normal (or tangential)
to a surface of interest. For the hexahedral case, this may tend to produce
boundary constraints that are more favorable to high-quality output when
the gradient does not vary significantly over input hexahedra; edges normal
to some level set of φ would be refined more than other edges producing a
layer of hexahedra near the level set surface. If refinement was also more likely
on edges tangent to the gradient, the surface itself would be sampled more
finely. Edges not aligned with the gradient would leave larger hexahedra in
transition regions. We expect that the ratio of the edge length to the gradient
magnitude may be a good normalization factor for indicator functions of this
type.
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5. M. Staten, S. Owen, and T. Blacker. Unconstrained paving and plastering: A
new idea for all-hexahedral mesh generation. In Proceedings of the 14th Inter-
national Meshing Roundtable, pages 399–416. Springer-Verlag, Sep. 11–14 2005.

6. Matthew L. Staten, Robert A. Kerr, Steven J. Owen, and Ted D. Blacker.
Unconstrained paving and plastering: Progress update. In Proceedings of the
15th International Meshing Roundtable, pages 469–486. Springer-Verlag, Sep.
17–20 2006.

7. Timothy J. Tautges and Sarah E. Knoop. Combinatorial aspects of dual-based
hexahedral mesh modification. In SIAM Workshop on Combinatorial Scientific
Computing, Feb. 27–28 2004.
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