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1 Introduction

In this presentation we report the use of kinetic modeling of temporal hyperspectral fluorescence image data
to extract kinetic information and rate constants for reactions of interest to biologists and computer modelers.
In traditional kinetic modeling algorithms, the initial concentrations of all species in the postulated model
must be known; however, in hyperspectral fluorescence images of biological specimens it is impossible to
know the initial concentrations of all species.

2 Theory

Two modeling techniques are reported for kinetic fitting of systems with unknown initial concentrations:
direct non-linear (DNL) fitting and separable least-squares (SLS).' In the DNL approach, all parameters
including rate constants and initial concentrations are estimated with a non-linear solver. In the separable
least-squares approach, the inherently linear parameters (concentrations) and non-linear parameters (rate
constants) are separated and solved in succession. Two methods for estimating these have been developed. In
the first approach, DNL, the rate constants and initial concentrations are both estimated using a non-linear
solver. In the second approach, SLS, the linear parameters (e.g., initial concentrations) and non-linear
parameters (e.g., rate constants) are separated and estimated sequentially. This approach is only applicable to
systems in which the inherently linear and non-linear model parameters are separable such as the first-order
decay models used in this investigation. In both of these techniques as in soft modeling, only the relative
intra-specie concentrations can be obtained. However, with spectral normalization of the data, relative inter-
specie concentrations can also be determined given the assumption of identical response for all species. The
normalization step was also required to prevent intensity ambiguities in the fitting process, which are
commonly observed in soft modeling techniques.”

2.1 Direct non-linear estimation of initial concentrations

In this method the non-linear optimizer ‘Isqnonlin’ from the Matlab® toolbox is used to estimate the rate
constants and initial concentrations for a given mechanism. This optimizer uses a trust-region method’ with
preconditioned conjugate gradients.* In this optimization routine the residuals shown in equation 1 are
minimized by adjusting the rate constants and initial concentrations.
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2.2 Separable least-squares estimation of initial concentrations

A key feature in the SLS approach is the separation of intrinsically linear parameters (initial concentrations)
and non-linear parameters (rate constants) according to equation 2, which shows a set of observations in y
that are described by a set of linear parameters ¢, c,,...,c, and a set of basis functions F, F,,...,F, which

n

are dependent on the non-linear parameters k,,k,,...,k, and ¢.

y = abi(k, )+ F (k) ...+ ¢, F (k1) )
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In this particular application, the technique has been applied to the mechanism of first-order decay. The non-
linear optimizer ‘fminsearch’ from the Matlab® optimization toolbox is used to estimate the rate constants
for the mechanism of first-order decay and the linear parameters are estimated by equation 3,

wherec =[c,,c,,...,c, ]|, k=[k,k,,....,k, ], and F =[F,F,,...,F,].

c=F(k,0)\y 3)

The principles of this approach can be applied to any system in which the intrinsically linear and non-linear
parameters are separable.'

3 Material and methods

The two DNL and SLS methods are demonstrated and compared for the resolution of photo-bleaching in
multicomponent glass beads and in temporal hyperspectral fluorescence images of fixed Human pulmonary
type Il epithelial A549 cells transiently transfected with IKKa proteins tagged with Green Fluorescent
Protein (GFP) and MAVS proteins tagged with Yellow Fluorescent Protein (YFP).

All image data was acquired using a hyperspectral fluorescence confocal microscope recently developed by
Sandia National Laboratories which has the ability to acquire 512-point emission spectra for each pixel in an
image at up to 18 time points in rapid succession™°.

4 Results and discussion

Due to complexities in cell images and the presence of Poisson noise, successful implementation of kinetic
fitting required S/N based thresholding, pixel selection, fitting of multiple exponential decays for some
fluorescent species, and automatic fitting of temporal baseline offsets. In order to reduce computation times,
we also formed super-pixels by averaging multiple spectrally correlated pixels in the image.

Results of fitting the reaction model shown in equation 4 to photo-bleaching of fixed transfected A549 cells
are shown in Figures 1, 2, and 3. Figure 1 is an RGB image showing the estimated concentration map at /=0
of YFP, GFP and auto-fluorescence species represented by blue, green, and red respectively. Figure 2 shows
the estimated resolved pure-component spectra, and Figure 3 shows the time-dependent concentration
profiles for a single selected super-pixel generated from the data from all 18 time-resolved hyperspectral
images.

Reaction model: (4)
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Figure 1 — RGB image showing the estimated concentration map at =0 of YFP, GFP and auto-fluorescence
species represented by blue, green, and red, respectively
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Figure 2 — Estimated resolved pure-component spectra of GFP, YFP and autofluorescence (green, blue and
red, respectively).
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Figure 3 — Time-dependent concentration profiles for a selected super-pixel in Figure 1. Modeled
photobleach decay curves correspond to GFP (green), YFP (blue), and autofluorescence (red).

5 Conclusion

We find that the SLS method offers significant improvements in computational speed and robustness
compared to the DNL method. Due to complexities in cell images and the presence of Poisson noise,
successful implementation requires S/N based thresholding, pixel selection, fitting of multiple exponential
decays for same fluorescent species, and automatic fitting of temporal baseline offsets.
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