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Abstract

To protect drinking water systems, a contamination warning system can use in-line
sensors to detect accidental and deliberate contamination. Currently, detection of an
incident occurs when data from a single station detects an anomaly. This paper
considers the possibility of combining data from multiple locations to reduce false
alarms and help determine the contaminant’s injection source and time. If we
consider the location and time of individual detections as points resulting from a
random space-time point process, we can use Kulldorff’s scan test to find statistically
significant clusters of detections. Using EPANET, we simulate a contaminant moving
through a water network and detect significant clusters of events. We show these
significant clusters can distinguish true events from random false alarms and the
clusters help identify the time and source of the contaminant. Fusion results show
reduced errors with only 25% more sensors needed over a nonfusion approach.

1. Introduction

To maintain the safety and security of drinking water, water utilities need innovative
technologies to detect deliberate or accidental contamination in water distribution
systems. One approach uses water quality sensors in the water distribution system
and measures attributes of the water such as free chlorine, total organic carbon, pH,
temperature, and electrical conductivity. While these measurements do not
necessarily measure contaminant levels directly, a sudden change in their readings
can indicate contamination or an abnormal operation of the water distribution system.
One approach uses change detection algorithms to compare the current measurements
with models of the background. We call each location with sensors and algorithms a
sensing-node and a change in water quality detected by the algorithms an event.

In conjunction with the National Homeland Security Research Center we are
extending research from detection at a single sensing-node to detection at multiple
nodes distributed throughout the water distribution network. Here, we want to use the
topology of the water distribution network and sensor fusion to combine multiple
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detected events together. This approach allows the reduction of errors for the entire
system and the determination of the source of the contaminant.

In detection problems, the two types of errors are false alarm (FA) errors and
missed detection (MD) errors. FA errors occur when the change detection algorithm
alarms on a nonexistent event and MD errors occur when the change detection
algorithm misses an actual event. The two errors are linked, so that decreasing one of
the errors increases the other. If the FA errors are too large then operations personnel
will begin to mistrust the system, but if there are too many MD’s then the system
becomes ineffective. These FA problems multiply when we add more sensing-nodes
to determine the source location and extent of the contaminant. Suppose a single
sensing-node has one FA per day then a network of 100 sensing-nodes would have
four FA errors per hour! This would be unacceptable in a working system.

Figure 1 shows a space-time cube for a water distribution system called Anycity
with 100 randomly placed sensing-nodes. The width and depth dimensions of the
cube show the spatial dimension with the water distribution network shown at the top
and bottom of the cube. The time dimension is along the height of the cube with time
increasing from bottom to top. The circles represent simulated detections from a
change detection algorithm. The open circles show randomly generated FA’s
assuming a sensor at every junction and a single sensing-node FA rate of once per
day. The entire cube represents sensor activity over 25 hours. For 1 FA per day we
expect an average of 104 FA’s within the cube. Using EPANET (Rossman 2000), we
simulate a tracer injected into the network. This tracer represents the contaminant and
the solid circles show the detections of this tracer. In actuality, we would not know if
the detections were real or FA’s (solid or open circles). Using sensor fusion, we
would like to separate the real detections from the FA’s and reduce the errors of the
entire system.

We consider the location and time of an event as a point resulting from a random
space-time point process. Statistically significant clusters of events indicate a set of
true detections, whereas a set of purely random events would indicate false
detections. We use Kulldorff’s scan statistic to fuse the detections of the sensing-
nodes in this distributed network. Here, Kulldorff’s scan statistic can identify
statistically significant clusters of events in space and time. The location and size of
the significant clusters indicates the location and the extent of the contamination. The
scan test uses sliding windows of different sizes in space and time to search for
clusters. We use the distribution network’s topology to define the space dimension.

To test our distributed detection algorithms, we use EPANET to simulate a city’s
water distribution system. Combining EPANET’s simulation of the transport of a
tracer and the performance models of the change detection algorithms, we show how
multiple sensing-nodes improve the event detection performance over a single
sensing-node. We also show how the system’s performance changes with number of
sensing-nodes and how well the scan test determines the injection location and time
of the contamination.

The rest of this paper first discusses related work in Section 2, and then describes
our approach and implementation in Section 3. Section 4 describes how we evaluated
our system and presents the results. Section 5 presents our conclusions and describes
future work.



2. Related Work

Recent research on using water quality
measurements to identify periods of
anomalous water quality has focused
on data obtained at a single monitoring
location. Various algorithms have been
applied to these data sets to extract
anomalous signals from the often noisy
water quality background (e.g., Cook
et al., 2006; Jarrett et al., 2006; Kroll
and King, 2006). Research at Sandia
National Laboratories has involved
development and testing of multiple
robust multivariate statistical
algorithms (Klise, 2006; McKenna,
2006 and 2007) and these are
embedded in the CANARY software
(Hart et al., 2007). The algorithms
provide a means of automatically
detecting changes in water quality
sensor measurements by comparing
the current measurements to their
predicted values based on their
previous history. Essentially, the
algorithms create a current measurement vector from all the available sensors. This
measurement vector is compared to a prediction vector based on previous sensor data.

The concepts of distributed detection, where sensor responses from multiple
locations across a network are fused to provide a ‘“network-wide” detection
capability, have not been fully applied to water distribution networks. Initial work
towards integrating responses from more than one sensor location has recently been
reported (Yang 2007). In this work, the authors use water quality sensors at two
locations to improve the water quality signal. One of the locations acts as a reference
that allows for adaptive compensation at the second location to account for
calibration errors and background noise in that second sensor. The authors show how
improved signals could allow classification of the contaminant.

Figure 1. Space-time cube of Anycity
with simulated sensors at every
junction. The water distribution
network is shown in the space
dimensions (width and depth) and time
is the height dimension from bottom to
top. The circles represent detected
events with open circles shown as false
alarms and filled circles as correct
detections.

3. Approach and Implementation

If m sensor nodes are randomly placed in a network of M junctions then the
probability of having at least x detections in a contaminant plume with a size of X
junctions is:

Pr(x | m) = i()‘ )y ) )

where (,’Z) represents the combination of n things taken k at a time. For a nonfusion

approach and perfect sensors in the Anycity network (M=396) and a contaminant
plume size of 20 junctions we would need 80 sensors to have a 0.99 probability of



having one sensor in the contaminant plume. For many imperfect sensors we have
the potential for a large increase in false alarms, as discussed in Section 1. To remedy
this problem, we propose a modest increase in the number of sensing-nodes and a
distributed fusion approach to combine results at multiple nodes to reduce the false
alarms errors.

To combine detections from multiple sensing-nodes, we use Kulldorff’s scan
statistic (Kulldorff 1997). Scan statistics are used to determine whether a set of points
are randomly distributed or show signs of clustering. Scan tests count events in
sliding windows over an area 4 and use the counts to determine if there is a cluster of
significant events. Kulldorff calls this set of windows zones.

Although computationally intensive for estimating the null distribution,
Kulldorff’s approach can handle multiple dimensions, overlapping zones of different
sizes and shapes, and it directly determines the locations of the clusters. By using a
likelihood ratio and a clearly defined alternative hypothesis it avoids the multiple and
dependent testing problem. It is also a unique test making it unnecessary to perform a
separate test for each cluster size and location. We use the binomial version of the test
(Kulldorff 1995), and assume the single sensing-node produces a yes/no or 1/0
decision on the presence/absence of an event.

Kulldorff’s scan test is conditioned on knowledge of the total number of events C.
Here we need to know the geographic area and time interval of interest 4, and how
the region is covered with the set of all zones Z. Kulldorff’s test has two hypotheses:

1. Null hypothesis Hy: For all the zones, the probability of an event inside the
zone p is the same as outside the zone, ¢, i.e. p=gq.

2. Alternative hypothesis H;: There is at least one zone where the probability of

an event inside the zone is greater than the probability outside, i.e.
zeZ|p>q.

The likelihood function L(z,p,q) for the scan test is:

L(z,p,q) = p“(1—p)' g (1—q) e @)
and represents the likelihood that the number of events inside zone z is c¢. and the
number of events outside zone z is C—c,. Here N represents the total number of

possible events in 4 and n. represents the number of possible events in z. Using (2)
the likelihood ratio becomes:

sup L(z,p,q)
L(Z) — zeZ,;I?>q

LO SupL(Zapaq)
p=q
Thus the scan test uses the largest likelihood ratio to combine results from multiple
zones. The scan test statistic A is:

3

max L(z)
LO
In general the distribution of A has no simple analytical form. To determine the
distribution of A for the null hypothesis, Kulldorff suggests using Monte Carlo

randomization. Since the test is conditioned on the number of cases C, we can
generate random examples using p = C/N (sensing-node FA error estimate) and

compute the scan test for each. As long as the number and performance of the
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sensing-nodes stays the same then estimation of the null distribution can be
accomplished offline and prior to application.

4. Implementation

To fuse information from multiple sensing-nodes in a water distribution system we
use Kulldorff’s scan test. Figure 2a shows a hypothetical time series for three
sensing-nodes. Assume sensing-nodes B and C are downstream from sensing-node A4,
and the sensing-node produces a 1/0 decision for anomaly and no anomaly,
respectively. In the figure, a dot with a stem represents a 1 and just a dot represents a
0. For our problem we have 2 dimensions: space and time. The network of pipes and
junctions represents the space dimension. We represent the space dimension as the
travel time between sensing-nodes. We use EPANET simulations to find the median
velocity over a 24 hour period for each pipe in the network and use these median
values to compute an estimate for the travel time between any two nodes.
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Figure 2. (a) Example hypothetical time series for 3 sensing-nodes A, B, and C.
Here, a dot with a stem represents a 1 or a detection and a dot with no stem represents
a zero or no detection. (b) A 3x2 space-time template for a space-time cluster
centered at node A.

To search for clusters of detections we specify the zone sizes in space and time as
s x1 . Here s represents the size of the zone in space and t represents the size of the
zone in time. The space size s represents the number of sensing-nodes closest to and
including the center of the zone (in travel times). For example, Figure 2b shows a
template for a 3x2 space-time zone centered at node 4. The number of adjacent
boxes represents the zone size in time (7 =2 ) and the number of sets represents the
zone size in space (s =3). The horizontal distance 7, represents the estimated travel

time between nodes 4 and B and 7, represents the estimated travel time between
nodes A and C. This zone template searches for clusters that have a contaminant

source at node 4.

Figure 3 shows the 3x2 template AL 1010

aligned with the time series in space and

time for the current time ¢.. Here, the Bwom.ﬂj—?i%
leading edge of the template is aligned C 44 000000000ee ooosleoe e,

with the current time for sensing-node C. t. t
The total number of detections in this
template is one. This becomes c.
equation (2). Even though an event was
detected at node 4 there is no correlating
evidence at the other nodes, so the scan

Figure 3. The 3x2 template aligned
with the time series in space and time
at current time 7, .



test would not detect a significant cluster for this location and time.
Figure 4 shows the template

advancing to a new time. Here there are Ad&mo{—ﬂﬂﬂmm
six detections in this template. If we B ! ¢ /o] :
assume a significant cluster is detected o ' IE}]'

and the contaminant was introduced at t 1

time step ¢,, then the detection delay is
Figure 4. The 3x2 template aligned

with the time series in space and time
at a new time ¢, .

given by ¢, —1¢,.

Since we do not know the actual size
of the space-time cluster, we need to test
with multiple zone templates of different sizes. We also do not know the source
location of the contaminant, so we need to test with zone templates that assume a
source at the other sensing locations. At each point in space and time these zones are
combined by taking the one that produces the largest scan test score (3). Note, for
7 >1, counts in the zone template at one time may be used for counts for a zone
template at neighboring times. Because of this and the different zone sizes, the
random variables representing the counts are not independent. This makes it difficult
to determine the null hypothesis analytically.

5. Evaluation and Results

To evaluate our distributed fusion approach we built an event simulator called
DetectNet using Matlab and the EPANET toolkit (Rossman 1999). The objective of
DetectNet is to simulate sensing-node detections from an algorithm like CANARY
(Hart 2007) in a water distribution system.

The heart of DetectNet is EPANET. EPANET takes a description of a water
distribution system including stochastic demands and a chemical tracer and
determines the concentration of the tracer throughout the network at different time
steps. This tracer serves as a proxy for a contaminant introduced into the water
distribution system. The parameters specified for the tracer are initial concentration,
start time, and length of the tracer injection. DetectNet takes the tracer simulation
results and produces a set of detections based on the performance characteristics of a
suite of sensors and the associated sensing algorithm (e.g., CANARY). The
performance characteristics are based on FA and MD errors. Here, we use a pseudo
random number generator to add extra detections based on the FA error and remove
detections based on MD errors. We also use EPANET to extract the network
constraints for the senor fusion algorithm. These constraints are the connectivity of
the network and median travel times between junctions.

Figure 1 showed the network we use for the simulation. The network has 396
junctions, 534 pipes, 2 tanks, 4 valves, and no pumps (gravity fed). The simulation
runs for 24 hours with one minute time steps. For randomly selected locations with
no demand, a 30 minute tracer injection with a concentration of 50 mg/L is simulated.
The tracer’s concentration decreases as it moves through the network. Assuming
there is a sensor at a junction, if the concentration at that junction is greater than 5
mg/L then we allow a possible true detection by the sensing-node otherwise we allow
only false detections. We selected runs that gave an average plume size, at



concentrations above the detection limit, equivalent to a portion of the network that
would contain 20 nodes.

For sensing-node performance we assume a 10 minute sample interval, a FA rate
of 1/144 (once per day) and a 0.01 MD error. This FA error was selected as a
plausible worst case performance that demonstrated the fusion algorithm’s abilities to
identify a contaminant in background clutter. The FA error does not necessarily
reflect current or projected sensor node performance. We tested Kulldorff’s scan test
with varying numbers of sensor nodes whose locations were randomly selected. We
investigated 396 (sensors at every junction), 200, 150, 100, 50, and 20 sensing-nodes.
Using equation (1) and for 20 sensing-nodes, we do not expect very good results,
since there is less than a 20% chance that at least two nodes will randomly be placed
in the contaminant plume for the contaminant injection characteristics used here. For
each set of sensing-nodes we generate 100 different days of background clutter data
using the FA error rate and compute the scan statistics for each time step and cluster
location. The exact location of the sensing-nodes does not change the null
distribution, since the space dimension is based on the s closest nodes. For all sensor
configurations we use all combinations of clusters sizes of (1, 3, 6, 12) in space
combined with and (1, 3, 6) in time, except s x7 =1x1.

Using EPANET we simulate the introduction of a contaminant at 5 different
locations. For each separate injection location we generate 100, 1-day simulations
with different randomly selected sensing locations and different background FA’s.
Figure 5 shows a portion of the Anycity network overlaid with sensing-node
detections and significant clusters. Here we have a sensor at every junction indicated
by the black dots. Circles represent all the detections up to and including the time
stamped in lower left corner. Circles filled with white are true detections and circles
not filled (shows junction and links) represent false alarms. In actuality, we do not
know the truth of the detections, but this labeling makes it easy to see how the
network is performing. The contamination is introduced at 12:00 AM.

. ‘ 12
= | k=% i
=A<l ;

‘?F?“ gl FUEIETTE
I T . — ] T

li .llir U'”_L \, _

S =

_F|1‘3dCAI\.4 | I L | ] —IUH{'W' b i |

(@) (b)

Figure 5. Example results for scan test with 396 sensors. Circles represent detections.
Circles filled with white represent true detections and circles with no fill (show
junctions and links) are false detections. The solid black line indicates the extent of
the significant cluster at this time step. (a) First significant cluster detected. (b)
Intersection of significant scan clusters after 24 hours.

In Figure 5a, the heavy black line shows the first significant cluster detected by the
scan test at 12:40 AM. Thus it took 40 minutes after the introduction of the



contaminant to detect a significant cluster. Figure 5b shows the intersection of all the
significant clusters for that day. Here the scan test accurately reflects the extent of the
contamination plume though it does include some FA’s near the bottom. This is
because we do not make use of any knowledge of the flow direction in any one link.
Note the contaminant did not spread very much in the southerly direction.

Figure 6 shows the results for 100 sensing-nodes or 25% coverage. Here, we
introduce two contaminant source locations. Figure 6a shows that it takes 4.5 hours to
detect both contaminant sources. Figure 6b shows the results after 24 hours.

=i |
(a
Figure 6. Scan test results for 100 sensing-nodes and 2 contaminant sources. (a)
Results when both sources are first detected. (b) Results after 24 hours.
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results are excellent considering the

high numbers of individual sensing-node FA’s. At 100 sensors we have very low
errors. Recall, 80 sensors are needed for the nonfusion single-detection approach
assuming perfect detection and 99% detection of plumes with a size of at least 20
junctions. Thus the distributed fusion approach requires a 25% increase in numbers of
sensing-nodes.

Figure 8 shows histograms for the time to detection (hours) and distance to
detection (links) for the 500 simulated cases. These statistics are based on the time
and location of the first significant cluster to be detected (assuming there is a
detection). The threshold for distributed detection is selected to achieve one FA per
100 days. As expected the time to detection and distance to detection increases as the



number of sensors decrease. If there is a sensor at every node then we detect the
contaminant within one hour and the correct starting location more than 50% of the
time. For 100 sensors, those results reduce to 3.5 hours within 2 network links.

Note that the time to detection histograms become bimodal as the number of
sensors decrease. Here, we hypothesize that as the number sensors decrease it is more
likely that the first sensor to encounter the contaminant will be on the edge of a plume
than the center, since the plume expands as time increases. Sensors on the plume edge
eventually detect the contaminant, but the delay to detection increases.
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Figure 8. Detection statistics. (a) The time to detection (hours) for different numbers
of sensors. (b) The distance to detection (links) in terms of network links. Both are
based on the center of the first cluster to be detected.

6. Conclusions and Future Work

We have applied Kulldorff’s scan test to the problem of detecting contamination
using multiple sensors in a water distribution network. Kulldorff’s test identifies
significant clusters in space and time and can distinguish between clusters of true
events from random background alarms. As the number of sensors in the water
distribution network increases, the chance of a FA increases too. This makes it
difficult to separate false detections from true detections. The approach developed
here is general enough to handle improvements in change detection algorithms such
as potential contaminant identification (Yang 2007) and real-time estimation of flow
rates and directions from the network model. For a 25% increase in sensing-nodes
from the nonfusion single-detection approach, distributed fusion results in very low
error rates.

Currently we use Monte Carlo simulation to estimate the null distribution.
Reestimination is required if the number of sensors change or the sensor
characteristics change. Another approach would use a Bayesian scan test that would
make more assumptions about the characteristics of the null distributions. The
Bayesian approach would not require the time-consuming Monte Carlo techniques to
estimate the null distribution. It is noted that, while time consuming, the current
Monte Carlo calculation of the null distributions is done off-line using the assumed
FA rate prior to the detection data becoming available. This makes the distributed
detection approach developed here capable of functioning in a real-time mode.

Tracking the detections through the network and improving the extent
determination is important for knowing how to respond to an event. Tracking



involves determination of which clusters are associated at different time steps and
which belong to different contaminant plumes.

In our present approach, we project the detections back in time to determine the
best estimate of start location and time. To improve extent determination we could
also project detections forward in time. This would give more support to the
detections at the edge of the plume and may guide location of portable sampling units
to further identify and characterize the contamination event.
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