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Abstract

To protect drinking water systems, a contamination warning system can use in-line 
sensors to detect accidental and deliberate contamination. Currently, detection of an
incident occurs when data from a single station detects an anomaly. This paper 
considers the possibility of combining data from multiple locations to reduce false 
alarms and help determine the contaminant’s injection source and time. If we 
consider the location and time of individual detections as points resulting from a 
random space-time point process, we can use Kulldorff’s scan test to find statistically 
significant clusters of detections. Using EPANET, we simulate a contaminant moving 
through a water network and detect significant clusters of events. We show these 
significant clusters can distinguish true events from random false alarms and the 
clusters help identify the time and source of the contaminant. Fusion results show 
reduced errors with only 25% more sensors needed over a nonfusion approach.

1. Introduction

To maintain the safety and security of drinking water, water utilities need innovative 
technologies to detect deliberate or accidental contamination in water distribution 
systems. One approach uses water quality sensors in the water distribution system 
and measures attributes of the water such as free chlorine, total organic carbon, pH, 
temperature, and electrical conductivity. While these measurements do not 
necessarily measure contaminant levels directly, a sudden change in their readings 
can indicate contamination or an abnormal operation of the water distribution system.
One approach uses change detection algorithms to compare the current measurements 
with models of the background. We call each location with sensors and algorithms a 
sensing-node and a change in water quality detected by the algorithms an event.
     In conjunction with the National Homeland Security Research Center we are 
extending research from detection at a single sensing-node to detection at multiple
nodes distributed throughout the water distribution network. Here, we want to use the 
topology of the water distribution network and sensor fusion to combine multiple 
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detected events together. This approach allows the reduction of errors for the entire 
system and the determination of the source of the contaminant.
     In detection problems, the two types of errors are false alarm (FA) errors and 
missed detection (MD) errors. FA errors occur when the change detection algorithm 
alarms on a nonexistent event and MD errors occur when the change detection 
algorithm misses an actual event. The two errors are linked, so that decreasing one of 
the errors increases the other. If the FA errors are too large then operations personnel 
will begin to mistrust the system, but if there are too many MD’s then the system 
becomes ineffective. These FA problems multiply when we add more sensing-nodes 
to determine the source location and extent of the contaminant. Suppose a single 
sensing-node has one FA per day then a network of 100 sensing-nodes would have 
four FA errors per hour! This would be unacceptable in a working system.
     Figure 1 shows a space-time cube for a water distribution system called Anycity
with 100 randomly placed sensing-nodes. The width and depth dimensions of the 
cube show the spatial dimension with the water distribution network shown at the top 
and bottom of the cube. The time dimension is along the height of the cube with time 
increasing from bottom to top. The circles represent simulated detections from a 
change detection algorithm. The open circles show randomly generated FA’s
assuming a sensor at every junction and a single sensing-node FA rate of once per 
day. The entire cube represents sensor activity over 25 hours. For 1 FA per day we 
expect an average of 104 FA’s within the cube. Using EPANET (Rossman 2000), we 
simulate a tracer injected into the network. This tracer represents the contaminant and 
the solid circles show the detections of this tracer. In actuality, we would not know if 
the detections were real or FA’s (solid or open circles). Using sensor fusion, we 
would like to separate the real detections from the FA’s and reduce the errors of the 
entire system.
     We consider the location and time of an event as a point resulting from a random 
space-time point process. Statistically significant clusters of events indicate a set of 
true detections, whereas a set of purely random events would indicate false 
detections. We use Kulldorff’s scan statistic to fuse the detections of the sensing-
nodes in this distributed network. Here, Kulldorff’s scan statistic can identify 
statistically significant clusters of events in space and time. The location and size of 
the significant clusters indicates the location and the extent of the contamination. The 
scan test uses sliding windows of different sizes in space and time to search for 
clusters. We use the distribution network’s topology to define the space dimension.
     To test our distributed detection algorithms, we use EPANET to simulate a city’s 
water distribution system. Combining EPANET’s simulation of the transport of a 
tracer and the performance models of the change detection algorithms, we show how 
multiple sensing-nodes improve the event detection performance over a single 
sensing-node. We also show how the system’s performance changes with number of 
sensing-nodes and how well the scan test determines the injection location and time 
of the contamination.
     The rest of this paper first discusses related work in Section 2, and then describes 
our approach and implementation in Section 3. Section 4 describes how we evaluated 
our system and presents the results. Section 5 presents our conclusions and describes 
future work.



2. Related Work

Recent research on using water quality 
measurements to identify periods of 
anomalous water quality has focused 
on data obtained at a single monitoring 
location. Various algorithms have been 
applied to these data sets to extract 
anomalous signals from the often noisy 
water quality background (e.g., Cook 
et al., 2006; Jarrett et al., 2006; Kroll 
and King, 2006). Research at Sandia 
National Laboratories has involved 
development and testing of multiple 
robust multivariate statistical 
algorithms (Klise, 2006; McKenna,
2006 and 2007) and these are 
embedded in the CANARY software 
(Hart et al., 2007). The algorithms 
provide a means of automatically 
detecting changes in water quality
sensor measurements by comparing 
the current measurements to their 
predicted values based on their 
previous history. Essentially, the 
algorithms create a current measurement vector from all the available sensors. This 
measurement vector is compared to a prediction vector based on previous sensor data. 
     The concepts of distributed detection, where sensor responses from multiple 
locations across a network are fused to provide a “network-wide” detection 
capability, have not been fully applied to water distribution networks. Initial work 
towards integrating responses from more than one sensor location has recently been 
reported (Yang 2007). In this work, the authors use water quality sensors at two 
locations to improve the water quality signal. One of the locations acts as a reference 
that allows for adaptive compensation at the second location to account for 
calibration errors and background noise in that second sensor. The authors show how 
improved signals could allow classification of the contaminant.

3. Approach and Implementation

If m sensor nodes are randomly placed in a network of M junctions then the 
probability of having at least x detections in a contaminant plume with a size of X
junctions is:

    M
m

mM
iX

X

xi

X
imx 




)|Pr( (1)

where  n
k represents the combination of n things taken k at a time. For a nonfusion 

approach and perfect sensors in the Anycity network (M=396) and a contaminant 
plume size of 20 junctions we would need 80 sensors to have a 0.99 probability of 

Figure 1. Space-time cube of Anycity 
with simulated sensors at every 
junction. The water distribution 
network is shown in the space 
dimensions (width and depth) and time 
is the height dimension from bottom to 
top. The circles represent detected 
events with open circles shown as false 
alarms and filled circles as correct
detections.



having one sensor in the contaminant plume. For many imperfect sensors we have 
the potential for a large increase in false alarms, as discussed in Section 1. To remedy 
this problem, we propose a modest increase in the number of sensing-nodes and a 
distributed fusion approach to combine results at multiple nodes to reduce the false 
alarms errors. 
     To combine detections from multiple sensing-nodes, we use Kulldorff’s scan 
statistic (Kulldorff 1997). Scan statistics are used to determine whether a set of points 
are randomly distributed or show signs of clustering. Scan tests count events in 
sliding windows over an area A and use the counts to determine if there is a cluster of 
significant events. Kulldorff calls this set of windows zones. 
     Although computationally intensive for estimating the null distribution, 
Kulldorff’s approach can handle multiple dimensions, overlapping zones of different 
sizes and shapes, and it directly determines the locations of the clusters. By using a 
likelihood ratio and a clearly defined alternative hypothesis it avoids the multiple and 
dependent testing problem. It is also a unique test making it unnecessary to perform a 
separate test for each cluster size and location. We use the binomial version of the test 
(Kulldorff 1995), and assume the single sensing-node produces a yes/no or 1/0 
decision on the presence/absence of an event. 
     Kulldorff’s scan test is conditioned on knowledge of the total number of events C. 
Here we need to know the geographic area and time interval of interest A, and how
the region is covered with the set of all zones Z. Kulldorff’s test has two hypotheses:

1. Null hypothesis H0: For all the zones, the probability of an event inside the 
zone p is the same as outside the zone, q, i.e. p=q.

2. Alternative hypothesis H1: There is at least one zone where the probability of 
an event inside the zone is greater than the probability outside, i.e. 

qpZz  | .

     The likelihood function L(z,p,q) for the scan test is:
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and represents the likelihood that the number of events inside zone z is cz and the 

number of events outside zone z is zcC  . Here N represents the total number of 

possible events in A and nz represents the number of possible events in z. Using (2)
the likelihood ratio becomes:
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Thus the scan test uses the largest likelihood ratio to combine results from multiple 
zones. The scan test statistic  is:
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     In general the distribution of  has no simple analytical form. To determine the 
distribution of  for the null hypothesis, Kulldorff suggests using Monte Carlo 
randomization. Since the test is conditioned on the number of cases C, we can 
generate random examples using NCp / (sensing-node FA error estimate) and 

compute the scan test for each. As long as the number and performance of the 



sensing-nodes stays the same then estimation of the null distribution can be 
accomplished offline and prior to application. 

4. Implementation

To fuse information from multiple sensing-nodes in a water distribution system we 
use Kulldorff’s scan test. Figure 2a shows a hypothetical time series for three 
sensing-nodes. Assume sensing-nodes B and C are downstream from sensing-node A, 
and the sensing-node produces a 1/0 decision for anomaly and no anomaly, 
respectively. In the figure, a dot with a stem represents a 1 and just a dot represents a 
0. For our problem we have 2 dimensions: space and time. The network of pipes and 
junctions represents the space dimension. We represent the space dimension as the 
travel time between sensing-nodes. We use EPANET simulations to find the median 
velocity over a 24 hour period for each pipe in the network and use these median 
values to compute an estimate for the travel time between any two nodes.

Figure 2. (a) Example hypothetical time series for 3 sensing-nodes A, B, and C.
Here, a dot with a stem represents a 1 or a detection and a dot with no stem represents 
a zero or no detection. (b) A 23 space-time template for a space-time cluster 
centered at node A.

     To search for clusters of detections we specify the zone sizes in space and time as
s . Here s represents the size of the zone in space and  represents the size of the 

zone in time. The space size s represents the number of sensing-nodes closest to and 
including the center of the zone (in travel times). For example, Figure 2b shows a 
template for a 23 space-time zone centered at node A. The number of adjacent 
boxes represents the zone size in time ( 2 ) and the number of sets represents the 

zone size in space ( 3s ). The horizontal distance AB represents the estimated travel 

time between nodes A and B and AC represents the estimated travel time between 

nodes A and C. This zone template searches for clusters that have a contaminant 
source at node A.
     Figure 3 shows the 23 template 
aligned with the time series in space and 
time for the current time tc. Here, the 
leading edge of the template is aligned 
with the current time for sensing-node C. 
The total number of detections in this 
template is one. This becomes cz

equation (2). Even though an event was 
detected at node A there is no correlating 
evidence at the other nodes, so the scan 

Figure 3. The 23 template aligned 
with the time series in space and time 
at current time ct .



test would not detect a significant cluster for this location and time.
     Figure 4 shows the template 
advancing to a new time. Here there are 
six detections in this template. If we 
assume a significant cluster is detected 
and the contaminant was introduced at 

time step it , then the detection delay is 

given by ic tt  .

     Since we do not know the actual size 
of the space-time cluster, we need to test 
with multiple zone templates of different sizes. We also do not know the source 
location of the contaminant, so we need to test with zone templates that assume a 
source at the other sensing locations. At each point in space and time these zones are 
combined by taking the one that produces the largest scan test score (3). Note, for

1 , counts in the zone template at one time may be used for counts for a zone 
template at neighboring times. Because of this and the different zone sizes, the 
random variables representing the counts are not independent. This makes it difficult 
to determine the null hypothesis analytically.

5. Evaluation and Results

To evaluate our distributed fusion approach we built an event simulator called 
DetectNet using Matlab and the EPANET toolkit (Rossman 1999). The objective of 
DetectNet is to simulate sensing-node detections from an algorithm like CANARY 
(Hart 2007) in a water distribution system. 
     The heart of DetectNet is EPANET. EPANET takes a description of a water 
distribution system including stochastic demands and a chemical tracer and 
determines the concentration of the tracer throughout the network at different time 
steps. This tracer serves as a proxy for a contaminant introduced into the water 
distribution system. The parameters specified for the tracer are initial concentration, 
start time, and length of the tracer injection. DetectNet takes the tracer simulation 
results and produces a set of detections based on the performance characteristics of a
suite of sensors and the associated sensing algorithm (e.g., CANARY). The 
performance characteristics are based on FA and MD errors. Here, we use a pseudo 
random number generator to add extra detections based on the FA error and remove 
detections based on MD errors. We also use EPANET to extract the network 
constraints for the senor fusion algorithm. These constraints are the connectivity of 
the network and median travel times between junctions.
     Figure 1 showed the network we use for the simulation. The network has 396
junctions, 534 pipes, 2 tanks, 4 valves, and no pumps (gravity fed). The simulation 
runs for 24 hours with one minute time steps. For randomly selected locations with 
no demand, a 30 minute tracer injection with a concentration of 50 mg/L is simulated.
The tracer’s concentration decreases as it moves through the network. Assuming 
there is a sensor at a junction, if the concentration at that junction is greater than 5 
mg/L then we allow a possible true detection by the sensing-node otherwise we allow 
only false detections. We selected runs that gave an average plume size, at 

Figure 4. The 23 template aligned 
with the time series in space and time 
at a new time ct .



concentrations above the detection limit, equivalent to a portion of the network that 
would contain 20 nodes. 
     For sensing-node performance we assume a 10 minute sample interval, a FA rate 
of 1/144 (once per day) and a 0.01 MD error. This FA error was selected as a 
plausible worst case performance that demonstrated the fusion algorithm’s abilities to 
identify a contaminant in background clutter. The FA error does not necessarily 
reflect current or projected sensor node performance. We tested Kulldorff’s scan test 
with varying numbers of sensor nodes whose locations were randomly selected. We 
investigated 396 (sensors at every junction), 200, 150, 100, 50, and 20 sensing-nodes.
Using equation (1) and for 20 sensing-nodes, we do not expect very good results, 
since there is less than a 20% chance that at least two nodes will randomly be placed 
in the contaminant plume for the contaminant injection characteristics used here. For 
each set of sensing-nodes we generate 100 different days of background clutter data 
using the FA error rate and compute the scan statistics for each time step and cluster 
location. The exact location of the sensing-nodes does not change the null 
distribution, since the space dimension is based on the s closest nodes. For all sensor 
configurations we use all combinations of clusters sizes of (1, 3, 6, 12) in space 
combined with and (1, 3, 6) in time, except s = 11 .
     Using EPANET we simulate the introduction of a contaminant at 5 different 
locations. For each separate injection location we generate 100, 1-day simulations
with different randomly selected sensing locations and different background FA’s.
Figure 5 shows a portion of the Anycity network overlaid with sensing-node
detections and significant clusters. Here we have a sensor at every junction indicated 
by the black dots. Circles represent all the detections up to and including the time 
stamped in lower left corner. Circles filled with white are true detections and circles 
not filled (shows junction and links) represent false alarms. In actuality, we do not 
know the truth of the detections, but this labeling makes it easy to see how the 
network is performing. The contamination is introduced at 12:00 AM.

Figure 5. Example results for scan test with 396 sensors. Circles represent detections. 
Circles filled with white represent true detections and circles with no fill (show 
junctions and links) are false detections. The solid black line indicates the extent of 
the significant cluster at this time step. (a) First significant cluster detected. (b) 
Intersection of significant scan clusters after 24 hours.

     In Figure 5a, the heavy black line shows the first significant cluster detected by the 
scan test at 12:40 AM. Thus it took 40 minutes after the introduction of the 



contaminant to detect a significant cluster. Figure 5b shows the intersection of all the 
significant clusters for that day. Here the scan test accurately reflects the extent of the 
contamination plume though it does include some FA’s near the bottom. This is 
because we do not make use of any knowledge of the flow direction in any one link. 
Note the contaminant did not spread very much in the southerly direction.
     Figure 6 shows the results for 100 sensing-nodes or 25% coverage. Here, we 
introduce two contaminant source locations. Figure 6a shows that it takes 4.5 hours to 
detect both contaminant sources. Figure 6b shows the results after 24 hours.

Figure 6. Scan test results for 100 sensing-nodes and 2 contaminant sources. (a) 
Results when both sources are first detected. (b) Results after 24 hours.

     Figure 7 shows the operating 
characteristics for different numbers of 
sensors. We call a correct detection if 
the scan test finds a significant cluster 
intersecting the contaminant plume. 
We call a false detection if the scan 
test finds a significant cluster during a 
day of background clutter. The scan 
test has excellent performance until the 
number of sensors drop to 50 and 
below. At this point the chances that at 
least 2 sensors will be within the 
contaminant plume start to drop 
rapidly. For greater than 50 sensors the 
results are excellent considering the 
high numbers of individual sensing-node FA’s. At 100 sensors we have very low 
errors. Recall, 80 sensors are needed for the nonfusion single-detection approach 
assuming perfect detection and 99% detection of plumes with a size of at least 20 
junctions. Thus the distributed fusion approach requires a 25% increase in numbers of 
sensing-nodes.
     Figure 8 shows histograms for the time to detection (hours) and distance to 
detection (links) for the 500 simulated cases. These statistics are based on the time 
and location of the first significant cluster to be detected (assuming there is a 
detection). The threshold for distributed detection is selected to achieve one FA per 
100 days. As expected the time to detection and distance to detection increases as the 

Figure 7. Operating characteristics for 
varying numbers of sensors.



number of sensors decrease. If there is a sensor at every node then we detect the 
contaminant within one hour and the correct starting location more than 50% of the 
time. For 100 sensors, those results reduce to 3.5 hours within 2 network links.
     Note that the time to detection histograms become bimodal as the number of 
sensors decrease. Here, we hypothesize that as the number sensors decrease it is more 
likely that the first sensor to encounter the contaminant will be on the edge of a plume 
than the center, since the plume expands as time increases. Sensors on the plume edge 
eventually detect the contaminant, but the delay to detection increases.

Figure 8. Detection statistics. (a) The time to detection (hours) for different numbers 
of sensors. (b) The distance to detection (links) in terms of network links. Both are 
based on the center of the first cluster to be detected.

6. Conclusions and Future Work

We have applied Kulldorff’s scan test to the problem of detecting contamination 
using multiple sensors in a water distribution network. Kulldorff’s test identifies 
significant clusters in space and time and can distinguish between clusters of true 
events from random background alarms. As the number of sensors in the water 
distribution network increases, the chance of a FA increases too. This makes it 
difficult to separate false detections from true detections. The approach developed 
here is general enough to handle improvements in change detection algorithms such 
as potential contaminant identification (Yang 2007) and real-time estimation of flow 
rates and directions from the network model. For a 25% increase in sensing-nodes 
from the nonfusion single-detection approach, distributed fusion results in very low 
error rates.
   Currently we use Monte Carlo simulation to estimate the null distribution. 
Reestimination is required if the number of sensors change or the sensor 
characteristics change. Another approach would use a Bayesian scan test that would 
make more assumptions about the characteristics of the null distributions. The 
Bayesian approach would not require the time-consuming Monte Carlo techniques to 
estimate the null distribution. It is noted that, while time consuming, the current 
Monte Carlo calculation of the null distributions is done off-line using the assumed 
FA rate prior to the detection data becoming available. This makes the distributed 
detection approach developed here capable of functioning in a real-time mode.
     Tracking the detections through the network and improving the extent 
determination is important for knowing how to respond to an event. Tracking 



involves determination of which clusters are associated at different time steps and 
which belong to different contaminant plumes. 
     In our present approach, we project the detections back in time to determine the 
best estimate of start location and time. To improve extent determination we could
also project detections forward in time. This would give more support to the 
detections at the edge of the plume and may guide location of portable sampling units 
to further identify and characterize the contamination event.
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