
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Multivariate Analysis of Hyperspectral 
Images: A Tutorial 

Mark Van Benthem and Michael Keenan

SAND2008-4971C



Overview

• Introduction and motivation of work

• Data types: Univariate and multivariate
– From simple principles to the more complex

• Principal Component Analysis
– The workhorse of multivariate analysis

• Multivariate curve resolution
– Two-way data analysis

• Spatial Image Compression
– Faster-better

• Trilinear Analysis



Motivation

• Hyperspectral imaging is becoming 
commonplace in science and engineering
– Chemical analysis 

– Materials characterizing - from nanoscale on up 

– Biology application with regard to cell function  

– Remote sensing

• Data sets are very large and can easily 
overwhelm researchers and users

• The rapid advance of hyperspectral imaging 
hardware has overwhelmed the available analysis 
software
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Univariate Linear Model-Fluorescence

Model

F = Cs

f1 = c1s

f2 = c2s

f3 = c3s

f4 = c4s

Slope = s



Univariate Model
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Univariate Model and Least Squares
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F = C         S

And then F
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‡ represents matrix pseudoinverse



Multivariate Linear Model
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[f f f] = c[s s s]

[f f f] = c4[s s s]
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[f f f] = c2[s s s]

[f f f] = c1[s s s]
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Application to “Hyperspectral” RGB Image
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RGB Image = C · S

Note the linearity assumption



Principal Component Analysis (PCA)

• Data reduction technique
– Reduces the dimensionality of or “factors” the data to 

the appropriate number of components

– Creates an ordered set of orthogonal “scores,” T and 
“loadings,” P.  

• These are vectors representing the C and S modes ordered 
by decreasing variance contribution to the data set.

• Related to eigenanalysis, which is the usual method of 
computation
– For a large image, compute the small cross-product 

matrix Z = FTF and then solves the eigenvalue problem 
ZP = PD, where D is the diagonal matrix of eigenvalues

– Then, sort the eigenvalues by size, order the vectors in P
accordingly, select the appropriate number of vectors

– Next solve for T using T = FP
– And the result is the model F = TPT + E



PCA of Univariate Data

Let F = [x y],
and Z = FTF.
Solve the eigenvalue 
problem ZP = PD and 
order them by size.
Then project F into the 
P-space T = FP.

y

x

t1p1
T

t2p2
T

Each point is defined by 
an x and y coordinate.

We now have a new 
coordinate system 
defined by the two 
columns of T and P
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This is interesting, and the data can be 
represented by two components instead of 
three; but does it have any physical meaning?
After all:
•What are negative image abundances?
•How do you add negative colors (spectra)?
•Isn’t there another way to “factor” the data?



Multivariate Curve Resolution

• Assumption: linear additive model: F = C S

• Solve F = C S in least squares sense

– C = F S‡ or use PCA-compressed C = T(PTS‡) 

– S = C‡ F or use PCA-compressed S = (C‡T)PT

– More unknowns than equations

– Have infinite number of solutions

• Apply constraints to narrow the solution space to 
those that are physically acceptable
– nonnegativity of concentrations and/or spectra

– Closure (sum-to-one constraint)

– many others (e.g., unimodality, smoothness, etc.)

• Iterate until converged

^

^



The algorithm Transforms Red, Green and 
Blue to “Water” and “Jelly” colors

Certain proportions of R, G, and B correlate with each 
other as determined by the algorithms

Jelly-color

Water-color

C = FS‡

S = C‡F



Transformation from RGB 
to WJ Colorspace

• The 3-dimensional RGB color description may not 
be best if our interests are sea water and jellyfish.

• A 2-dimensional color model might lend more 
insight into the spectral signatures of sea water 
and jellyfish. 

• Our algorithms can effect the dimensional 
reduction/transformation. 

• Red, Green and Blue become Water-color and 
and Jelly-color in the new model.



“Water” and “Jelly” are the “pure 
components” in the WJ color space

Two-color WJ imageOriginal RGB image

Note: “Water” and “Jelly” are not listed as Crayola® crayon colors.



Hyperspectral Imaging

• HSI-CM Performance Specifications:
– 488 nm laser excitation
– 10x, 20x, 60x, 100x objectives
– Lateral Resolution = 0.25 m
– Axial Resolution = 0.60 m
– Spectral range 490-800 nm 

• 512 channels

– Spectral resolution = 1-3 nm
– Acquisition rate = 8300 spectra-sec-1

• Data Collection
– 20x objective
– Exposure time 0.24 msec
– Image size 204x208 pixels

• Step size .24 m in lateral dimensions

– Data size 512x204x208

3D Hyperspectral Imaging 
Confocal Microscope (HSI-CM)



Hyperspectral Cell Image

• Data Preprocessing-A critical process
– Remove cosmic ray-induced “spikes”
– Remove dark shape—rank one PCA component

• Wavelength dependent spectral response of EMCCD

– Trimmed first six wavelength-mode data points
• Remove some baseline spikes

– Poisson scale data in spectral mode, attempt to make noise iid normal
• For Poisson distributed data 2 = 
• Use inverse of spectral-mode mean times gain factor plus read noise 
• H: a diagonal spectral scaling matrix
• F = HF

RGB image of a Human A549 
pulmonary type II epithelial cell 
labeled with GFP and YFP 
collected with HSI-CM.  
Produced by integrating over 
three wavelength bands chosen 
for responses of GFP, YFP and 
cell autofluorescence.

~



PCA of Cell HSI Data

PCA gives us information about the data and a reduced 
data set with which to perform further analyses

Estimate rank of three.



MCR of Cell HSI Data

MCR using 12 PCs, 50 iterations, MCR initialized with 
previously resolved GFP, YFP and AF. Time to run 4.9 seconds.

Spectra from http://home.ncifcrf.gov/ccr/flowcore/spectra.htm



MCR of Same Cell HSI Data with Baseline

MCR using 12 PCs, 50 iterations, MCR initialized with previously 
resolved GFP, YFP and AF. Time to run 4.9 seconds.These results are not as satisfactory as we would like.  The YFG 

and GFP components are somewhat noisy and there is some 
“mixing” in factors. What else can we do?



Data Compression

• Can be simply and easy to apply (e.g., binning)

• Can achieve good analysis results with very high 
compression factors

• Can improve signal-to-noise characteristics of 
data

– Random noise adds destructively

– Signal adds constructively, enhancing signal

– Binning preserves Poisson noise (Poisson adds as 
Poisson) and read noise (variances add)

• Subsequent analysis proceeds much faster!



Spatial Binning Compression of a Cell Image

Original Image 
208×204 pixels

Compression factors  of 
16 and 17 (total 272) 
chosen for convenience 

Compressed Image 
13×12 pixels 

Compression doesn’t have to preserve the image “quality.”
But, if you stand way back…

Sum all of the pixels 
in each square



MCR of Cell Binned HSI Data

MCR using 12 PCs, 100 iterations, MCR initialized with 
previously resolved GFP, YFP and AF. Time to run 0.9 seconds.
Full resolution images obtained by projecting full data (loading 
and scores) into spectral-mode pure component space.  (This 
calculation is include in the time above.)

With compression we now have 
five components. We find two 
additional components!



Limitations of MCR and Two-Way Analyses

• MCR is not magic!

– Ensure you are employing appropriate constraints.

– Other methods with different cost functions may be more 
reasonable for your data. 

– Heavily dependent on constraints to limit solution space.

• Plagued by the “Rotation Problem”

– For the model F = CS, we minimize Q = ||F-CS||2 in least 
squares

– Can insert any rotation or transformation matrix, R, in 
the equation  F = (CR-1)(RS), with I = R-1R and retain the 
same Q

– Never sure of unique decomposition

• Is there a way to get a unique decomposition?



Three-Way Data and Trilinear Methods

• Three-way fluorescence data that follow a trilinear 
model

– The fluorescence intensity is collected as a 
function of three independent parameters

– Intensity varies linearly as a function of each 
parameter

• The trilinear model:

– fijk = cipsjpbcp+ eijk for data with p-components

– F = (S, C, B), which is a three-way array

• Provides rotationally unique decompositions

– Given appropriate data rank structure

 here is the triple-product operator.



Higher Order Data and Analysis
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• Microscope laser is very bright

• Each time we image the cell, we 
coincidentally bleach it!  

• At the same time we bleaching 
the cell, we’re creating a 3-way 
array of data!  

• If we are interested in 
determining presence of FRET, 
we can photobleach.  

• Of critical importance is that 
GFP and YFP bleach rates are 
dependent on the presence      
or absence of FRET.

FRET: fluorescence resonance energy transfer.



F =  S × (  C B )T

Three-Way Analysis: PARAFAC – PARallel 
FACtors Analysis (Conceptual)



Image

Bleach F =   C × ( S B )T

F =   B × ( S  C )T

S  F×((C B)T)† C  F×((S B)T)† B  F×((S C)T)†

is known as the Khatri-Rao operator.
Application of nonnegative least squares (NNLS) optional.



Three-Way Cell Data

• Collected 18 consecutive photobleach images of same cells 
previously examined

• Preprocessing
– Remove cosmic ray-induced “spikes”
– Remove dark shape—rank one PCA component

• Wavelength dependent spectral response of EMCCD

– Trimmed first six wavelength-mode data points
– Subtract offset for each image pixel

• Baseline correct using known zero-signal elements

– Binning compression in image-mode as previously 
described

– Poisson scale in spectral mode
• Analyzed with a PARAFAC-ALS routine written in-house



HSI Cells Three-Mode Rank Estimate

Largest rank in wavelength- and image-modes is five.



GFP-YFP-AF PARAFAC Model

PARAFAC easily finds GFP 
and YFP fluors and returns 
their photobleach curves and 
their cell locations. 



Summary

• Introduction and motivation of work

• Data types: Univariate and multivariate
– From simple principles to the more complex

• Principal Component Analysis
– The workhorse of multivariate analysis

• Multivariate curve resolution
– Two-way data analysis

• Spatial Image Compression
– Faster-better

• Trilinear Analysis



Recap and Summary

• Presented least squares methods for multivariate analysis 
of hyperspectral images
– Least squares for linear models

• PCA the workhorse that is useful for data compression and 
rank estimation

• MCR: appropriate for many two-way models, but is not the 
answer for every problem.  
– You must choose the right tool for the job!

• Compression can take many forms
– Binning images is simple and works well for linear 

additive data
• PARAFAC is a powerful tool for three-way analysis

– Data must follow the trilinear model
• It’s all mathematics—not magic
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