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* Introduction and motivation of work
- Data types: Univariate and multivariate
— From simple principles to the more complex
* Principal Component Analysis
— The workhorse of multivariate analysis
* Multivariate curve resolution
— Two-way data analysis
« Spatial Image Compression
— Faster-better
* Trilinear Analysis

Overview
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* Hyperspectral imaging is becoming
commonplace in science and engineering
— Chemical analysis
— Materials characterizing - from nanoscale on up
— Biology application with regard to cell function
— Remote sensing

- Data sets are very large and can easily
overwhelm researchers and users

* The rapid advance of hyperspectral imaging
hardware has overwhelmed the available analysis
software

Motivation
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Univariate Linear Model-Fluorescence
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Univariate Model
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Univariate Model and Least Squares
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The model: F=CS+E

Normal Equations

Given C, estimate S S = (CTC)IC'F = C*F

And then F IA= = C§ = \C(CTC)'lchF = C(C*F)

“Hat” matrix
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Multivariate Linear Model
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Multicomponent Multivariate Model
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} One spectrum
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Application to “Hyperspectral” RGB Image S
‘spectrum’

J

Sandi
RED GREEN BLUE @ e

Intensity



RGB Image=C - S
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« Data reduction technique
— Reduces the dimensionality of or “factors” the data to
the appropriate number of components
— Creates an ordered set of orthogonal “scores,” T and
“loadings,” P.
- These are vectors representing the C and S modes ordered
by decreasing variance contribution to the data set.

* Related to eigenanalysis, which is the usual method of
computation

— For a large image, compute the small cross-product
matrix Z = FTF and then solves the eigenvalue problem
ZP = PD, where D is the diagonal matrix of eigenvalues

— Then, sort the eigenvalues by size, order the vectors in P
accordingly, select the appropriate number of vectors

— Next solve for T using T = FP
— And the result is the model F=TPT + E

Principal Component Analysis (PCA)
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PCA of Univariate Data

Each point 1s defined by
an x and y coordinate.

Let F=[XY],

and Z = F'F.

Solve the eigenvalue
problem ZP = PD and
order them by size.
Then project F into the
P-space T = FP.

We now have a new

coordinate system

defined by the two

columns of T and P
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PCA of the Jellyfish Image

Principal Component Scores 1 x 10~ Principal Comgonent Scores 2 x 10~ Principal Component Scores 3

0.01

0.008

0.006

0.004

0.002

-0.002

-0.004

-0.006

-0.008

-0.01

S 000}
3 -

ries




;;’

« Assumption: linear additive model: F =CS
 Solve F = CSin least squares sense
— C=FS*oruse PCA-compressed C = T(PTS¥)
— §=C*F oruse PCA-compressed S = (C*T)PT
— More unknowns than equations
— Have infinite number of solutions

 Apply constraints to narrow the solution space to
those that are physically acceptable
— nonnegativity of concentrations and/or spectra
— Closure (sum-to-one constraint)
— many others (e.g., unimodality, smoothness, etc.)

 lterate until converged

Multivariate Curve Resolution
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The algorithm Transforms Red, Green and
Blue to “Water” and “Jelly” colors

\ = FS*

Mage /

/S C*F

Certain proportions of R, G, and B correlate with each @ Sondi

other as determined by the algorithms pra

Jelly-color

Water-color




Transformation from RGB
to WJ Colorspace

ol

* The 3-dimensional RGB color description may not
be best if our interests are sea water and jellyfish.

* A 2-dimensional color model might lend more
insight into the spectral signatures of sea water
and jellyfish.

* Our algorithms can effect the dimensional
reduction/transformation.

* Red, Green and Blue become Water-color and
and Jelly-color in the new model.
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- “Water” and “Jelly” are the “pure
components” in the WJ color space

Two-color WJOmiggeal RGB image

Sandia
: National
Note: “Water” and “Jelly” are not listed as Crayola® crayon colors. @ Labvatories
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Hyperspectral Imaging

3D Hyperspectral Imaging
Confocal Microscope (HSI-CM)

« HSI-CM Performance Specifications:

— 488 nm laser excitation

— 10x, 20x, 60x, 100x objectives

— Lateral Resolution = 0.25 um

— Axial Resolution = 0.60 um

— Spectral range 490-800 nm

* 512 channels

— Spectral resolution =1-3 nm

— Acquisition rate = 8300 spectra-sec
« Data Collection

— 20x objective

— Exposure time 0.24 msec

— Image size 204x208 pixels
» Step size .24 um in lateral dimensions

— Data size 512x204x208
@ Sandia
National
Laboratories




Hyperspectral Cell Image

- Data Preprocessing-A critical process

— Remove cosmic ray-induced “spikes”

— Remove dark shape—rank one PCA component
+ Wavelength dependent spectral response of EMCCD

— Trimmed first six wavelength-mode data points
* Remove some baseline spikes

— Poisson scale data in spectral mode, attempt to make noise iid normal
* For Poisson distributed data c2=p
* Use inverse of spectral-mode mean times gain factor plus read noise

e H: a diagonal spectral scaling matrix Sandia
° ?’= HF @ National .
Laboratories



PCA of Cell HSI Data

PCA Variance

Estimate rank of three.

Percent of Variance Modeled
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MCR of Cell HSI Data
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MCR of Same Cell HSI Data with Baseline
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« Can be simply and easy to apply (e.g., binning)

« Can achieve good analysis results with very high
compression factors

« Can improve signal-to-noise characteristics of
data
— Random noise adds destructively
— Signal adds constructively, enhancing signal

— Binning preserves Poisson noise (Poisson adds as
Poisson) and read noise (variances add)

* Subsequent analysis proceeds much faster!

Data Compression
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Spatial Binning Compression of a Cell Image
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chosen for convenience

Compression doesn’t have to preserve the image “quality.”
But, if you stand way back... @ Natorl
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MCR of Cell Blnned HSI Data
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Limitations of MCR and Two-Way Analyses

* MCR is not magic!
— Ensure you are employing appropriate constraints.

— Other methods with different cost functions may be more
reasonable for your data.

— Heavily dependent on constraints to limit solution space.
* Plagued by the “Rotation Problem”

— For the model F = CS, we minimize Q = ||F-CS||? in least
squares

— Can insert any rotation or transformation matrix, R, in
the equation F = (CR-1)(RS), with | = R'R and retain the
same Q

— Never sure of unique decomposition

* Is there a way to get a unique decomposition? @ Sandia
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Three-Way Data and Trilinear Methods

* Three-way fluorescence data that follow a trilinear
model

— The fluorescence intensity is collected as a
function of three independent parameters

— Intensity varies linearly as a function of each
parameter

* The trilinear model:

— Ty = C,pSpr €y for data with p-components

— I =®(S, C, B), which is a three-way array
* Provides rotationally unique decompositions
— Given appropriate data rank structure

® here 1s the triple-product operator. @ Noous

Laboratories



* Microscope laser is very bright

« Each time we image the cell, we
coincidentally bleach it!

» At the same time we bleaching
the cell, we’re creating a 3-way
array of datal!

* If we are interested in
determining presence of FRET,
we can photobleach.

» Of critical importance is that
GFP and YFP bleach rates are
dependent on the presence
or absence of FRET. /

Sandia
FRET: fluorescence resonance energy transfer. @ National
Laboratories



ree-Way Analysis: PARAFAC — PARallel
FACtors Analysis (Conceptual)

Image F = § x ( C @B)T

e} T

Bleach T = Cx (S OB
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I f— ===
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(@ 1s known as the Khatri-Rao operator. @ Sandia

Application of nonnegative least squares (NNLS) optional. il
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» Collected 18 consecutive photobleach images of same cells
previously examined

* Preprocessing
— Remove cosmic ray-induced “spikes”
— Remove dark shape—rank one PCA component
« Wavelength dependent spectral response of EMCCD
— Trimmed first six wavelength-mode data points
— Subtract offset for each image pixel
« Baseline correct using known zero-signal elements

— Binning compression in image-mode as previously
described

— Poisson scale in spectral mode
« Analyzed with a PARAFAC-ALS routine written in-house

Three-Way Cell Data

@ Sandia
National
Laboratories



\

HSI Cells Three-Mode Rank Estimate
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GFP-YFP-AF PARAFAC Model
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* Introduction and motivation of work
- Data types: Univariate and multivariate
— From simple principles to the more complex
* Principal Component Analysis
— The workhorse of multivariate analysis
* Multivariate curve resolution
— Two-way data analysis
« Spatial Image Compression
— Faster-better
* Trilinear Analysis

Summary
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* Presented least squares methods for multivariate analysis
of hyperspectral images

— Least squares for linear models

 PCA the workhorse that is useful for data compression and
rank estimation

« MCR: appropriate for many two-way models, but is not the
answer for every problem.

— You must choose the right tool for the job!
« Compression can take many forms

— Binning images is simple and works well for linear
additive data

* PARAFAC is a powerful tool for three-way analysis
— Data must follow the trilinear model
* It’s all mathematics—not magic

Recap and Summary
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