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• Electrochemical technology will be a critical part of energy 
security in the near future:

– High efficiency: 40%-95%

– Little contribution to climate-change (carbon neutral)
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Electrochemistry technology will be 
increasingly used to store & convert energy



1. What is the nature of charge-transfer reactions?
• Where do reactions occur and through what species?

2. Where are the electrical overpotentials that limit 
rates and efficiencies?
• Find electrochemical “bottlenecks”

3. What are the phase changes that store energy?

Relevant to fuel cells, batteries, and ultra-capacitors

These are the fundamental questions
in electrochemical energy conversion

We aim to solve these in a model fuel cell system
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Which overpotential is limiting the current?

• Why does the fuel-cell voltage drop when current is being produced?

A fuel cell provides a model platform
for fundamental studies

Current:

Fuel cell optimization requires understanding
where the overpotentials occur



1. We will focus on standard electrodes: Ni and Pt

2. Our solid-state electrolyte: Y2O3-stabilized ZrO2 (YSZ)

3. We will drive (apply bias) the cell on H2O+H2 atmosphere

Ni as electrolyzer cathode
(Ni splitting H2O)

Ni as SOFC anode
(Ni oxidizing H2)

The Ni-YSZ-Pt cell serve as a model 
system for addressing basic questions 



Our designed/fabricated ALS-compatible
electrochemical holder

Three-phase boundary (TPB)

•Goal: study simple cells under working conditions:
•Temperature >700°C
•Pressure ~1 Torr
•Under electrochemical bias (three independent 
connections)

Josh Whaley, Sandia

First step:
solid-oxide fuel cell fabrication

Our electrochemical platform:



Bluhm, H. et al. MRS Bulletin-Materials Research Society 32, 1022 (2007)

We use both AP-XPS endstations:
- ALS BL 9.3.2
- ALS BL 11.0.2

Ambient-pressure photoemission (APXPS)

ALS BL 11.0.2



Spatially-resolved APXPS
allows us to access the TPB
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First time spatially resolved APXPS!
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We have made the first 
measurement of individual overpotentials



1. Ohmic loss (RYSZ) across electrolyte consistent with high frequency |Z|

• XPS: RYSZ=218 ± 20 Ω (local measurement)

• EIS: RYSZ= 200 Ω (global measurement)

EIS

≈ 200 Ω

1.0

0.8

0.6

0.4

0.2

0.0

P
o
te

n
ti

al
 /

 V

150010005000

Distance / µm

 Ni3p3/2

 Zr3d5/2

 Pt4f7/2

YSZ

Vcell = -1.2 V
Icell = -202 μA
RYSZ = 218±20 Ω

V044.0 YSZcellR RI

Ni Pt

Potential landscape of the cell

Bulk resistance

Electrochemical impedance spectroscopy

We successfully validated our method 
against traditional electrochemical tests



1. Most  of the overpotential is at the Ni-YSZ interface
2. ηPt is small and almost constant, i.e., Pt is a good Counter Electrode 
3. We are working on how to model the cell from the data
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XPS allows us complete 
chemical speciation

• H2 oxidation on Pt fast enough to shift equilibrium surface coverage over a large area 
away from TPB
– Need to compare this observation to theory (need to do the calculation)

• Trends in surface oxygen on YSZ maybe explained by carbon loss?
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Summary

• In-situ surface electrochemistry experiments give us new information 
about fundamental processes in energy conversion/storage devices.

• We have mapped the local surface potential of an active Ni/YSZ/Pt 
electrochemical cell

• We established the efficacy of ambient pressure XPS as an in-situ 
diagnostic

• Moving towards additional in-situ x-ray characterization techniques:

– X-ray micro-diffraction, x-ray absorption
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