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Introduction

• Conserved scalar approaches: Flamelets, CMC

– Typically derived for unity Lewis numbers

• Differential diffusion alters relationship between reacting and 
conserved scalars.

– Previous work by Kronenberg (1997), Pitsch (1998)

– Focus here on soot.

• New look at CMC formulation

– Choices made in derivation can give slightly different 
formulations, require different modeling.

– Different terms can be easier or more difficult to model 
depending on the scalar of interest.

• A priori analysis looks at significant terms and models for 
different terms.



Higher fidelity data to check closures



ODT results

Soot mass fractions Mixture fraction PDF

heights are 0.9, 1.4 and 1.9 source widths



General species conservation

• Allows for different diffusion models, thermophoresis, etc. 
for species, enthalpy, aerosols (soot). 
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Joint-pdf equation

• From species equation, derive equation for joint-pdf evolution
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Replacing diffusion terms 
with dissipation terms

• Mathematical identity used to replace diffusion terms in joint-pdf 
equation with scalar dissipation terms.
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• Can use any diffusion coefficient in this expression to replace any 
of the terms in the joint-pdf equation.

• Different choices result in different forms of conditional moment 
equations when differential diffusion is allowed.



Analyzing closure requirements 
for traditional CMC 

• Conditional moment equation derivation 

– Multiply joint PDF by scalar of interest, Yk ; integrate 
over PDF except mixture fraction, 

– Equations are exact here: no modeling
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Significant terms in 
traditional CMC 



Cross-dissipation term in 
traditional CMC 

• Standard approach for closure

• Basic term

• Standard closure

• Residual (difference between 
these) is as big as standard 
closure
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Differential-diffusion term in 
traditional CMC 

• Standard closure would 
use soot-dissipation rate.

– Statistics for high-
Schmidt-number 
reacting-scalar 
dissipation rates are 
less available.
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So what about 
traditional CMC 

• Standard closures 
generally result in many 
large residual terms.

– At least some of these 
residual terms will be 
difficult to model.

– Fortunately, there is 
some cancellation of 
the residuals.



A alternate form of the CMC equations

• It is possible to eliminate different terms in the process of 
deriving the conditional moment equations.

• Resulting CM equation has Dk,  (for soot) in most places.

– Many diffusive terms will be small.

 

 

 

2
2

2

( ) ( )

( )

( )

ln ( )

( ) ( )

k

k k

k k

T k

k k

uY P P

D Y P

D Y P

D Y T P

D D Y P

     

   


   


  

   


   


    

   
 

  

     
 

   
�

 

 

 
�

 
�



Significant terms in 
alternate CMC 

• Soot diffusivity 
causes dissipation-
scalar, cross-
dissipation terms to 
be small.

– Residuals remain 
but are trivially 
small.

• Differential diffusion 
is still substantial.

– Standard model 
involves mixture 
fraction 
dissipation.



Differential-diffusion term in 
alternate CMC 

• Standard closure:

• Residual is significant.
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(before differentiation)

and residual



So what about 
alternate CMC 

• Standard closures generally result in fewer large residual 
terms.

– Need to look at differential diffusion terms.  What is the 
physics behind these terms?
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Differential diffusion of soot in flames
due to mean mixture fraction evolution

• Soot diffusion is 

– Slow relative to gas-phase species.

– Affected by thermophoresis, etc.

• Soot is convected along with 
everything else.

• Flames diffuse!

– Diffuse towards location of   
nearest mixture fraction extrema.

– Candle analogy suggests mean 
behavior: Related to evolution of 
mixture fraction PDF.

Flame diffuses in

Flame diffuses out
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Burnout of rich 
regions forces 
flame to diffuse 
into soot.

Burnout of lean 

regions forces

flame to diffuse 

away from soot.

Z

y
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Flame motion across fluid/soot elements is random walk about a mean

Differential diffusion of soot in flames
due to mixture fraction fluctuations



• Additional terms for diff-diff closure:

• The residual term describes the effect 
of fluctuating “advective” flows in 
mixture fraction space.

– Correlation between random 
mixture fraction fluctuations and 
soot moments.

– Model with diffusive process?

Advection due to mixture fraction fluctuations
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• Additional terms for diff-diff closure:

• The residual term describes the effect 
of fluctuating “advective” flows in 
mixture fraction space.

– Correlation between random 
mixture fraction fluctuations and 
soot moments.

– Model with diffusive process?

Advection due to mixture fraction fluctuations
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• Additional terms for diff-diff closure:

• The residual term describes the effect 
of fluctuating “advective” flows in 
mixture fraction space.

– Correlation between random 
mixture fraction fluctuations and 
soot moments.

– Model with diffusive process?

Advection due to mixture fraction fluctuations
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Summary

• Conditional moment equations extended to allow general 
diffusion models.

• This opens options as to what terms need to be modeled.  

• For soot at least, the alternate approach presented here appears 
preferable:

– Differential diffusion of soot relative to mixture fraction 
dominates.  

– Mean component of transport related to PDF(Z) evolution.

– Fluctuating component related to dissipative processes using  
new model.

• Results with ODT study suggest model captures relevant physics.



Backup slides



ODT simulations provide high-fidelity 
data to evaluate closures

• Buoyant 1 m wide ethene 
plume (line fire) spatially 
evolving ODT simulation.

• Simple soot model 
(Fairweather et al. 1992) with 
steady laminar flamelet 
source terms tabulated by 
enthalpy and mixture 
fraction.

• Generate statistical 
quantities like soot-
temperature joint PDF.



• For particles, differential diffusion is key physics.

• “New” CMC formulation retains a residual fluctuation term.

• Retains conservative form with PDF

• These terms describe the effect of the mean and fluctuating 
“convective” flows in mixture fraction space.

– Diffusion of mixture fraction relative to soot

Additional key 
closure requirements for CMC

Conditionally 
Averaged
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• For particles, differential diffusion is key physics.

• “New” CMC formulation retains a residual fluctuation term.

• Boxed term represents the mean evolution of the mixture composition

Additional key 
closure requirements for CMC

Conditionally 
Averaged
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ODT results

h=1.4

h=1.9

•Terms plotted below for heights in ODT simulations where mixture 

fraction pdf is centered on production (left) and on oxidation (right).

Advection (dash), pdf flux (dash-dot) -- long-term evolution of soot.
Soot source (squares).
Diff-diff by evolution of pdf (triangles) -- long-time advection in mixture fraction.
Diff-diff fluctuations RDD (diamonds) -- short-time diffusion in mixture fraction.



Dissipation-scalar term in 
Klimenko-Bilger CMC 

• Standard closure

 
2

2

2
( )kD Y P   



  
 

 

 

 

2

2

( )

( )

k

k

D Y P

D Q P





   

   



 

 

 

Compare standard closure 
(before differentiation)



Dissipation-scalar term in 
Klimenko-Bilger CMC

• Basic term

• Standard closure

• Residual (difference 
between these) is as big 
as standard closure
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Cross-dissipation term in 
Klimenko-Bilger CMC 

• Standard closure
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Cross-dissipation term in 
Klimenko-Bilger CMC 

• Basic term

• Standard closure

• Residual (difference 
between these) is as big 
as standard closure
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Soot advection in mixture fraction space

• How does soot advection work in turbulent flows?

– In CMC-based approach there is advection in the mixture 
fraction coordinate.

– Candle analogy suggests mean behavior: Related to 
evolution of mixture fraction PDF.

0 0.1 0.2 0.3 0.4

Soot

advected 

with PDF 

evolution
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