

Modeling Differential Diffusion of Soot with Conditional Moment Closure

**John C. Hewson, Allen Ricks
David Lignell, Alan Kerstein**

Sandia National Laboratories

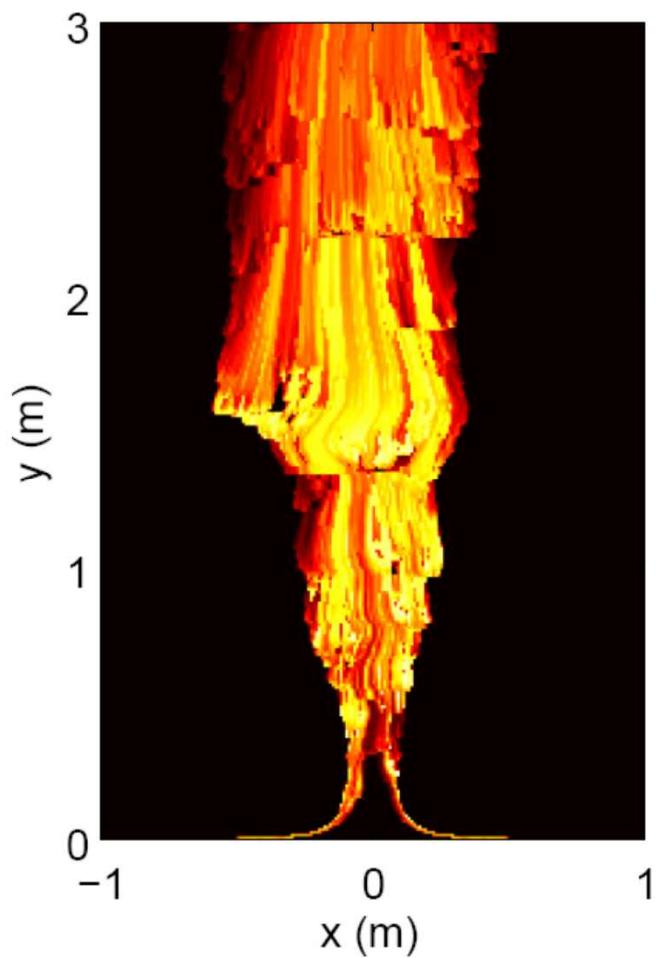
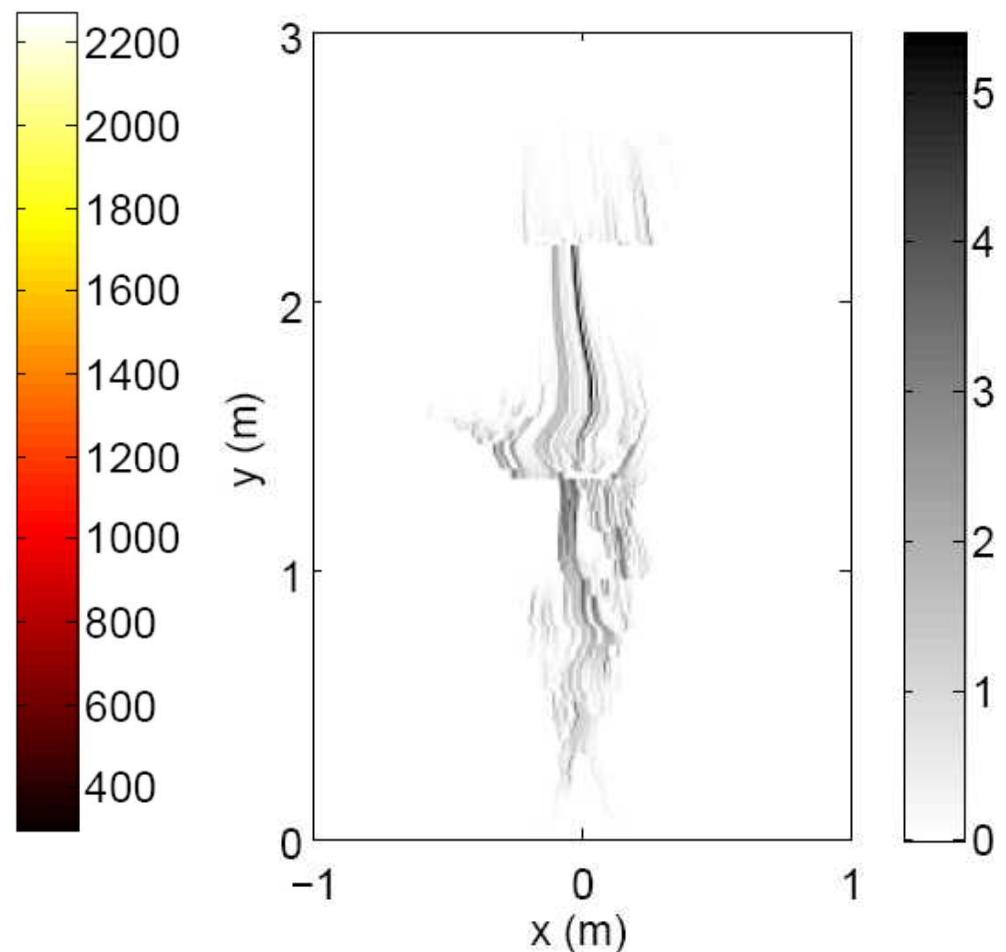
**Workshop on Conditional Moment Closure
August 3, 2008**

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Introduction

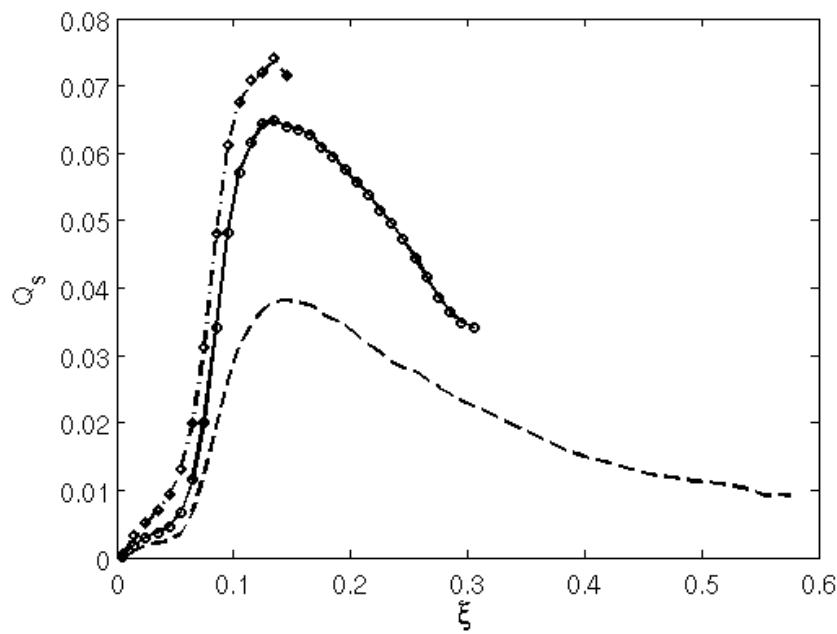
- **Conserved scalar approaches: Flamelets, CMC**
 - Typically derived for unity Lewis numbers
- **Differential diffusion alters relationship between reacting and conserved scalars.**
 - Previous work by Kronenberg (1997), Pitsch (1998)
 - Focus here on soot.
- **New look at CMC formulation**
 - Choices made in derivation can give slightly different formulations, require different modeling.
 - Different terms can be easier or more difficult to model depending on the scalar of interest.
- **A priori analysis looks at significant terms and models for different terms.**

Higher fidelity data to check closures

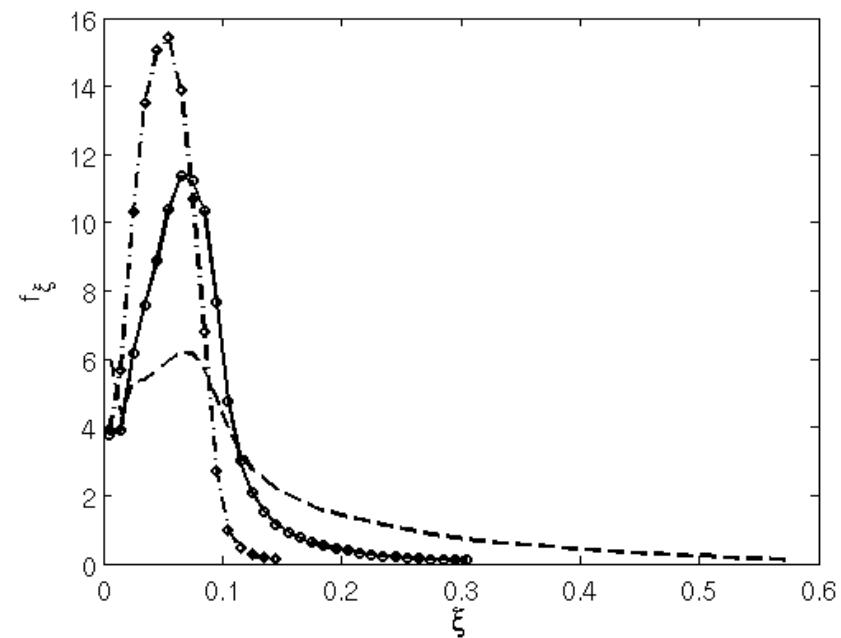


ODT results

Soot mass fractions



Mixture fraction PDF

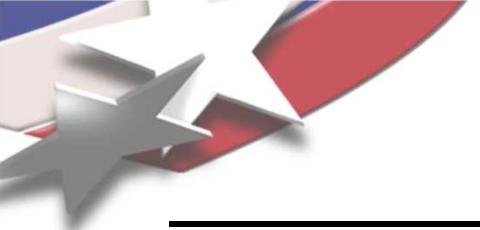


heights are 0.9, 1.4 and 1.9 source widths

General species conservation

$$\frac{\partial \rho Y_i}{\partial t} + \nabla \cdot (\rho \vec{u} Y_i) - \nabla \cdot (\rho D_i \nabla Y_i) + \nabla \cdot (\rho \vec{V}' Y_i) = \rho \omega_i$$

- Allows for different diffusion models, thermophoresis, etc. for species, enthalpy, aerosols (soot).

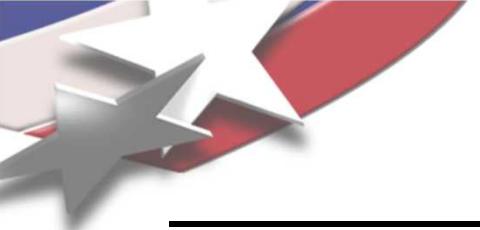


Joint-pdf equation

$$\frac{\partial \rho Y_i}{\partial t} + \nabla \cdot (\rho \vec{u} Y_i) - \nabla \cdot (\rho D_i \nabla Y_i) + \nabla \cdot (\rho \vec{V}'_i Y_i) = \rho \omega_i$$

- **From species equation, derive equation for joint-pdf evolution**

$$\begin{aligned} \frac{\partial \left[\left\langle \rho Y_k \middle| \vec{Z} \right\rangle P(\vec{Z}) \right]}{\partial t} + \nabla \cdot \left[\left\langle \rho \vec{u} Y_k \middle| \vec{Z} \right\rangle P(\vec{Z}) \right] = & \sum_i \frac{\partial}{\partial Z_i} \left[\left\langle \rho \omega_i \middle| \vec{Z} \right\rangle P(\vec{Z}) \right] \\ & - \sum_i \frac{\partial}{\partial Z_i} \left[\left\langle \nabla \cdot (\rho D_i \nabla Y_i) \middle| \vec{Z} \right\rangle P(\vec{Z}) \right] \\ & + \sum_i \frac{\partial}{\partial Z_i} \left[\left\langle \nabla \cdot (\rho \vec{V}'_i Y_i) \middle| \vec{Z} \right\rangle P(\vec{Z}) \right] \end{aligned}$$



Replacing diffusion terms with dissipation terms

- Mathematical identity used to replace diffusion terms in joint-pdf equation with scalar dissipation terms.

$$\nabla \cdot \left[\left\langle \rho D_k \mid \vec{Z} \right\rangle \nabla P(\vec{Z}) \right] = - \sum_i \frac{\partial}{\partial Z_i} \left[\left\langle \nabla \cdot (\rho D_k \nabla Y_i) \mid \vec{Z} \right\rangle P(\vec{Z}) \right] \\ + \sum_i \sum_j \frac{\partial^2}{\partial Z_i \partial Z_j} \left[\left\langle D_k \nabla Y_i \nabla Y_j \mid \vec{Z} \right\rangle P(\vec{Z}) \right]$$

- Can use any diffusion coefficient in this expression to replace any of the terms in the joint-pdf equation.
- Different choices result in different forms of conditional moment equations when differential diffusion is allowed.

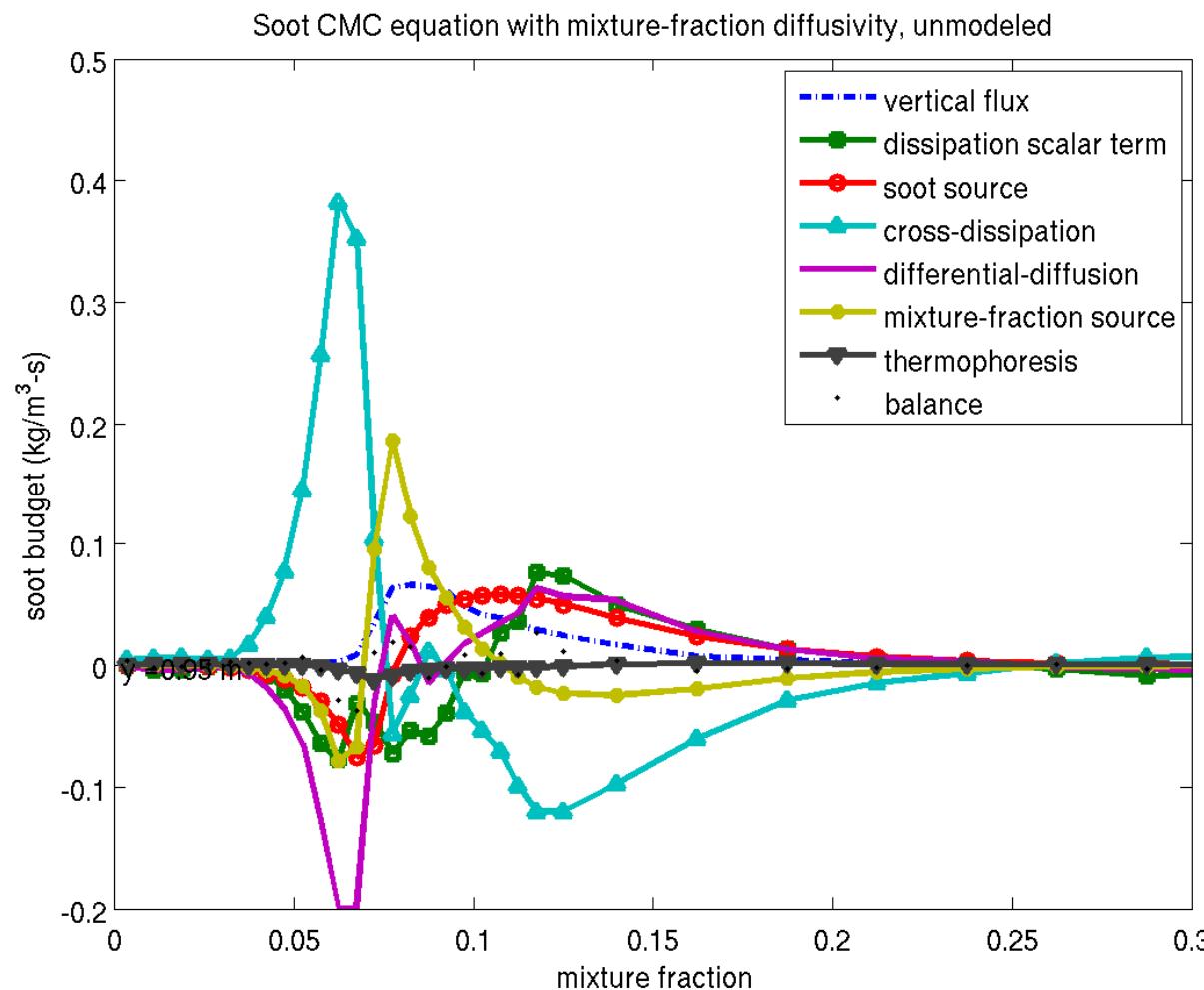
Analyzing closure requirements for traditional CMC

- Conditional moment equation derivation
 - Multiply joint PDF by scalar of interest, Y_k ; integrate over PDF except mixture fraction, η

$$\begin{aligned}\nabla \square \left[\langle \rho \vec{u} Y_k | \vec{\eta} \rangle P(\vec{\eta}) \right] = & \langle \rho \omega | \vec{\eta} \rangle P(\vec{\eta}) \\ & + \frac{\partial}{\partial \eta} \left[\langle \rho D_{\xi} \nabla \xi \nabla Y_k | \vec{\eta} \rangle P(\vec{\eta}) \right] \\ & - \frac{\partial^2}{\partial \eta^2} \left[\langle \rho D_{\xi} (\nabla \xi)^2 Y_k | \vec{\eta} \rangle P(\vec{\eta}) \right] \\ & + \langle \nabla \square (\rho D_T Y_k \nabla \ln T) | \vec{\eta} \rangle P(\vec{\eta}) \\ & - \langle \nabla \square (\rho (D_k - D_{\xi}) \nabla Y_k) | \vec{\eta} \rangle P(\vec{\eta})\end{aligned}$$

- Equations are exact here: no modeling

Significant terms in traditional CMC



Cross-dissipation term in traditional CMC

- Standard approach for closure

$$\langle XY|\eta \rangle \approx \langle X|\eta \rangle \langle Y|\eta \rangle$$

$$\frac{\partial Y_s}{\partial x_i} = \frac{\partial Y_s}{\partial \xi} \frac{\partial \xi}{\partial x_i}$$

- Basic term

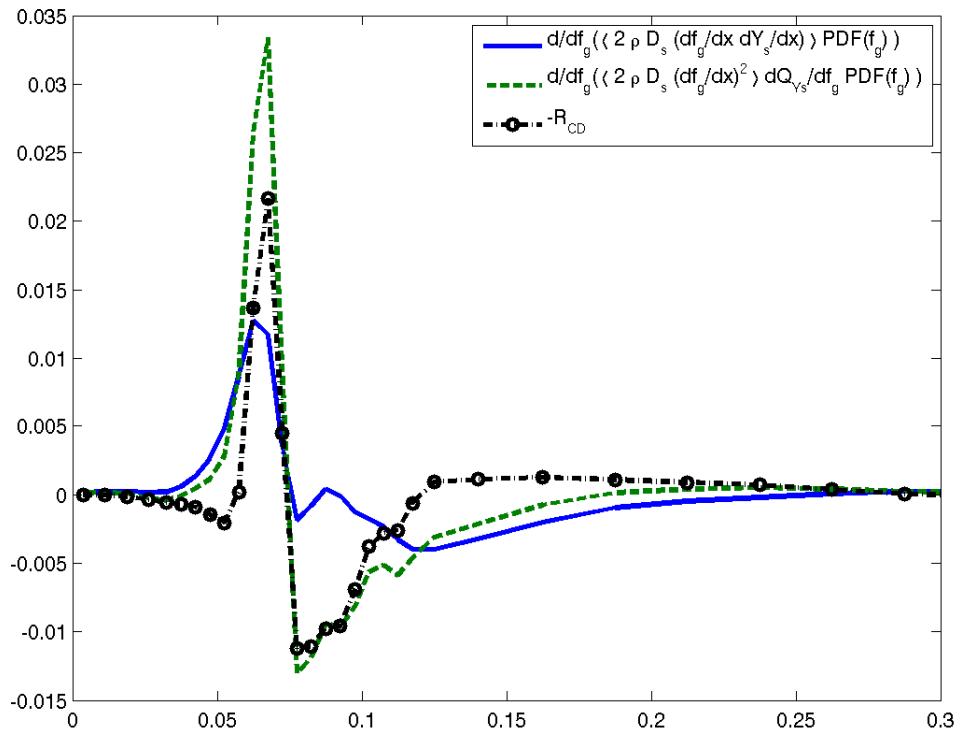
$$\frac{\partial}{\partial \eta} \left[\left\langle \rho D_\xi \nabla \xi \nabla Y_k \mid \vec{\eta} \right\rangle P(\vec{\eta}) \right]$$

- Standard closure

$$\frac{\partial}{\partial \eta} \left[\left\langle \rho D_\xi (\nabla \xi)^2 \mid \vec{\eta} \right\rangle \frac{\partial Q_k}{\partial \eta} P(\vec{\eta}) \right]$$

- Residual (difference between these) is as big as standard closure

Compare standard closure and residual term (after differentiation)



Differential-diffusion term in traditional CMC

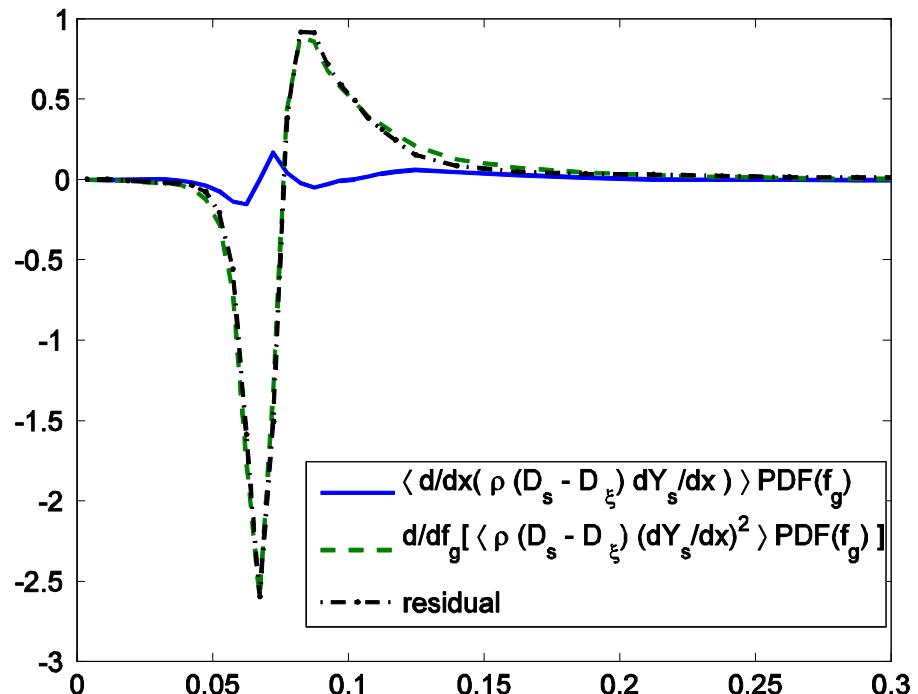
$$\left\langle \nabla \square \left(\rho (D_k - D_\xi) \nabla Y_k \right) \middle| \vec{\eta} \right\rangle P(\vec{\eta})$$

- Standard closure would use soot-dissipation rate.

$$\left\langle \nabla \square \left(\rho (D_k - D_\xi) \nabla Y_k \right) \middle| \vec{\eta} \right\rangle P(\vec{\eta})$$

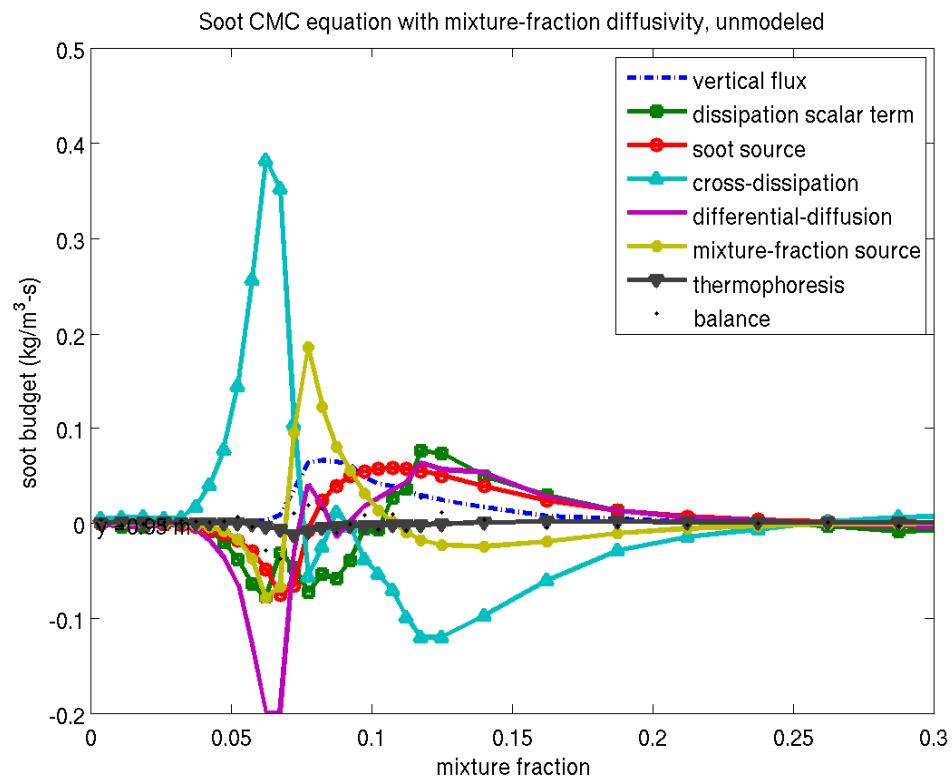
$$\approx \frac{\partial}{\partial \eta} \left[\left\langle \rho (D_k - D_\xi) (\nabla Y_k)^2 \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \right]$$

- Statistics for high-Schmidt-number reacting-scalar dissipation rates are less available.



So what about traditional CMC

- Standard closures generally result in many large residual terms.
 - At least some of these residual terms will be difficult to model.
 - Fortunately, there is some cancellation of the residuals.

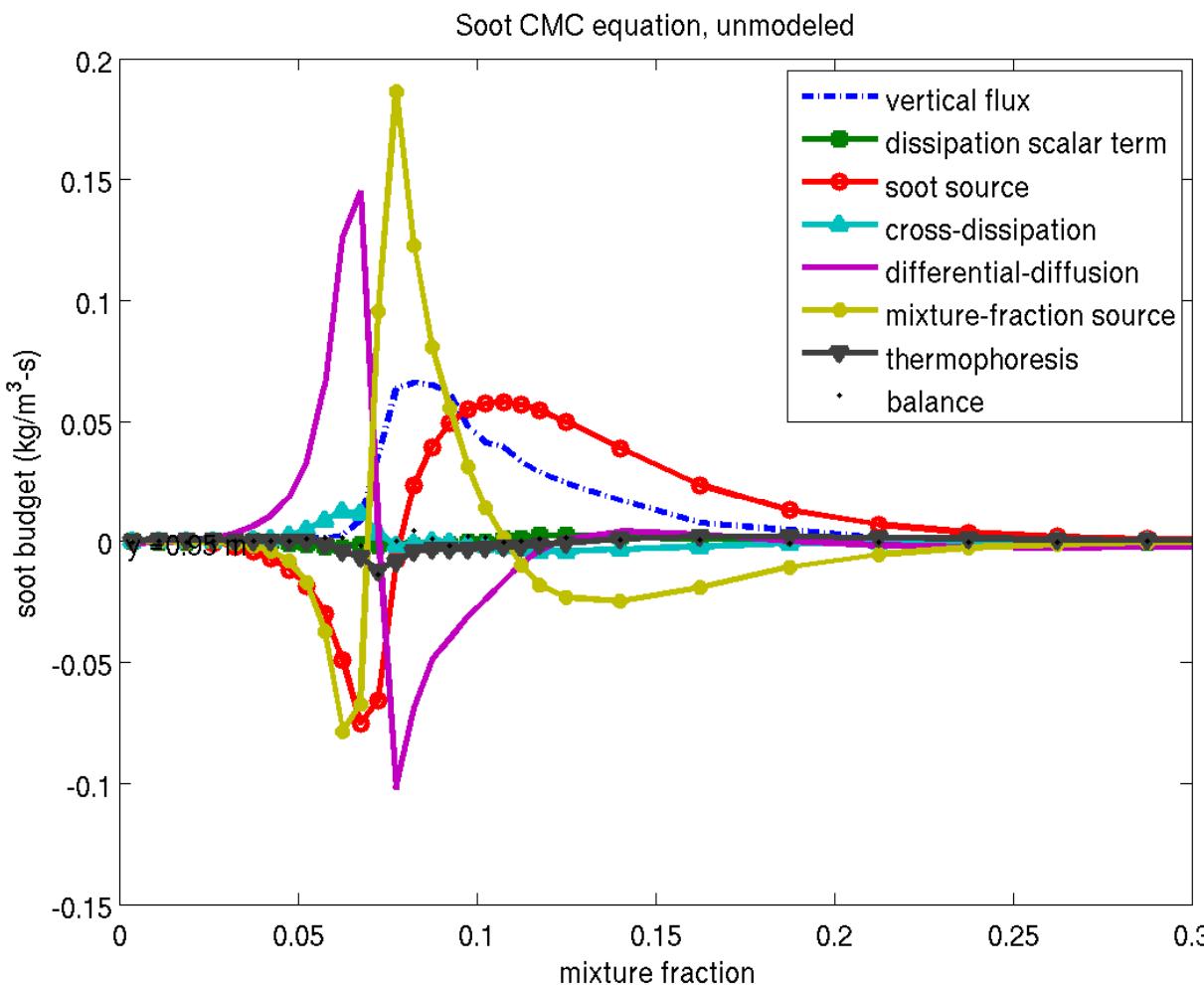


A alternate form of the CMC equations

- It is possible to eliminate different terms in the process of deriving the conditional moment equations.
- Resulting CM equation has D_k , (for soot) in most places.
 - Many diffusive terms will be small.

$$\begin{aligned}\nabla \square \left[\left\langle \rho \vec{u} Y_k \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \right] = & \left\langle \rho \omega \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \\ & + \frac{\partial}{\partial \eta} \left[\left\langle \rho D_k \nabla \xi \nabla Y_k \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \right] \\ & - \frac{\partial^2}{\partial \eta^2} \left[\left\langle \rho D_k (\nabla \xi)^2 Y_k \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \right] \\ & + \left\langle \nabla \square \left(\rho D_T Y_k \nabla \ln T \right) \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \\ & - \frac{\partial}{\partial \eta} \left[\left\langle \nabla \square \left(\rho (D_\xi - D_k) \nabla \xi \right) Y_k \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \right]\end{aligned}$$

Significant terms in alternate CMC



- **Soot diffusivity causes dissipation-scalar, cross-dissipation terms to be small.**
 - Residuals remain but are trivially small.
- Differential diffusion is still substantial.
 - Standard model involves mixture fraction dissipation.

Differential-diffusion term in alternate CMC

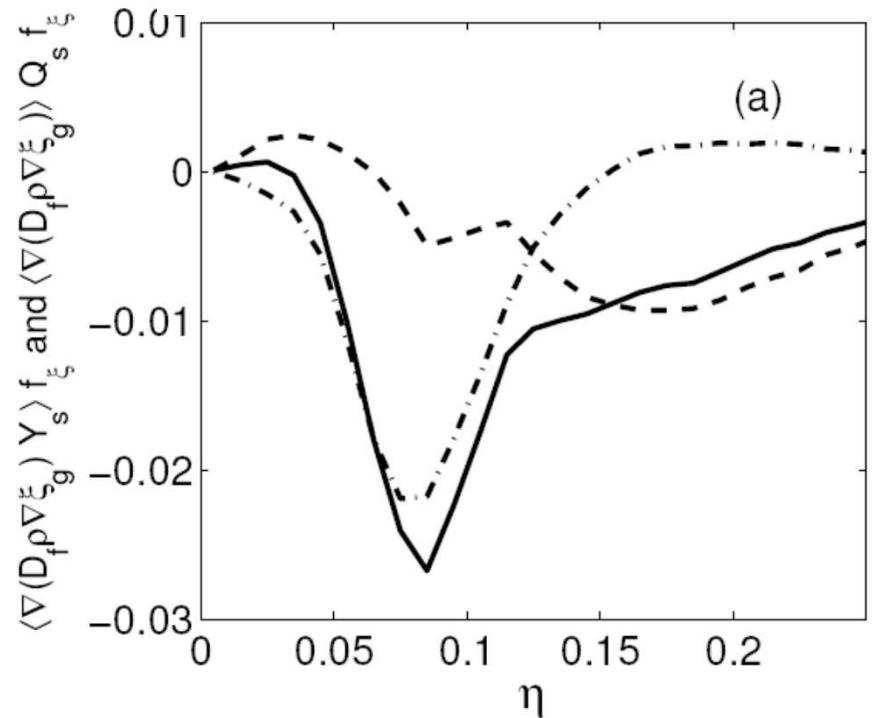
$$\frac{\partial}{\partial \eta} \left[\left\langle \nabla \square \left(\rho (D_\xi - D_k) \nabla \xi \right) Y_k \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \right]$$

- Standard closure:

$$\begin{aligned} & \left\langle \nabla \square \left(\rho (D_\xi - D_k) \nabla \xi \right) Y_k \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \\ & \approx \left\langle \nabla \square \left(\rho (D_\xi - D_k) \nabla \xi \right) \middle| \vec{\eta} \right\rangle P(\vec{\eta}) Q_k \\ & = \frac{\partial}{\partial \eta} \left(\left\langle \rho (D_\xi - D_k) (\nabla \xi)^2 \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \right) Q_k \end{aligned}$$

- Residual is significant.

Compare standard closure
(before differentiation)
and residual



So what about alternate CMC

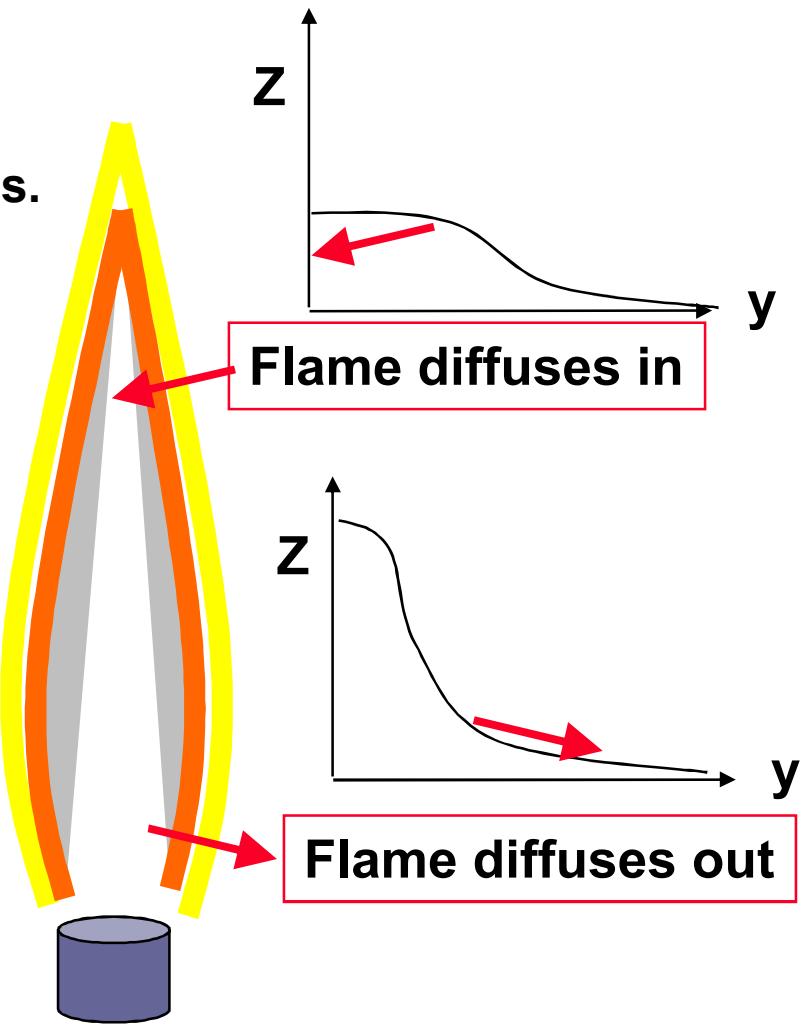
- Standard closures generally result in fewer large residual terms.
 - Need to look at differential diffusion terms. What is the physics behind these terms?

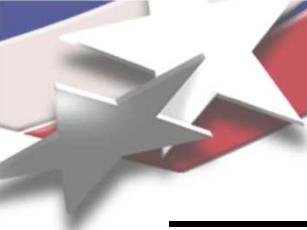
$$\frac{\partial}{\partial \eta} \left[\left\langle \nabla \cdot \left(\rho (D_\xi - D_k) \nabla \xi \right) Y_k \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \right] \approx \frac{\partial}{\partial \eta} \left[\left\langle \nabla \cdot \left(\rho (D_\xi - D_k) \nabla \xi \right) \middle| \vec{\eta} \right\rangle P(\vec{\eta}) Q_k \right]$$

$$R_{DD} = \frac{\partial}{\partial \eta} \left[\left\langle \nabla \cdot \left(\rho (D_\xi - D_k) \nabla \xi \right) Y_k \middle| \vec{\eta} \right\rangle P(\vec{\eta}) - \left\langle \nabla \cdot \left(\rho (D_\xi - D_k) \nabla \xi \right) \middle| \vec{\eta} \right\rangle P(\vec{\eta}) Q_k \right]$$

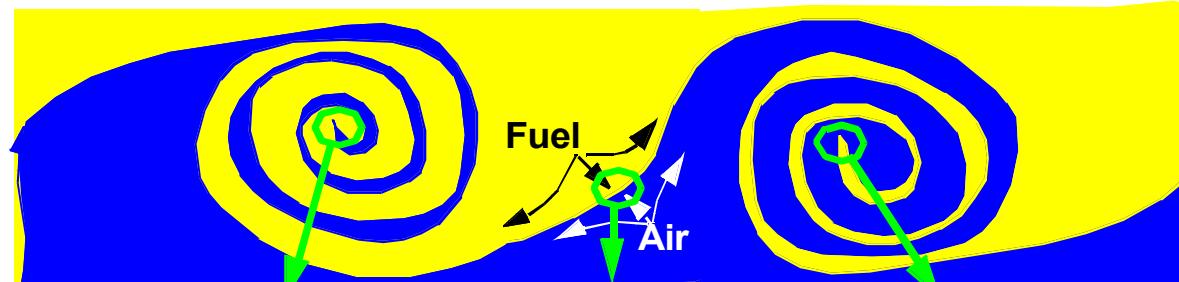
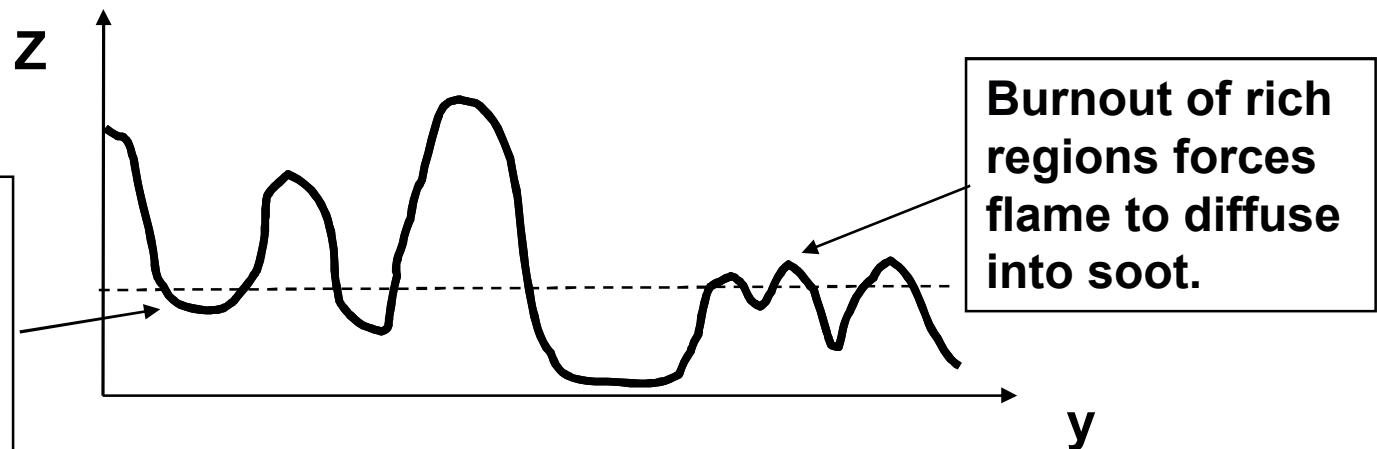
Differential diffusion of soot in flames due to mean mixture fraction evolution

- Soot diffusion is
 - Slow relative to gas-phase species.
 - Affected by thermophoresis, etc.
- Soot is convected along with everything else.
- Flames diffuse!
 - Diffuse towards location of nearest mixture fraction extrema.
 - Candle analogy suggests mean behavior: Related to evolution of mixture fraction PDF.





Differential diffusion of soot in flames due to mixture fraction fluctuations



Flame motion across fluid/soot elements is random walk about a mean

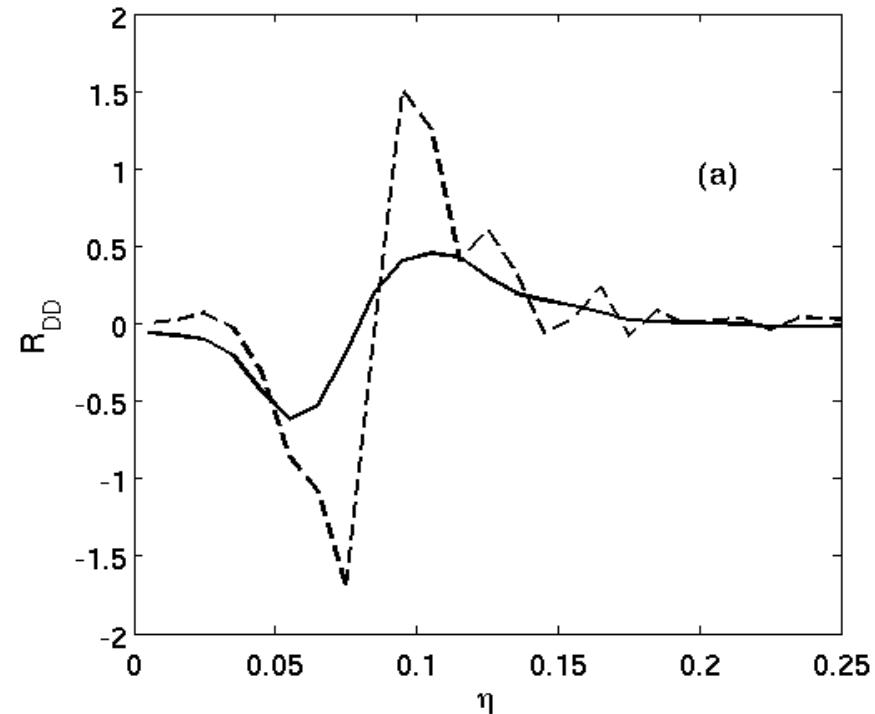
Advection due to mixture fraction fluctuations

- Additional terms for diff-diff closure:

$$R_{DD} = \frac{\partial}{\partial \eta} \left[\left\langle \nabla \left(\rho (D_\xi - D_k) \nabla \xi \right) Y_k | \vec{\eta} \right\rangle P(\vec{\eta}) - \left\langle \nabla \left(\rho (D_\xi - D_k) \nabla \xi \right) | \vec{\eta} \right\rangle P(\vec{\eta}) Q_k \right]$$

- The residual term describes the effect of fluctuating “advection” flows in mixture fraction space.
 - Correlation between random mixture fraction fluctuations and soot moments.
 - Model with diffusive process?

$$R_{DD} \approx \frac{\rho_\eta \chi_\eta f_\xi}{2Le_{DD,t}} \frac{\partial^2 Q_s}{\partial \eta^2}$$



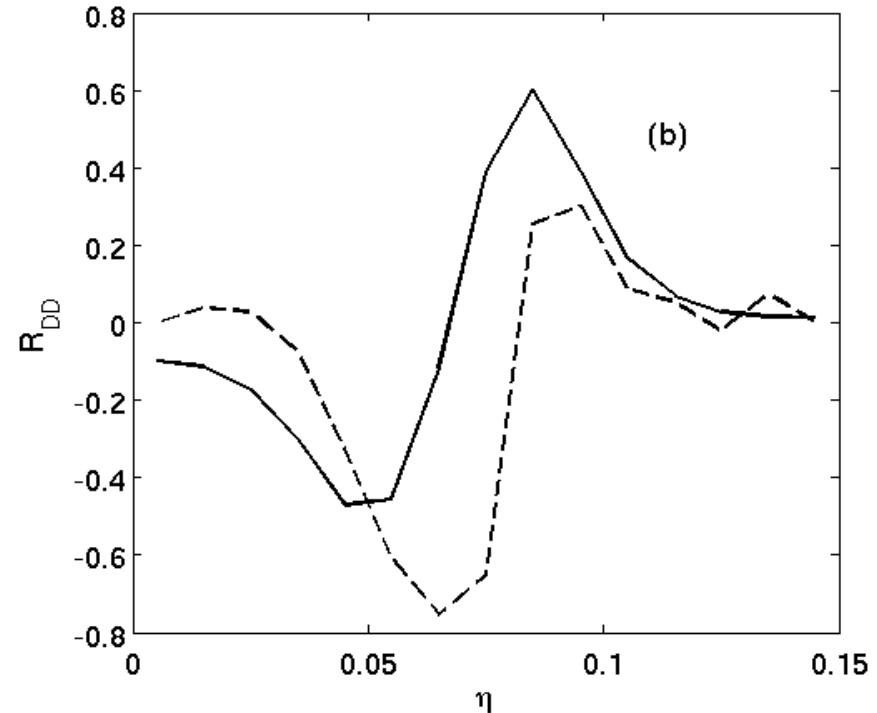
Advection due to mixture fraction fluctuations

- Additional terms for diff-diff closure:

$$R_{DD} = \frac{\partial}{\partial \eta} \left[\left\langle \nabla \left(\rho (D_\xi - D_k) \nabla \xi \right) Y_k | \vec{\eta} \right\rangle P(\vec{\eta}) - \left\langle \nabla \left(\rho (D_\xi - D_k) \nabla \xi \right) | \vec{\eta} \right\rangle P(\vec{\eta}) Q_k \right]$$

- The residual term describes the effect of fluctuating “advection” flows in mixture fraction space.
 - Correlation between random mixture fraction fluctuations and soot moments.
 - Model with diffusive process?

$$R_{DD} \approx \frac{\rho_\eta \chi_\eta f_\xi}{2Le_{DD,t}} \frac{\partial^2 Q_s}{\partial \eta^2}$$



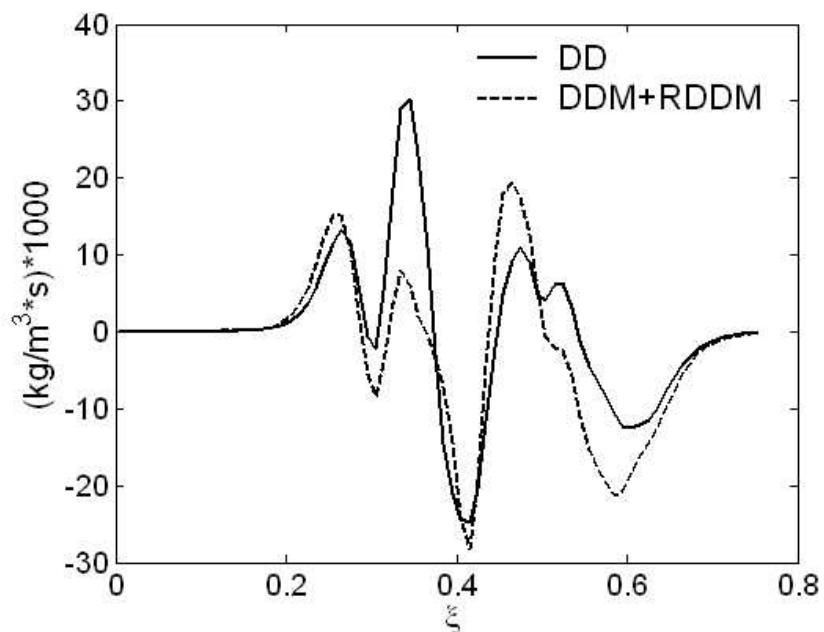
Advection due to mixture fraction fluctuations

- Additional terms for diff-diff closure:

$$R_{DD} = \frac{\partial}{\partial \eta} \left[\left\langle \nabla \cdot \left(\rho (D_\xi - D_k) \nabla \xi \right) Y_k | \vec{\eta} \right\rangle P(\vec{\eta}) - \left\langle \nabla \cdot \left(\rho (D_\xi - D_k) \nabla \xi \right) | \vec{\eta} \right\rangle P(\vec{\eta}) Q_k \right]$$

- The residual term describes the effect of fluctuating “advection” flows in mixture fraction space.
 - Correlation between random mixture fraction fluctuations and soot moments.
 - Model with diffusive process?

$$R_{DD} \approx \frac{\rho_\eta \chi_\eta f_\xi}{2Le_{DD,t}} \frac{\partial^2 Q_s}{\partial \eta^2}$$





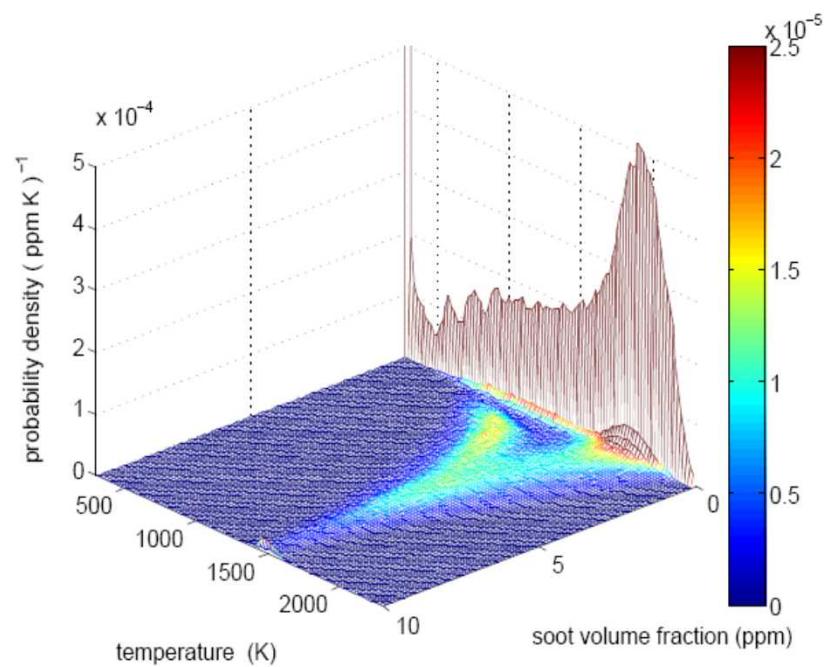
Summary

- **Conditional moment equations extended to allow general diffusion models.**
- **This opens options as to what terms need to be modeled.**
- **For soot at least, the alternate approach presented here appears preferable:**
 - **Differential diffusion of soot relative to mixture fraction dominates.**
 - **Mean component of transport related to PDF(Z) evolution.**
 - **Fluctuating component related to dissipative processes using new model.**
- **Results with ODT study suggest model captures relevant physics.**

Backup slides

ODT simulations provide high-fidelity data to evaluate closures

- Buoyant 1 m wide ethene plume (line fire) spatially evolving ODT simulation.
- Simple soot model (Fairweather *et al.* 1992) with steady laminar flamelet source terms tabulated by enthalpy and mixture fraction.
- Generate statistical quantities like soot-temperature joint PDF.



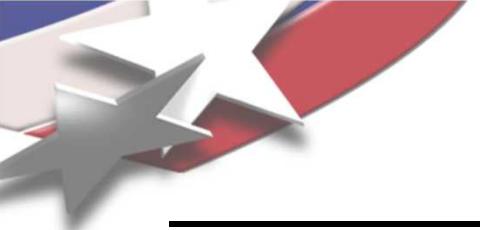
Additional key closure requirements for CMC

- For particles, differential diffusion is key physics.
- “New” CMC formulation retains a residual fluctuation term.
- Retains conservative form with PDF

Conditionally
Averaged

$$\frac{\partial(\rho_\eta Q_i f_\xi)}{\partial t} + \nabla \cdot (\langle \rho \vec{u} | \eta \rangle Q_i f_\xi) = \langle \rho \omega_i | \eta \rangle f_\xi + \frac{\rho_\eta \chi_\eta f_\xi}{2Le_i} \frac{\partial^2 Q_i}{\partial \eta^2} - \frac{\partial^2}{\partial \eta^2} \left(\frac{\rho_\eta \chi_\eta f_\xi}{2} \right) Q_i \\ - \left(\frac{D_\xi - D_i}{D_\xi} \right) \frac{\partial}{\partial \eta} \left(\frac{\rho_\eta \chi_\eta f_\xi}{2} \right) \frac{\partial Q_i}{\partial \eta} - R_{DD}$$

- These terms describe the effect of the mean and fluctuating “convective” flows in mixture fraction space.
 - Diffusion of mixture fraction relative to soot



Additional key closure requirements for CMC

- For particles, differential diffusion is key physics.
- “New” CMC formulation retains a residual fluctuation term.

Conditionally
Averaged

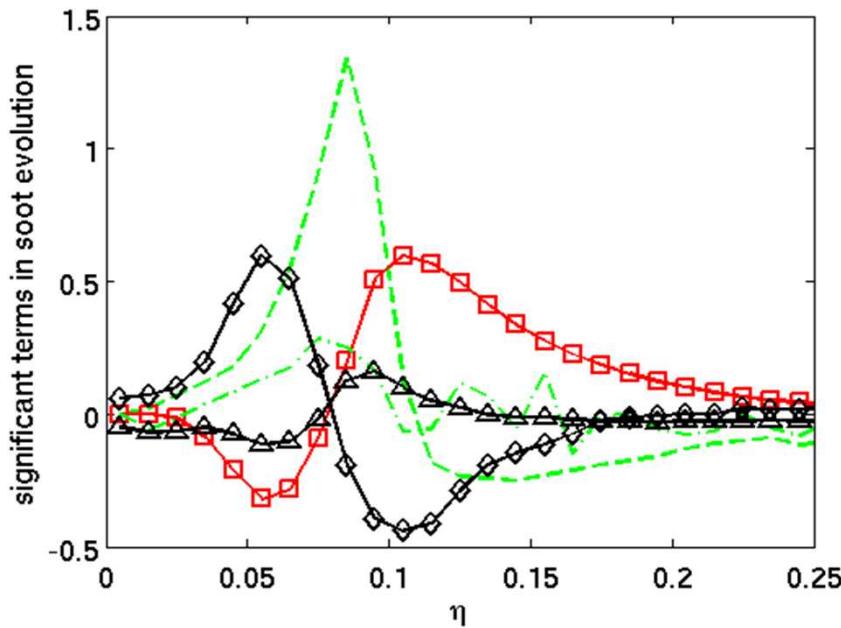
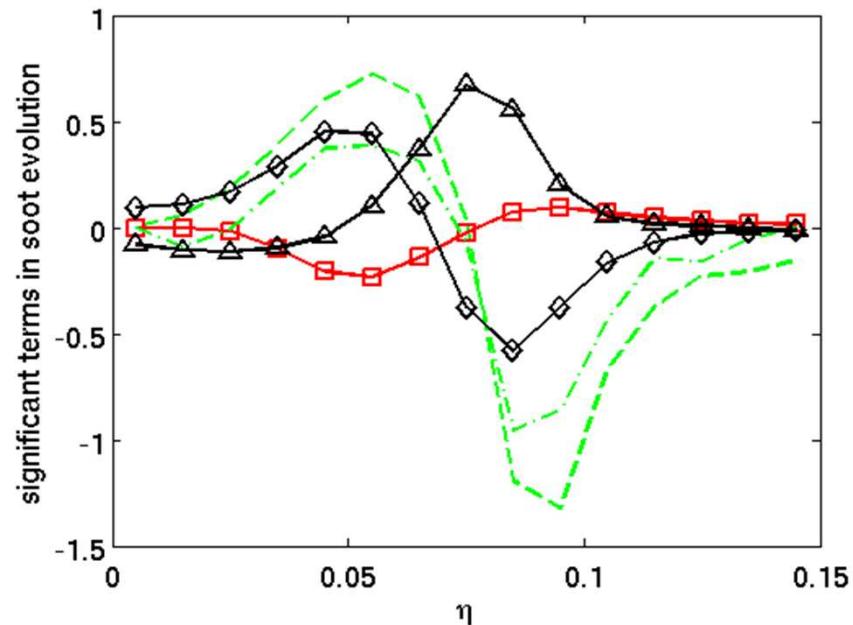
$$\frac{\partial(\rho_\eta Q_i f_\xi)}{\partial t} + \nabla \cdot (\langle \rho \vec{u} | \eta \rangle Q_i f_\xi) = \langle \rho \omega_i | \eta \rangle f_\xi + \frac{\rho_\eta \chi_\eta f_\xi}{2Le_i} \frac{\partial^2 Q_i}{\partial \eta^2} - \frac{\partial^2}{\partial \eta^2} \left(\frac{\rho_\eta \chi_\eta f_\xi}{2} \right) Q_i$$

$$- \left(\frac{D_\xi - D_i}{D_\xi} \right) \frac{\partial}{\partial \eta} \left(\frac{\rho_\eta \chi_\eta f_\xi}{2} \right) \frac{\partial Q_i}{\partial \eta} - R_{DD}$$

- Boxed term represents the mean evolution of the mixture composition

ODT results

- Terms plotted below for heights in ODT simulations where mixture fraction pdf is centered on production (left) and on oxidation (right).



Advection (dash), pdf flux (dash-dot) -- long-term evolution of soot.

Soot source (squares).

Diff-diff by evolution of pdf (triangles) -- long-time advection in mixture fraction.

Diff-diff fluctuations R_{DD} (diamonds) -- short-time diffusion in mixture fraction.

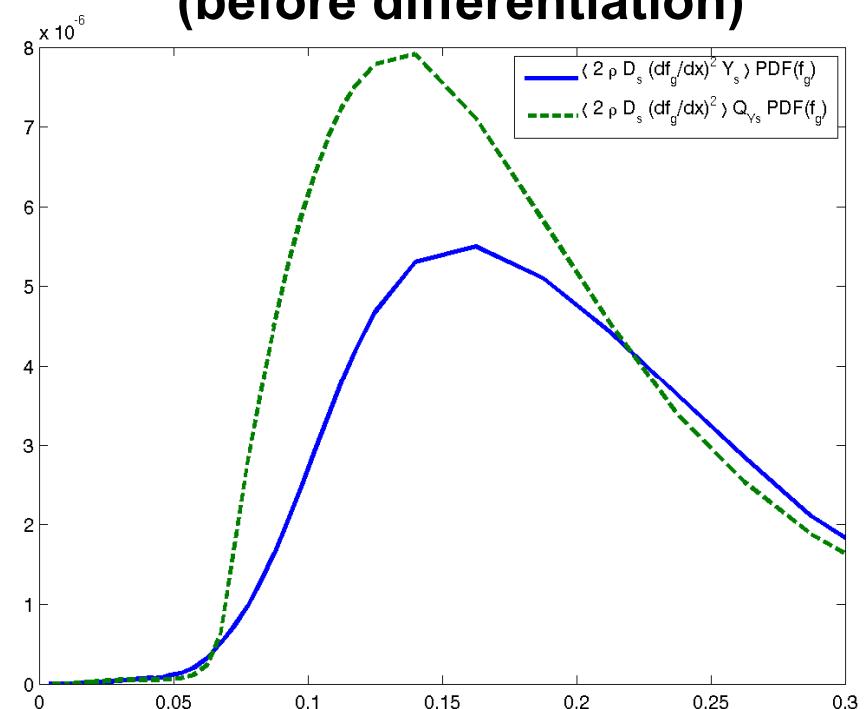
Dissipation-scalar term in Klimenko-Bilger CMC

$$\frac{\partial^2}{\partial \eta^2} \left[\left\langle \rho D_\xi (\nabla \xi)^2 Y_k | \vec{\eta} \right\rangle P(\vec{\eta}) \right]$$

Compare standard closure
(before differentiation)

- Standard closure

$$\begin{aligned} & \left\langle \rho D_\xi (\nabla \xi)^2 Y_k | \vec{\eta} \right\rangle P(\vec{\eta}) \\ &= \left\langle \rho D_\xi (\nabla \xi)^2 | \vec{\eta} \right\rangle Q_k P(\vec{\eta}) \end{aligned}$$



Dissipation-scalar term in Klimenko-Bilger CMC

- Basic term

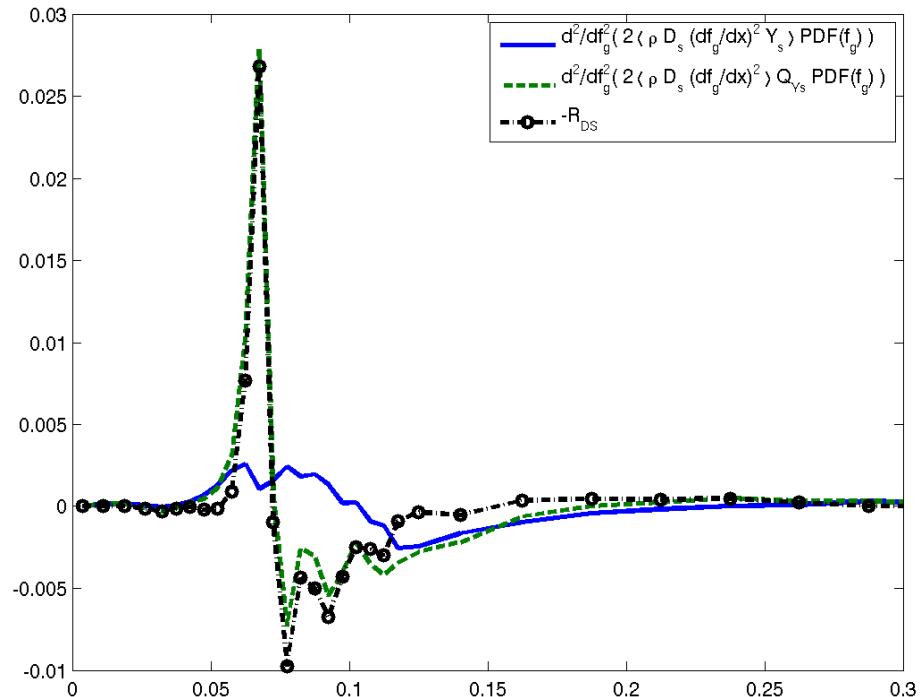
$$\frac{\partial^2}{\partial \eta^2} \left[\left\langle \rho D_\xi (\nabla \xi)^2 Y_k | \vec{\eta} \right\rangle P(\vec{\eta}) \right]$$

- Standard closure

$$\frac{\partial^2}{\partial \eta^2} \left[\left\langle \rho D_\xi (\nabla \xi)^2 | \vec{\eta} \right\rangle Q_k P(\vec{\eta}) \right]$$

- Residual (difference between these) is as big as standard closure

Compare standard closure and residual term (after differentiation)





Cross-dissipation term in Klimenko-Bilger CMC

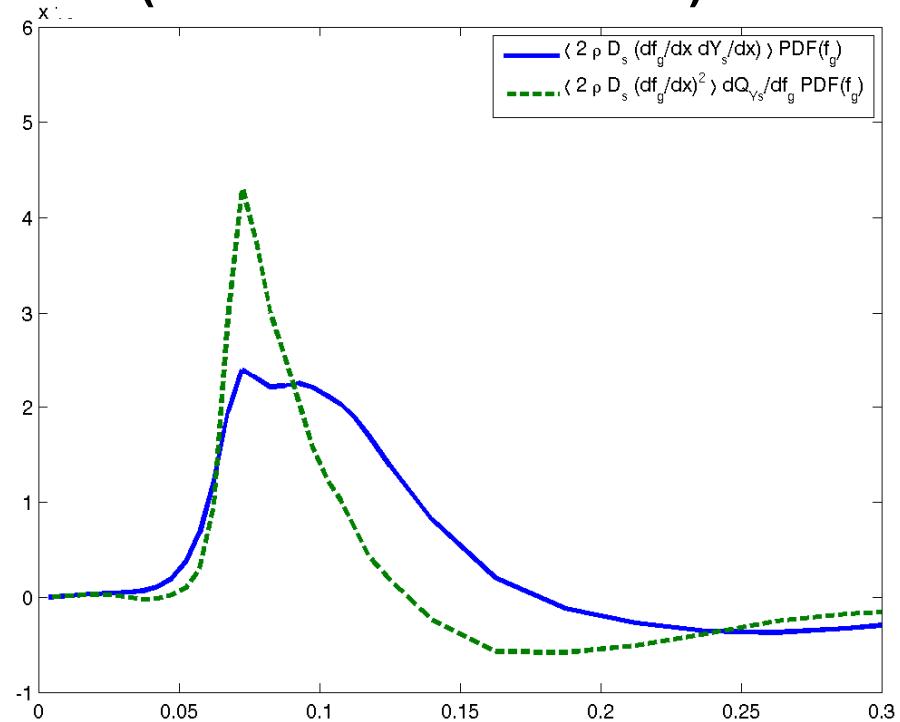
$$\frac{\partial}{\partial \eta} \left[\langle \rho D_\xi \nabla \xi \nabla Y_k | \vec{\eta} \rangle P(\vec{\eta}) \right]$$

Compare standard closure
(before differentiation)

- Standard closure

$$\langle \rho D_\xi \nabla \xi \nabla Y_k | \vec{\eta} \rangle P(\vec{\eta})$$

$$\approx \langle \rho D_\xi (\nabla \xi)^2 | \vec{\eta} \rangle \frac{\partial Q_k}{\partial \eta} P(\vec{\eta})$$



Cross-dissipation term in Klimenko-Bilger CMC

- Basic term

$$\frac{\partial}{\partial \eta} \left[\left\langle \rho D_\xi \nabla \xi \nabla Y_k \mid \vec{\eta} \right\rangle P(\vec{\eta}) \right]$$

- Standard closure

$$\frac{\partial}{\partial \eta} \left[\left\langle \rho D_\xi (\nabla \xi)^2 \mid \vec{\eta} \right\rangle \frac{\partial Q_k}{\partial \eta} P(\vec{\eta}) \right]$$

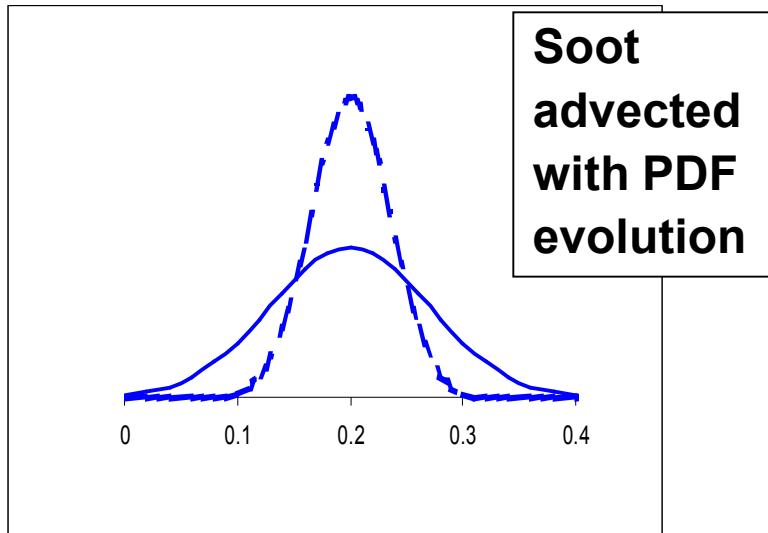
- Residual (difference between these) is as big as standard closure

Compare standard closure and residual term (after differentiation)



Soot advection in mixture fraction space

- How does soot advection work in turbulent flows?
 - In CMC-based approach there is advection in the mixture fraction coordinate.
 - Candle analogy suggests mean behavior: Related to evolution of mixture fraction PDF.



$$\begin{aligned} & \frac{\partial}{\partial \eta} \left\langle \nabla \cdot \left(\rho (D_\xi - D_k) \nabla \xi \right) Y_k \middle| \vec{\eta} \right\rangle P(\vec{\eta}) \\ & \approx \frac{\partial}{\partial \eta} \left[\left\langle \nabla \cdot \left(\rho (D_\xi - D_k) \nabla \xi \right) \middle| \vec{\eta} \right\rangle P(\vec{\eta}) Q_k \right] \end{aligned}$$