

Scalable Solution Methods via Optimal Control Reformulations

SAND2008-4280C

Denis Ridzal

Optimization and UQ

dridzal@sandia.gov

Pavel Bochev

Applied Math and Applications

pbboche@sandia.gov

Sandia National Laboratories, Albuquerque, NM, USA

July 2, 2008

ECCOMAS 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000.



Outline

- Solution of Multi-Physics/Operator Problems: Diagnosis and Goal
- Our Optimization Approach and Related Work
- An Optimization-Based Solver for Advection-Dominated PDEs
- Numerical Results
- Summary

Solution of Multiphysics Problems

Diagnosis

- Predictive simulation of complex physical systems requires simultaneous component models with **radically different mathematical properties**.
- Incompatibility in the discrete numerical representation of individual physics operators remains the main challenge.
- True for: single-domain/multiple-physics (e.g. advection-diffusion, MHD)
and multiple-domain/multiple-physics (e.g. porous flow, FSI)
- Two key aspects
 - (1) development of physics-coupling mechanisms (e.g. mortar methods)
 - (2) development of specialized solvers for algebraic systems (e.g. JFNK)

have been largely **viewed as separate, disjoint thrust areas**.

Goal

- Unifying, mathematically rigorous approach to robust solution of multiphysics problems, based on ideas from optimization and control.
- **Our approach integrates the development of scalable solvers with the formulation and analysis of physics-coupling strategies.**

Outline of the Idea

- Step 1.** The original composite problem is broken down into component physics problems for which scalable solvers are available.
- Step 2.** Components are coupled via distributed (SD/MP) and/or boundary control variables (MD/MP) and an objective functional.
- Step 3.** The resulting discrete optimization problem is solved as a fully coupled algebraic system or in the null space of PDE constraints.

→ **Preview:** *The solution of a nearly hyperbolic PDE is broken down into the sequential solution of several elliptic PDEs (efficiently handled by AMG!).*

Related Work

- Lots of **disjoint work** on physics coupling and specialized MP solvers.
- Some work on the direct use of optimization formulations in solving PDEs: Gunzburger et al. *Optimization-Based DD for PDEs* (1997), Ben Dhia/Rateau *Arlequin Method* (2004).

Application: Scalable Solvers for Advection-Dominated Elliptic PDEs

- Given an elliptic solver, such as algebraic multigrid, can we develop a scalable solution technique for advection-dominated PDEs?

$$-\epsilon \Delta y(x) + \vec{c}(x) \cdot \nabla y(x) = f(x), \quad |\vec{c}| \approx 1, \quad \epsilon \ll 1, \quad \text{w.l.o.g.}$$

- Yes ...
 - Bank/Wan/Qu: *Kernel Preserving Multigrid* (2006)
 - Elman/Wu: *Comparison of Geometric and Algebraic MG* (2006)
- ... but can we accomplish this with a generic, off-the-shelf solver, i.e. *without problem-specific modifications?*
- Goals:
 - straightforward reuse of existing solver technologies
 - wider applicability (compared to specialized approaches)

The Discrete Problem

Minimize $\frac{1}{2} (\vec{y}_1 - \vec{y}_2)^T \begin{pmatrix} \mathbf{Q} & -\mathbf{Q} \\ -\mathbf{Q} & \mathbf{Q} \end{pmatrix} (\vec{y}_1 - \vec{y}_2) + \frac{\alpha}{2} \vec{u}^T \mathbf{R} \vec{u}$

subject to

$$\mathbf{A}_1 \vec{y}_1 + \mathbf{B} \vec{u} = \vec{b}_1$$

$$\mathbf{A}_2 \vec{y}_2 + \mathbf{B} \vec{u} = \vec{b}_2$$

- Reduced problem:

$$\text{Minimize} \quad \frac{1}{2} \vec{u}^T \mathbf{H} \vec{u} + \vec{g}^T \vec{u}$$

- Application of the reduced Hessian matrix \mathbf{H} to a vector \vec{u} :

- Solve state eqn's: $\mathbf{A}_1 \vec{y}_1 = \mathbf{B} \vec{u}$, $\mathbf{A}_2 \vec{y}_2 = \mathbf{B} \vec{u}$
- Solve adjoint eqn's: $\mathbf{A}_1^T \vec{\lambda}_1 = \mathbf{Q} (\vec{y}_1 - \vec{y}_2)$, $\mathbf{A}_2^T \vec{\lambda}_2 = -\mathbf{Q} (\vec{y}_1 - \vec{y}_2)$
- $\mathbf{H} \vec{u} = \mathbf{B} (\vec{\lambda}_1 + \vec{\lambda}_2) + \alpha \mathbf{R} \vec{u}$

- Lemma:** *The reduced Hessian matrix \mathbf{H} is SPD.*

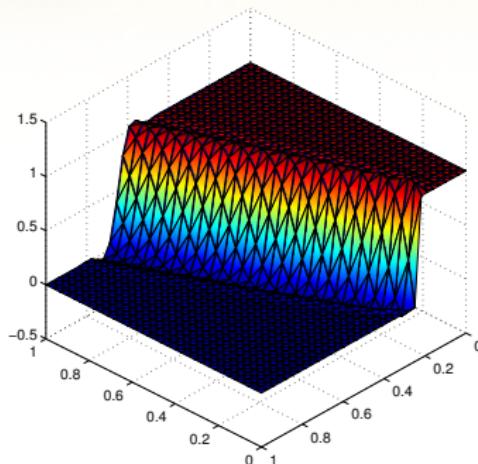
⇒ The reduced problem is equivalent to solving $\mathbf{H} \vec{u} = \vec{g}$.

Solver Setup

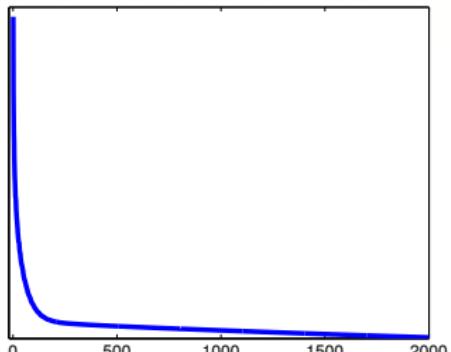
- The reduced problem can be solved using the conjugate gradient method. However:
 - control variables are distributed $\Rightarrow \mathbf{H}$ is **very large (and dense!)**
 - \mathbf{H} is not available explicitly \Rightarrow inexactness in the application of \mathbf{H} leads to immediate **loss of symmetry**
 - \mathbf{H} has a “nice” spectrum (eigenvalue clusters!)
- ⇒ Think of the reduced problem as $\mathbf{H}\vec{u} = \vec{g}$ and solve it using GMRES.
 - relative stopping tolerance: 1e-8 (\ll discretization error)
 - no preconditioning is necessary
- Inner systems ($\mathbf{A}_1 \vec{y}_1 = \mathbf{B} \vec{u}$, etc.) are solved using AMG/GMRES.
 - relative stopping tolerance for inner GMRES: 1e-12
 - preconditioner: **ML (Trilinos)**
 - 1 cycle, 2-level; 2nd-degree Chebyshev smoother (pre/post)
 - preconditioner setup is performed only once and all intermediate data, as well as intermediate data structures are reused

Example 1: Hughes/Brooks

Main features: Crosswind advection.



Spectrum of reduced Hessian.



AMG/GMRES applied to the original problem: **DOES NOT CONVERGE!**

Optimization-based approach:

Outer Iterations

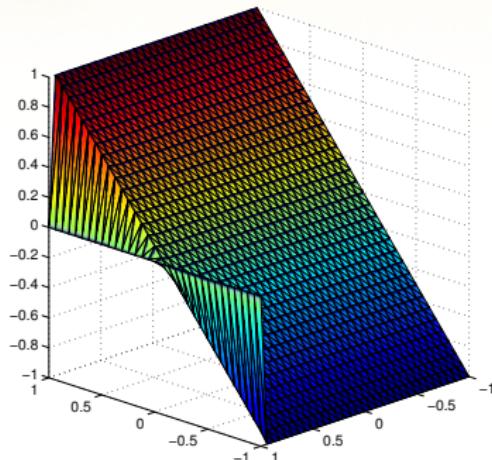
64×64	128×128	256×256	512×512
56	56	55	53

Inner AMG/GMRES Iterations

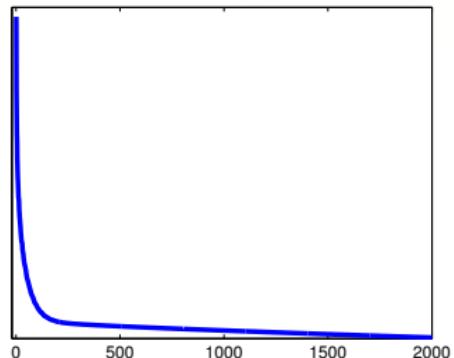
Only 10–20 per solve!
(4 systems per outer iteration)

Example 2: Elman/Silvester/Wathen (1)

Main features: Constant vertical wind, exponential boundary layer.



Spectrum of reduced Hessian.



AMG/GMRES applied to the original problem: **DOES NOT CONVERGE!**

Optimization-based approach:

Outer Iterations

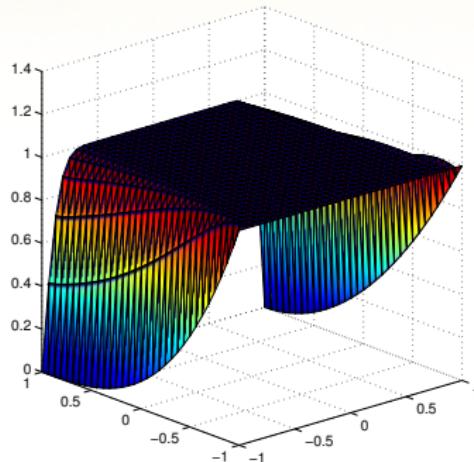
64×64	128×128	256×256	512×512
160	152	149	146

Inner AMG/GMRES Iterations

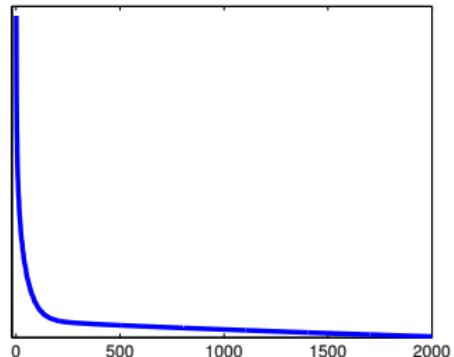
Only 10–20 per solve!
(4 systems per outer iteration)

Example 3: Elman/Silvester/Wathen (2)

Main features: Variable vertical wind, characteristic boundary layers.



Spectrum of reduced Hessian.



AMG/GMRES applied to the original problem: **DOES NOT CONVERGE!**

Optimization-based approach:

Outer Iterations

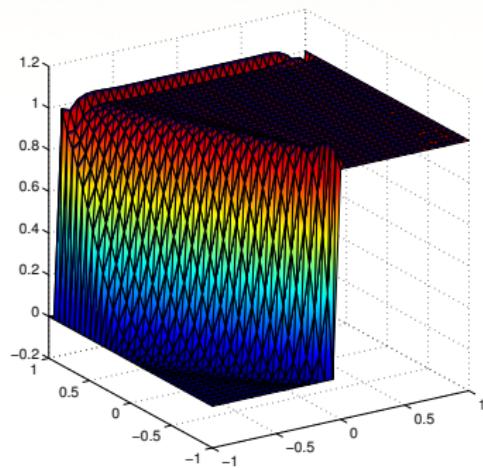
64×64	128×128	256×256	512×512
100	100	100	100

Inner AMG/GMRES Iterations

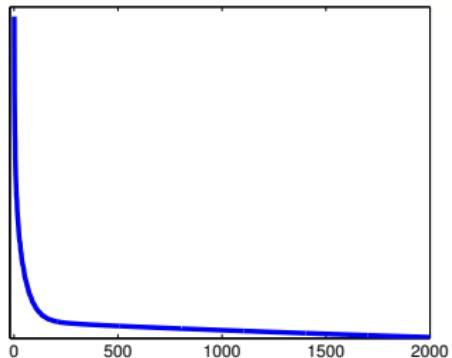
Only 10–20 per solve!
(4 systems per outer iteration)

Example 4: Elman/Silvester/Wathen (3)

Main features: Constant wind at 30°, downstream and interior boundary layers.



Spectrum of reduced Hessian.



AMG/GMRES applied to the original problem: **DOES NOT CONVERGE!**

Optimization-based approach:

Outer Iterations

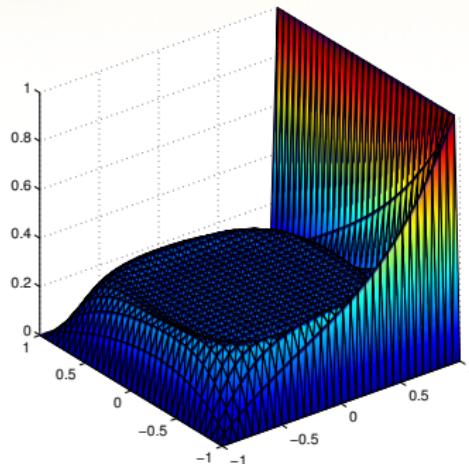
64×64	128×128	256×256	512×512
132	132	129	121

Inner AMG/GMRES Iterations

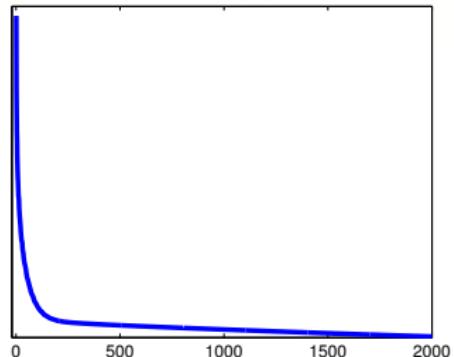
Only 10–20 per solve!
(4 systems per outer iteration)

Example 5: Elman/Silvester/Wathen (4)

Main features: recirculating wind, characteristic boundary layers.



Spectrum of reduced Hessian.



AMG/GMRES applied to the original problem: **DOES NOT CONVERGE!**

Optimization-based approach:

Outer Iterations

64×64	128×128	256×256	512×512
137	133	125	117

Inner AMG/GMRES Iterations

Only 10–20 per solve!
(4 systems per outer iteration)

Summary

- Text-book solutions are recovered (no surprise).
- Inner systems are set up only once and solved **very efficiently**.
- Roughly constant number of outer iterations as problem size increases. \Rightarrow **SCALABILITY!**
- Scalability unaffected by the size of the Peclet number $|\vec{c}|/\epsilon$ or by the advective direction.
- **Easy to implement:** A simple Matlab driver for the outer loop calls the off-the-shelf multigrid solver ML.