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Solution of Multiphysics Problems

Diagnosis

Predictive simulation of complex physical systems requires simultaneous
component models with radically different mathematical properties.

Incompatibility in the discrete numerical representation of individual
physics operators remains the main challenge.

→ True for: single-domain/multiple-physics (e.g. advection-diffusion, MHD)
and multiple-domain/multiple-physics (e.g. porous flow, FSI)

Two key aspects

(1) development of physics-coupling mechanisms (e.g. mortar methods)
(2) development of specialized solvers for algebraic systems (e.g. JFNK)

have been largely viewed as separate, disjoint thrust areas.

Goal

Unifying, mathematically rigorous approach to robust solution of
multiphysics problems, based on ideas from optimization and control.

Our approach integrates the development of scalable solvers with the
formulation and analysis of physics-coupling strategies.
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Approach and Related Work

Outline of the Idea

Step 1. The original composite problem is broken down into component
physics problems for which scalable solvers are available.

Step 2. Components are coupled via distributed (SD/MP) and/or boundary
control variables (MD/MP) and an objective functional.

Step 3. The resulting discrete optimization problem is solved as a fully
coupled algebraic system or in the null space of PDE constraints.

−→ Preview: The solution of a nearly hyperbolic PDE is broken down into the
sequential solution of several elliptic PDEs (efficiently handled by AMG!).

Related Work

Lots of disjoint work on physics coupling and specialized MP solvers.

Some work on the direct use of optimization formulations in solving
PDEs: Gunzburger et al. Optimization-Based DD for PDEs (1997),
Ben Dhia/Rateau Arlequin Method (2004).
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Application: Scalable Solvers for
Advection-Dominated Elliptic PDEs

Given an elliptic solver, such as algebraic multigrid, can we develop a
scalable solution technique for advection-dominated PDEs?

−ε∆y(x) + ~c(x) · ∇y(x) = f(x), |~c| ≈ 1, ε � 1, w.l.o.g.

Yes . . .

Bank/Wan/Qu: Kernel Preserving Multigrid (2006)
Elman/Wu: Comparison of Geometric and Algebraic MG (2006)

. . . but can we accomplish this with a generic, off-the-shelf solver,
i.e. without problem-specific modifications?

Goals:

straightforward reuse of existing solver technologies
wider applicability (compared to specialized approaches)
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Method

Step 1. Decomposition.
−ε∆y(x) + ~c(x) · ∇y(x) = f(x)

(1− ε)∆y(x)− f(x) −∆y(x) + ~c(x) · ∇y(x) = 0

Step 2. Coupling.

Minimize
1

2
‖y1(x)− y2(x)‖2 +

α

2
‖u(x)‖2

subject to

−(1− ε)∆y1(x) = u(x)− f(x)

−∆y2(x) + ~c(x) · ∇y2(x) = u(x)

Step 3. Solution.

Express state variables y1 and y2 in terms of the control variables u.
Formulate the reduced objective functional and solve the
unconstrained minimization problem.
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The Discrete Problem

Minimize
1

2
(~y1 ~y2)

T

„
Q −Q

−Q Q

« „
~y1

~y2

«
+

α

2
~uT R ~u

subject to A1 ~y1 + B ~u = ~b1

A2 ~y2 + B ~u = ~b2

Reduced problem: Minimize
1

2
~uT H ~u + ~gT ~u

Application of the reduced Hessian matrix H to a vector ~u:

1 Solve state eqn’s: A1 ~y1 = B ~u, A2 ~y2 = B ~u

2 Solve adjoint eqn’s: AT
1

~λ1 = Q (~y1 − ~y2), AT
2

~λ2 = −Q (~y1 − ~y2)

3 H ~u = B (~λ1 + ~λ2) + αR ~u

Lemma: The reduced Hessian matrix H is SPD.

=⇒ The reduced problem is equivalent to solving H ~u = ~g .
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Solver Setup

The reduced problem can be solved using the conjugate gradient
method. However:

control variables are distributed ⇒ H is very large (and dense!)
H is not available explicitly ⇒ inexactness in the application of H
leads to immediate loss of symmetry
H has a “nice” spectrum (eigenvalue clusters!)

⇒ Think of the reduced problem as H ~u = ~g and solve it using GMRES.

relative stopping tolerance: 1e-8 (� discretization error)

no preconditioning is necessary

Inner systems (A1 ~y1 = B ~u, etc.) are solved using AMG/GMRES.

relative stopping tolerance for inner GMRES: 1e-12
preconditioner: ML (Trilinos)

1 cycle, 2-level; 2nd-degree Chebyshev smoother (pre/post)
preconditioner setup is performed only once and all intermediate
data, as well as intermediate data structures are reused
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Example 1: Hughes/Brooks

Main features: Crosswind advection.
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Spectrum of reduced Hessian.

0 500 1000 1500 2000

AMG/GMRES applied to the original problem: DOES NOT CONVERGE!

Optimization-based approach:

Outer Iterations
64× 64 128× 128 256× 256 512× 512

56 56 55 53

Inner AMG/GMRES Iterations
Only 10–20 per solve!

(4 systems per outer iteration)
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Example 2: Elman/Silvester/Wathen (1)

Main features: Constant vertical wind, exponential boundary layer.
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Spectrum of reduced Hessian.

0 500 1000 1500 2000

AMG/GMRES applied to the original problem: DOES NOT CONVERGE!

Optimization-based approach:

Outer Iterations
64× 64 128× 128 256× 256 512× 512

160 152 149 146

Inner AMG/GMRES Iterations
Only 10–20 per solve!

(4 systems per outer iteration)
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Example 3: Elman/Silvester/Wathen (2)

Main features: Variable vertical wind, characteristic boundary layers.
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Spectrum of reduced Hessian.
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AMG/GMRES applied to the original problem: DOES NOT CONVERGE!

Optimization-based approach:

Outer Iterations
64× 64 128× 128 256× 256 512× 512

100 100 100 100

Inner AMG/GMRES Iterations
Only 10–20 per solve!

(4 systems per outer iteration)
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Example 4: Elman/Silvester/Wathen (3)

Main features: Constant wind at 30◦, downstream and interior boundary layers.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Spectrum of reduced Hessian.
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AMG/GMRES applied to the original problem: DOES NOT CONVERGE!

Optimization-based approach:

Outer Iterations
64× 64 128× 128 256× 256 512× 512

132 132 129 121

Inner AMG/GMRES Iterations
Only 10–20 per solve!

(4 systems per outer iteration)
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Example 5: Elman/Silvester/Wathen (4)

Main features: recirculating wind, characteristic boundary layers.
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Spectrum of reduced Hessian.
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AMG/GMRES applied to the original problem: DOES NOT CONVERGE!

Optimization-based approach:

Outer Iterations
64× 64 128× 128 256× 256 512× 512

137 133 125 117

Inner AMG/GMRES Iterations
Only 10–20 per solve!

(4 systems per outer iteration)
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Summary

Text-book solutions are recovered (no surprise).

Inner systems are set up only once and solved very efficiently.

Roughly constant number of outer iterations as problem size
increases. ⇒ SCALABILITY!

Scalability unaffected by the size of the Peclet number |~c|/ε or by
the advective direction.

Easy to implement: A simple Matlab driver for the outer loop calls
the off-the-shelf multigrid solver ML.
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