SAND2008- 3743C

Remote rendering for ultrascale data

Kenneth Moreland! and Greg Humphreys?

'Sandia National Laboratories, P.O. Box 5800 MS 1323, Albuquerque, NM 87185-1323
?Department of Computer Science, School of Engineering and Applied Science, University of
Virginia, 151 Engineer’s Way, P.O. Box 400740, Charlottesville, VA 22904-4740

E-mail: kmorel@sandia.gov

Abstract. The mission of the SciDAC Institute for Ultrascale Visualization is to address
the upcoming petascale visualization challenges. As we move to petascale computation, we are
seeing a trend not only in the growth but also in the consolidation of computing resources. As the
distances between user and petascale visualization resources grow, the expected performance of
the network degrades, especially with respect to latency. In this paper we will explore a technique
for remote visualization that leverages unstructured lumigraph rendering. This technique will
provide an interactive rendering experience regardless of the network performance to the remote
visualization resource. The unstructured lumigraph rendering can also replace many of the other
level-of-detail techniques currently used that have problems that are exasperated by petascale
data.

1. Introduction

Over the past two decades, we have seen an extraordinary amount of change in both the hardware
and software used for the visualization of simulation results. Throughout the 1980’s, graphics
technology was still too slow to provide interactive rendering of any reasonably sized 3D mesh.
Visualization of this type of data was typically script-driven and off-line.

By the end of the 1980’s, specialized graphics hardware became available [1]. In the early
1990’s, this specialized graphics hardware became common, although expensive. Visualization of
large simulations (for the time) necessitated the use of big SMP computers with lots of memory
and several rendering pipelines.

In the late 1990’s and early 2000’s, large scale rendering and visualization moved from the
specialized SMP computers to clusters comprising commodity components with distributed
memory [2,3]. The reasons for this change were two-fold. First, it became clear that a
visualization platform based on an SMP architecture was not going to scale. Second, the
entertainment industry was driving commodity graphics hardware to improve at a much faster
rate than the specialized visualization hardware.

As visualization and simulation platforms continue to grow and change, so to do the challenges
and bottlenecks. Although image rendering was once the limiting factor in visualization,
rendering speed is now often a secondary concern. In fact, it is now common to perform
interactive visualization on clusters without specialized rendering hardware. The new focus
on visualization is in loading, managing, and processing data. One consequence of this is the
practice of co-locating a visualization resource with the supercomputer for faster access to the
simulation output [4,5].



Most of us are not fortunate enough to have a supercomputer or associated visualization
resource located in our office, yet we still require access to these resources. A remote visualization
capability allows us to provide the widest access to our resources; anyone with network
capabilities can perform large scale visualization from their desktop using remote visualization.

The distance between scientist and computing/visualization resources, as a trend, is growing.
The US Office of Science, through programs like SciDAC, is encouraging scientists from different
disciplines and different organizations to collaborate; the US Department of Defense and
Department of Energy are consolidating resources like supercomputers; universities are reaching
out to researchers around the world. As the distance between user and visualization resource
becomes larger, remote visualization becomes more important and more challenging. One of the
goals of the SciDAC Institute for Ultrascale Visualization is to ensure that remote visualization
remains an interactive experience, even when accessing petascale data on the far side of the
world.

2. Remote Rendering

Unlike most large-scale parallel processing, visualization tends to be an interactive process by
nature. The parallel visualization must be controlled remotely to make its use convenient
and, in some cases, possible. Thus, most large-scale turn-key visualization systems, such as
ParaView, Vislt, and EnSight, provide some way to access the parallel visualization remotely.
The architecture of these systems varies, but all comprise a client, run on a local desktop or
laptop, that connects, via a socket, to one or more servers running on a remote parallel machine.

All data processing occurs at the server. It is assumed that the data may be too large to
load and certainly too large to efficiently process on the client, for that is the whole purpose of
leveraging a remote parallel machine. Rendering, however, can occur at either the client or the
server.

User interaction requires the rendering to be very responsive. Rendering data in the client
can be convenient as the locally rendered image is immediately available. However, rendering at
the client requires all applicable geometry to be shipped from server to client. Sometimes this is
feasible as extracted surfaces are typically much smaller than the volumes from which they are
derived. Even so, surfaces extracted from simulations run at capacity on large supercomputers
will still be too large for clients. Furthermore, some rendering techniques, such as volume
rendering, require the full mesh geometry, which cannot be effectively loaded on the client. For
these reasons, most large scale visualization systems provide server-side rendering.

A server side rendering uses a parallel rendering algorithm on the server and ships images
back to the client. The server generally uses a “sort-last” image-based algorithms, which tend
to be scalable because their overhead is set by the number of pixels in the output image and
therefore limited by the resolution of the physical display [3,6-9].

Interaction Camera Coordinates

Parallel
Render

A

i
“Updated GUI

Image
User

Figure 1. Update cycle for remote rendering.



Figure [I] displays the typical update cycle for remote rendering. A user interaction in the
client will spawn the need for a new image, which will be forwarded to the server along with
new rendering parameters such as camera coordinates. The server will perform the render using
a sort-last parallel algorithm. That image is sent back to the client where it is used to update
the user interface.

This remote rendering cycle maximizes the rendering speed in terms of primitives per second
of a parallel visualization system. However, there is no guarantee that it will provide interactive
frame rates: a minimum of 10 Hz. The physical limitations of the server’s rendering hardware
may not be able to process all the geometry of petascale in less than a tenth of a second.
Furthermore, the network connection between client and server is unlikely to be able to stream
full resolution images at an acceptable rate.

To accommodate situations where rendering a full resolution image interactively is not
possible, many rendering systems employ at least two modes of rendering. A lower-quality
“interactive” render occurs while the user is manipulating the view. In this mode quality and
accuracy can be sacrificed for speed. A high-quality “still” render occurs when the user stops
interacting, the system is ready to idle, and the user is ready to study the visualization image.
In this mode the entire detail of the visualization is presented even if the user must wait a few
moments to get it.

ParaView uses multiple level-of-detail techniques to make the full remote render cycle
interactive [10]. A geometric level of detail uses a quadric clustering algorithm [11] to provide
a decimated, but representative, version of the geometry. An image level of detail reduces the
resolution of the images generated, which reduces the amount of work for the parallel rendering
algorithm and the image transfer back to the client. A lossy compression based on the amount
of quantification levels for the color provides yet another level-of-detail parameter.

Although these techniques work well to provide an interactive remote rendering loop on a
local area network, it sometimes fails on a wider area network. The largest problem imposed
by a wide area network is the latency that can occur in the connection between client and
server. This adds a delay to the remote rendering loop that cannot be accommodated by any
level-of-detail technique.

The only possible way around the network latency is to perform all interactive rendering local
to the client. Such an approach is not uncommon. The only caveat is that this local rendering
does not have access to the full geometry, and the local rendering becomes a compromise between
the detail that can be seen and the data that must be retrieved. Vislt performs this local
rendering by drawing only the bounding box of the data during interaction. The bounding
box can provide orientation, but it is often difficult to conceptualize the final rendering result,
especially when zoomed far in the data. ParaView has the ability to bring in the decimated
geometry to the client and render that locally, but even the decimated geometry can saturate
the client when it comes from a large server.

We propose a new technique for approximate interactive rendering in remote visualization
using image based techniques. As in the previous examples, the approximate rendering will
happen completely locally. The difference is that the approximate rendering will be based on
images rendered with the full geometry. As shown in Figure[2] high-quality still images generated
by the server are cached on the client. This cache of images is used to synthesize images from
new viewpoints during interactive rendering.

Using images rendered from the server to synthesize other approximate images has two
distinct advantages. First, it is scalable with respect to the size of the geometry being
represented. Like the sort-last parallel rendering employed on the server, the overhead of the
technique is independent of geometry size. Second, the image base rendering can leverage the
rendering already being done on the server. Lengthy preprocessing of the data is not necessary,
as is the case with geometric decimation.



Interaction Camera Coordinates

v |

Image-Based Image Parallel
Render ¢ Cache Render
p < A |
Updated GUI Image

User
m Approximate Interactive Render m Full Quality Still Render

Figure 2. Update cycles for remote rendering with a local image-based approximate interactive
rendering in the client.

3. Unstructured Lumigraph Rendering
To be contributed by University of Virginia folks.

4. Conclusions

Remote rendering is a vital part of large scale visualization in the field. It makes a limited
visualization resource accessible to a wider circle of users. However, most of the techniques used
today are limited by the amount of data they can render, limited by the latency of the network
connections (and thus the physical distance), or limited by the amount of interactivity afforded.
By leveraging an image based technique like lumigraph rendering allows us to circumvent these
technical issues and provide a fully interactive scalable visualization environment in any network
environment.

Acknowledgments

This work was done in part at Sandia National Laboratories. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

References

[1] Akeley K and Jermoluk T 1988 High-performance polygon rendering Computer Graphics (SIGGRAPH 88
Proceedings) 22 239-246

[2] Ahrens J, Brislawn K, Martin K, Geveci B, Law C C and Papka M E 2001 Large-scale data visualization
using parallel data streaming IEEE Computer Graphics and Applications 21 34-41

[3] Wylie B, Pavlakos C, Lewis V and Moreland K 2001 Scalable rendering on PC clusters IEEE Computer
Graphics and Applications 21 62-70

[4] Ahern S 2007 Petascale visual data analysis in a production computing environment Journal of Physics:
Conference Series (Proceedings of SciDAC 2007) vol 78

[5] Cedilnik A, Geveci B, Moreland K, Ahrens J and Farve J 2006 Remote large data visualization in the
ParaView framework Eurographics Parallel Graphics and Visualization 2006 pp 163-170

[6] Ma K L 1994 Parallel volume rendering using binary-swap image composition IEEE Computer Graphics and
Applications 14 59-68

[7] Moreland K, Avila L and Fisk L A 2007 Parallel unstructured volume rendering in paraview Visualization
and Data Analysis 2007, Proceedings of SPIE-IS6T Electronic Imaging pp 64950F—1-12

[8] Moreland K and Thompson D 2003 From cluster to wall with VTK Proceedings of IEEE Symposium on
Parallel and Large-Data Visualization and Graphics pp 25-31

[9] Moreland K, Wylie B and Pavlakos C 2001 Sort-last parallel rendering for viewing extremely large data sets
on tile displays Proceedings of the IEEE 2001 Symposium on Parallel and Large-Data Visualization and
Graphics pp 8592



[10] Squillacote A H 2007 The ParaView Guide ParaView 3 ed (Kitware, Inc.) ISBN-13: 978-1-930934-21-4
[11] Lindstrom P 2000 Out-of-core simplification of large polygonal models Computer Graphics (Proceedings of
SIGGRAPH 2000) 259-262



