

Pneumatic Performance of a Non- Axisymmetric Floating Oscillating Water Column Wave Energy Conversion Device in Random Waves

Diana Bull diana.bull@sandia.gov
Sandia National Laboratories.

Presented by Chris Smith css27@arl.psu.edu
Penn State ARL.

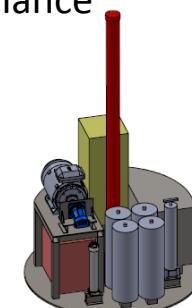
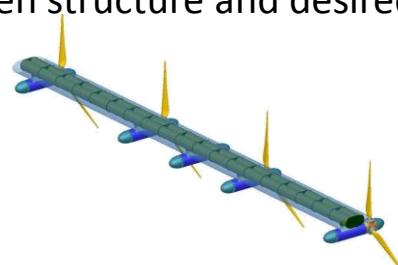
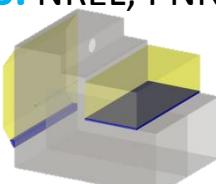
April 16th, 2014.

Sandia National Laboratories

Reference Model Project

Summary

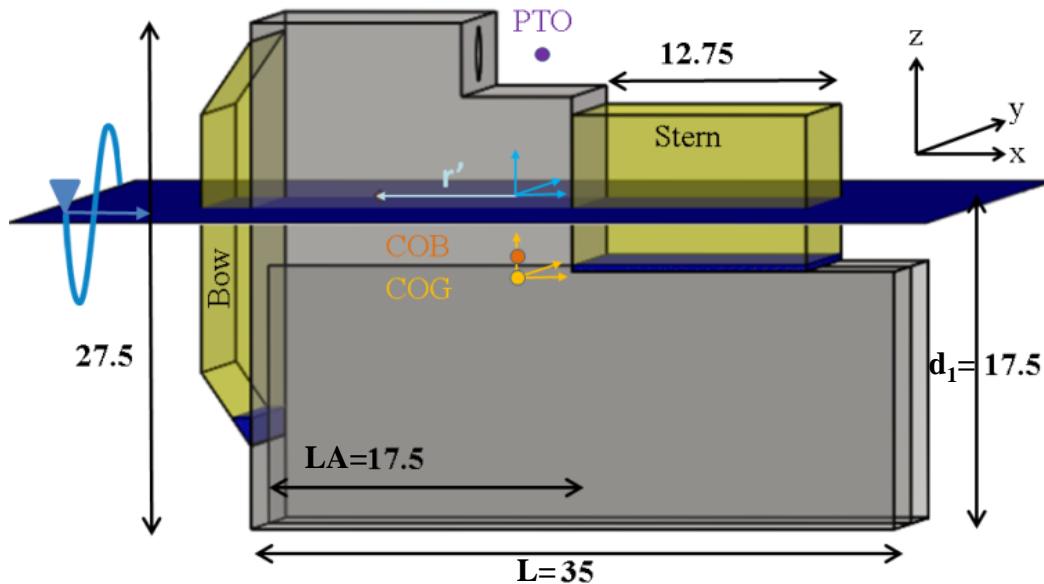
- Multi-Lab effort to obtain **baseline** performance and Cost Of Energy (**COE**) estimates for a variety of Marine Hydro-Kinetic (MHK) devices, sponsored by DOE.
- Method to achieve COE is to develop **public domain designs** incorporating the following:
 - Power performance models
 - Structural models
 - Anchor and mooring design
 - Economic Model
 - PTO Design
 - O&M / Installation
 - Permitting & Environment
- Designs are intended to be conservative, robust, and experimentally verified.

SNL Developed Models/Tools

- **Performance Models** — WEC: 3D model capable of handling 7DOF in Matlab; FEC: CACTUS
- **Mooring Survival Model** — utilize a Morison's Eq. approach to model extreme conditions
- **Structural Sizing Tool** — determination of weight, ballast, COG & COB locations, and natural frequencies
- **PTO Sizing Tool** — Turbine sizing tool for given structure and desired performance

Partners: NREL, PNNL, ARL/PSU, ORNL


Sandia National Laboratories

Backward Bent Duct Buoy

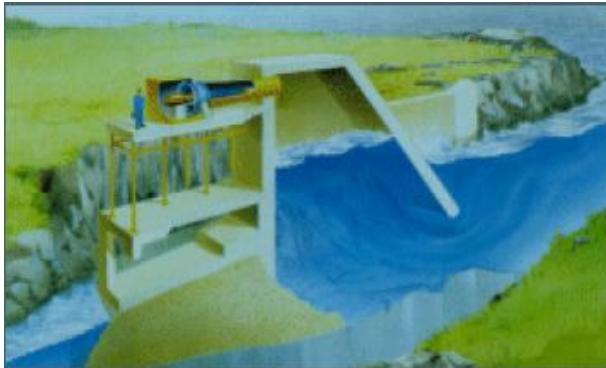
Profile

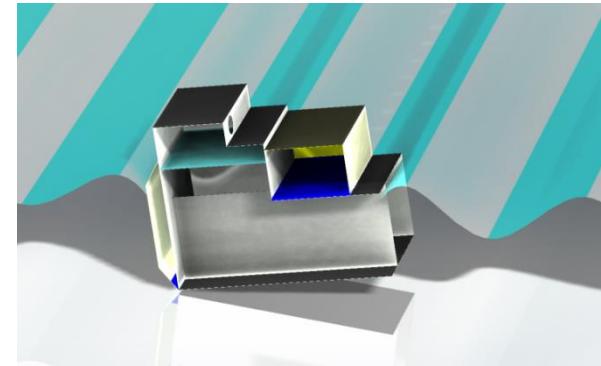
- Literature survey:

- $\lambda/L=4^1$ $L=35[m]$
 - 9[sec] $\lambda=140[m]$
- $L/LA=2.0^2$ $LA=17.5[m]$
- $d_1/LA=1.0^2$ $d_1=17.5[m]$
- $d_2/LA=0.2^2$ $d_2=3.5[m]$
- $L/B=1.3^{1,3}$ $B=27[m]$
 - Selected relationship based on most used in literature

Structural Design

- Entire structure built to withstand hydrostatic pressure at 23.5 m
- Ballast chosen for stability
- Buoyancy chambers sized to support weight and obtain desired natural resonances


Displaced Mass [kg]	2,024,657		
Structural Mass [kg]	1,808,944		
Bow Ballast Mass [kg]	22,072		
Stern Ballast Mass [kg]	123,641		
Power Conversion Mass [kg]	70,000		
COG (x,y,z) [m]	0.00	0.00	-4.29
COB (x,y,z) [m]	0.00	0.00	-3.31
Free Surface Center (x,y,z) [m]	-5.12	0.00	0.00
Radius of Gyration at COG [m]	x	12.53	0.00
	y	0.00	14.33
	z	0.00	0.00
			14.54


Device Hydrodynamics: Wave Structure Interactions

Modeling OWCs

Grounded

Floating

Power Absorption

- Wave activated water column

Coupled Power Absorption

- Wave activated water column
- Wave activated structure

Power Conversion

- Pressure and volume in the air chamber
 - Wave activated motions linked through power conversion chain.

Power Conversion

- Pressure and volume in the air chamber
 - **Coupled** wave activated motions linked through power conversion chain.

Modeling the Pressure Distribution of a Floating OWC

Approximation

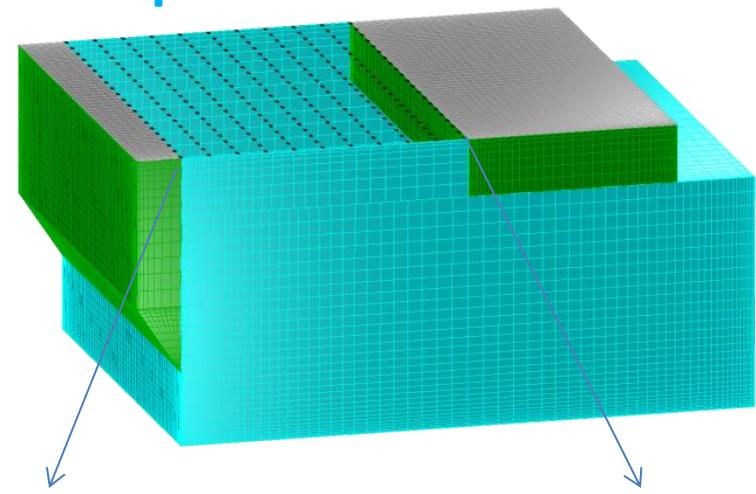
- **Generalized Modes**

- Approximates full solution with user defined number of higher order modes

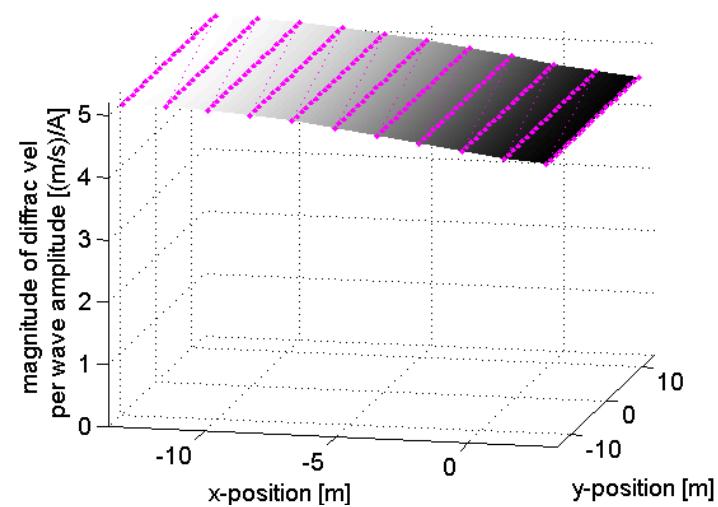
Explicit Solution

- **Free Surface Radiation Potential**

- Solves explicitly for the full velocity potential of i oscillating structures with k internal free surfaces.


$$\hat{\phi} = \hat{\phi}_o + \hat{\phi}_d + \sum_{ij} \varphi_{ij} \hat{u}_{ij} + \sum_k \varphi_k \hat{p}_k$$

Implicit Solution


- **Reciprocity Relations**

- Derive all of the free surface parameters from the oscillating structure potential
 - Requires an array of field points to define the internal free surface

Device Representation in WAMIT

OWC free surface diffraction velocity values for $\omega=0.46$.

Modeling the Pressure Distribution of a Floating OWC

Approximation

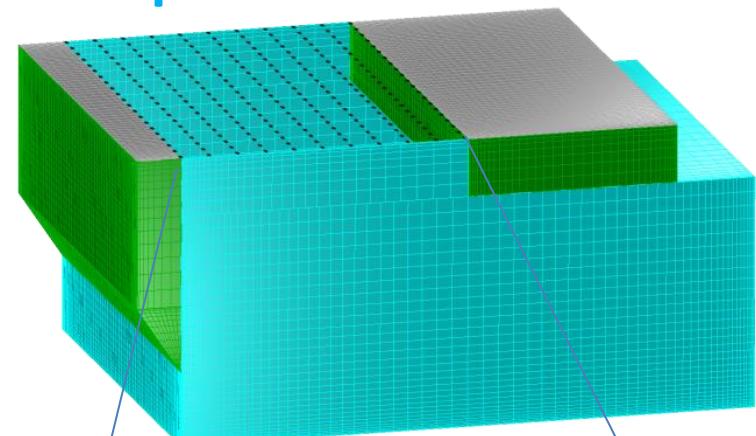
- **Generalized Modes**

- Approximates full solution with user defined number of higher order modes

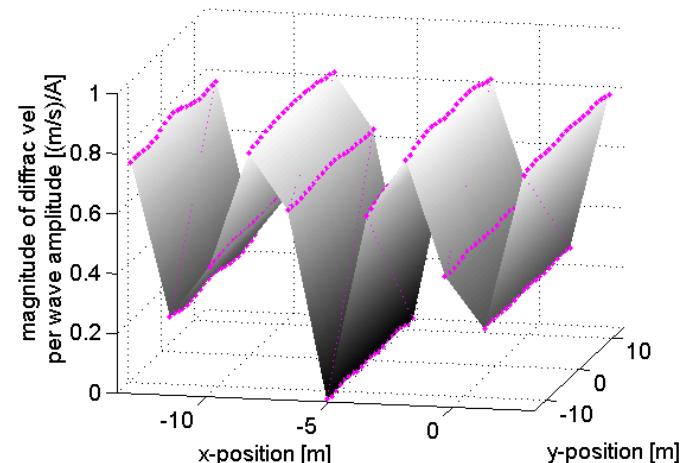
Explicit Solution

- **Free Surface Radiation Potential**

- Solves explicitly for the full velocity potential of i oscillating structures with k internal free surfaces.


$$\hat{\phi} = \hat{\phi}_o + \hat{\phi}_d + \sum_{ij} \varphi_{ij} \hat{u}_{ij} + \sum_k \varphi_k \hat{p}_k$$

Implicit Solution


- **Reciprocity Relations**

- Derive all of the free surface parameters from the oscillating structure potential
 - Requires an array of field points to define the internal free surface

Device Representation in WAMIT

OWC free surface diffraction velocity values for $\omega=2.3$.

Coupled Wave-Structure-OWC

Governing Equations⁴

Total Hydrodynamic Force: $F_{TH,j} = f_j A - \sum_{j'} Z_{jj'} u_{j'} - H_j^p p \quad j = 1, \dots, 6.$

- Excitation Force

$$f_j = -i\omega\rho \frac{1}{A} \iint_{S_b} (\phi_o + \phi_d) n_j dS$$

- Radiation Impedance

$$Z_{jj'} = i\omega\rho \iint_{S_b} \varphi_j \frac{\partial \varphi_{j'}}{\partial n} dS = b_{jj'} + i\omega a_{jj'}$$

- Hydrodynamic Coupling

$$H_j^p = i\omega\rho \iint_{S_b} \varphi n_j dS$$

Total Hydrodynamic Volume Flow:

- Excitation Volume Flow

$$Q_{TH} = qA - Yp - \sum_j H_j^u u_j$$

- Radiation Admittance

$$q = \frac{1}{A} \iint_S \frac{\partial(\phi_o + \phi_d)}{\partial z} dS$$

- Hydrodynamic Coupling

$$Y = - \iint_S \frac{\partial \varphi}{\partial z} dS = G + iB$$

$$H_j^u = - \iint_S \frac{\partial \varphi_j}{\partial z} dS = C_j + iJ_j$$

Coupled Wave-Structure-OWC

Governing Equations⁴

Total Hydrodynamic Force: $F_{TH,j} = f_j A - \sum_{j'} Z_{jj'} u_{j'} - H_j^p p \quad j = 1, \dots, 6.$

Direct WAMIT Output

- Excitation Force

$$f_j = -i\omega\rho \frac{1}{A} \iint_{S_b} (\phi_o + \phi_d) n_j dS$$

- Radiation Impedance

$$Z_{jj'} = i\omega\rho \iint_{S_b} \varphi_j \frac{\partial \varphi_{j'}}{\partial n} dS = b_{jj'} + i\omega a_{jj'}$$

- Hydrodynamic Coupling

$$H_j^p = i\omega\rho \iint_{S_b} \varphi n_j dS$$

Total Hydrodynamic Volume Flow:

Implicit Solution

- Excitation Volume Flow

$$Q_{TH} = qA - Yp - \sum_j H_j^u u_j$$

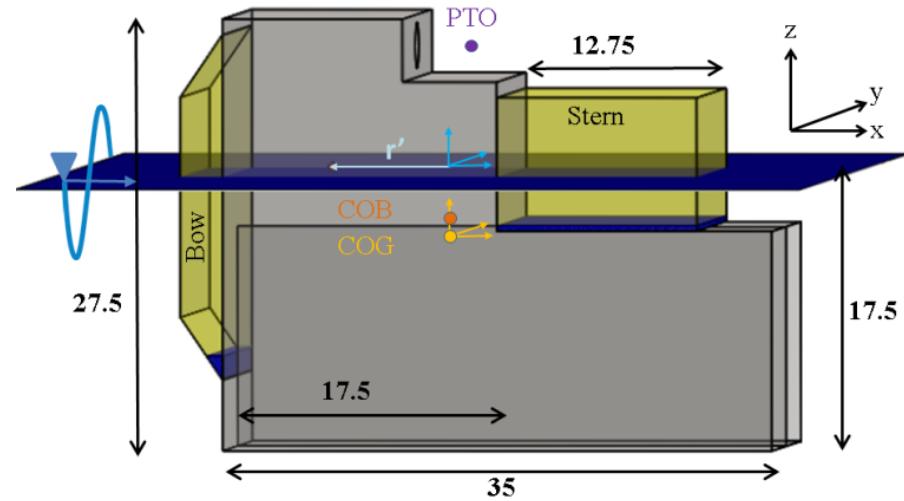
$$q = \frac{1}{A} \iint_S \frac{\partial(\phi_o + \phi_d)}{\partial z} dS$$

- Radiation Admittance

$$G = \frac{2k}{8\pi\rho g v_g} \int_0^\pi |q(\beta)|^2 d\beta \quad B(\omega) = -\frac{2\omega}{\pi} \int_0^\infty \frac{G(y)}{\omega^2 - y^2} dy$$

- Hydrodynamic Coupling

$$-H_j^p = H_j^u = - \iint_S \frac{\partial \varphi_j}{\partial z} dS = C_j + iJ_j$$



Hydrodynamically Coupled Water Column Resonance

Relativizing the pressure

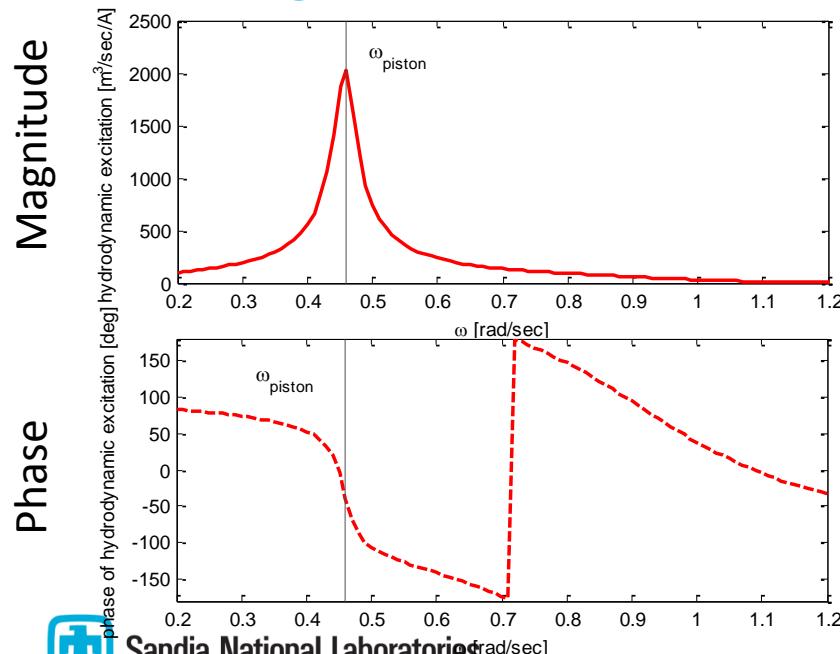
- Apply transformation vector to account for body oscillations

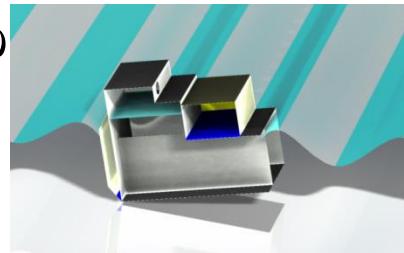
$$T = [0 \ 0 \ 1 \ 0 \ -r' \ 0]^T$$

Coupled Hydrodynamic Volume Flow in an *unlinked, fully vented device* (i.e. no PCC, pure wave-structure-OWC without any pressure) :

$$Q_{TH} = qA - \sum_j (H_j^u + T_j S) u_j$$

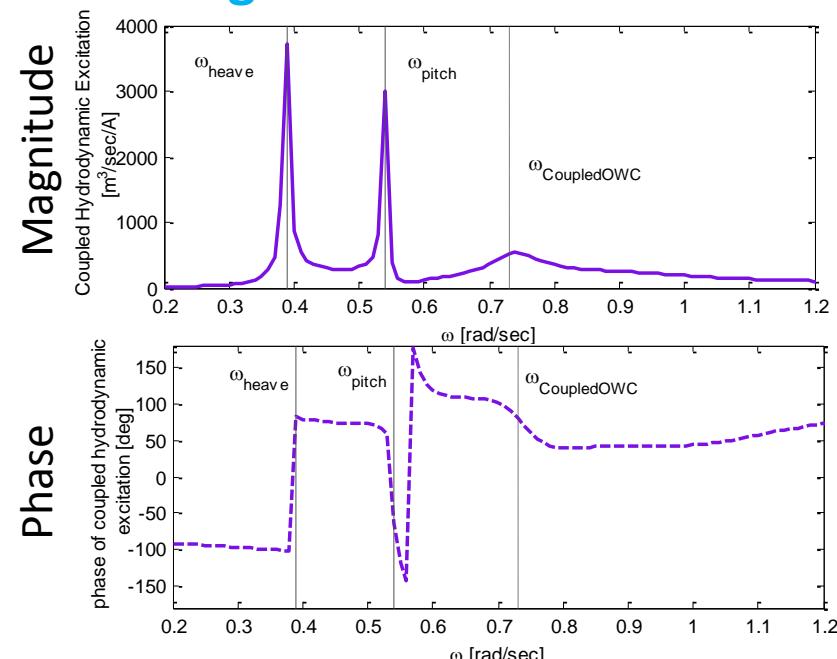
Hydrodynamically Coupled Water Column Resonance⁴


Grounded


Hydrodynamic Volume Flow:

$$qA$$

Determining Resonances:


Floating

Coupled Hydrodynamic Volume Flow:

$$qA - \sum_j (H_j^u + T_j S) u_j$$

Determining Resonances:

Sandia National Laboratories

Device Performance: Linear Wells Turbine Linking the Structures Oscillations to the OWC

Linked Governing Equations

Linked Matrix Representation

- Structure velocity
- Relative Pressure in the Air Column

$$\begin{pmatrix} f \\ q \end{pmatrix} A = \begin{pmatrix} \mathbf{Z}_i & -\mathbf{H}_i \\ \mathbf{H}_i^T & Y_i + \frac{1}{R_{load}} \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix}$$

- Radiation Impedance of the Structure

$$\mathbf{Z}_i = \mathbf{b} + \mathbf{b}_{vis} + i\omega \left(\mathbf{m} + \mathbf{a} - \frac{(\mathbf{C} + \mathbf{K})}{\omega^2} \right)$$

- Relative Coupling Term

$$\mathbf{H}_i = \mathbf{H} + \mathbf{T} \mathbf{S}$$

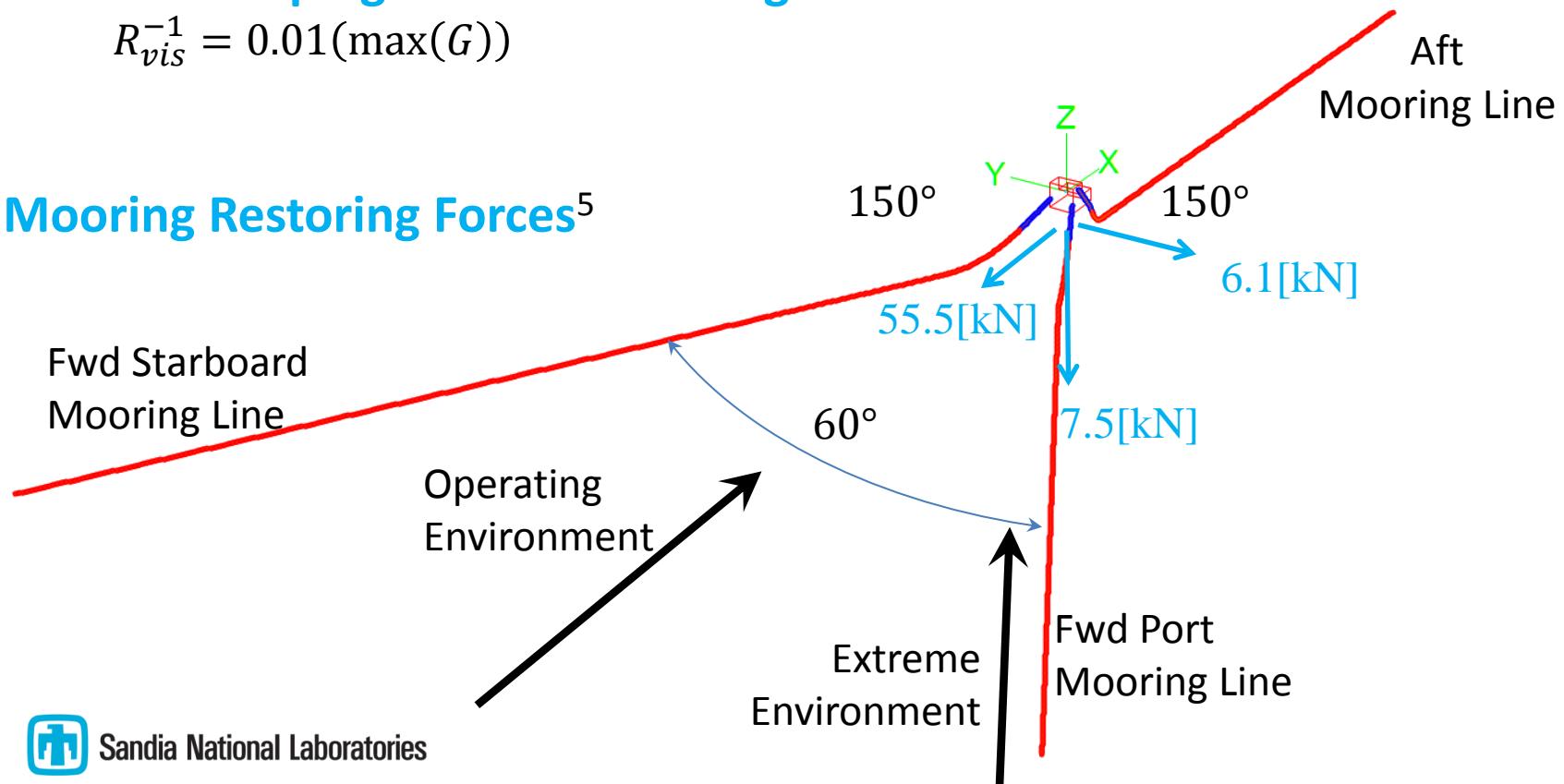
- Radiation Admittance of the Compressible Air Column

$$Y_i = \left(G + \frac{1}{R_{vis}} \right) + i \left(B + \frac{\omega \mathbb{A}_o}{\gamma p_{atm}} \right)$$

Linked Total Volume Flow

$$Q_T = qA - Y_i p - \mathbf{H}_i^T \mathbf{u} = \frac{p}{R_{load}}$$

Externally Applied Forces: Viscous Damping and Mooring


Viscous Damping on the Floating Structure

$$b_{vis} = 0.02(2\sqrt{M_{tot}c_{tot}})$$

Viscous Damping on the Oscillating Water Column

$$R_{vis}^{-1} = 0.01(\max(G))$$

Mooring Restoring Forces⁵

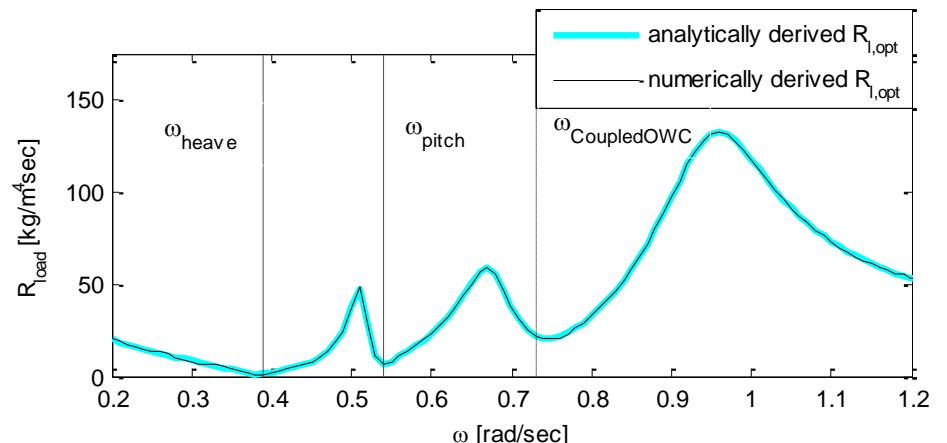
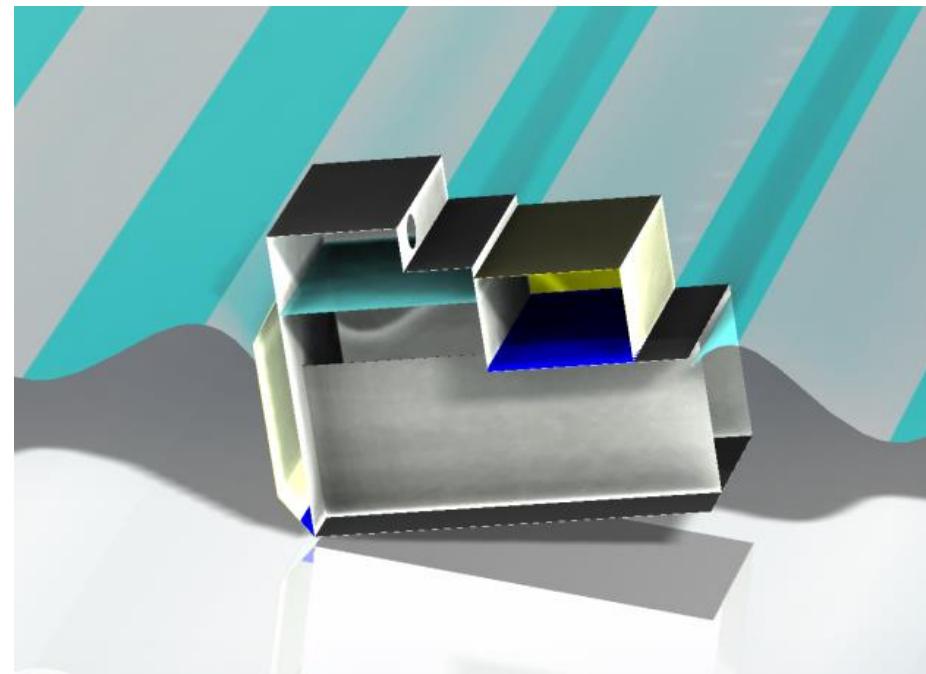
Pneumatic Power

Pneumatic Power

$$\langle P \rangle = \overline{p(t)Q_T(t)} = \frac{1}{2} \operatorname{Re}\{pQ_T^*\}$$

Monochromatic Waves⁴

Pneumatic Power



$$\cdot \mid \langle P \rangle = \frac{1}{2} \frac{1}{R_{load}} |p|^2$$

Optimization Condition

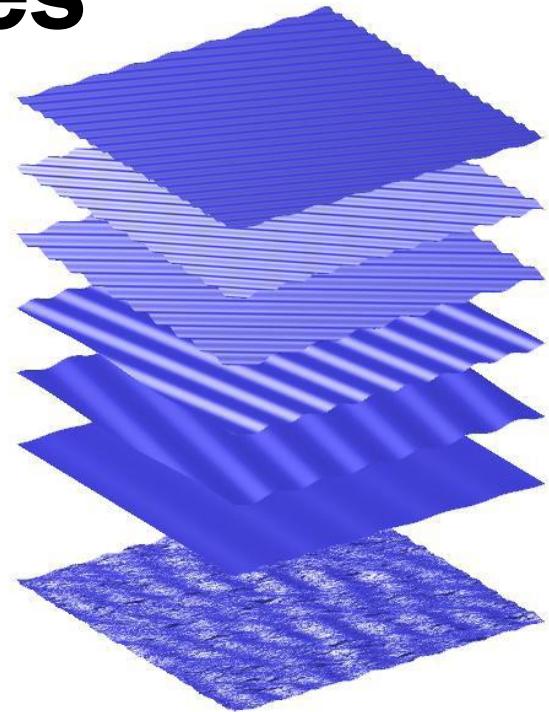
$$\cdot \mid \frac{\partial \langle P \rangle}{\partial R_{load}} = 0$$

Optimal Resistive Damping for Hydrodynamically Coupled OWC

$$\cdot \quad R_{l_{opt}} = \left(|Y_i + \mathbf{H}_i^T \mathbf{Z}_i^{-1} \mathbf{H}_i|^2 \right)^{-\frac{1}{2}}$$

Sandia National Laboratories

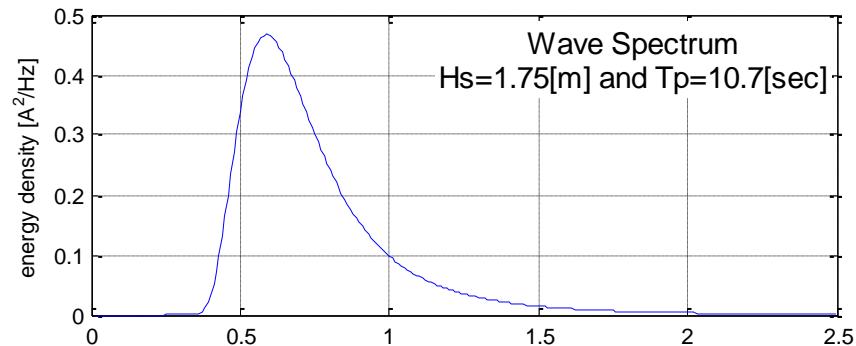
Device Performance in Random Waves.


Sandia National Laboratories

Random Waves

[6]

Modeling Ocean Waves


- Superposition of harmonic waves
 - Distinct frequencies, amplitudes, and incident directions.
- Gaussian random process
- Wave Spectra $S(\omega)$
 - Represent distribution of energy content as a function of frequency and direction.
 - Use standard distributions to describe waves in different parts of the world.

$$\eta(x, y, t) = \sum_i a_i \cos(k_i(x \cos \theta_i + y \sin \theta_i) - 2\pi f_i t + \phi_i)$$

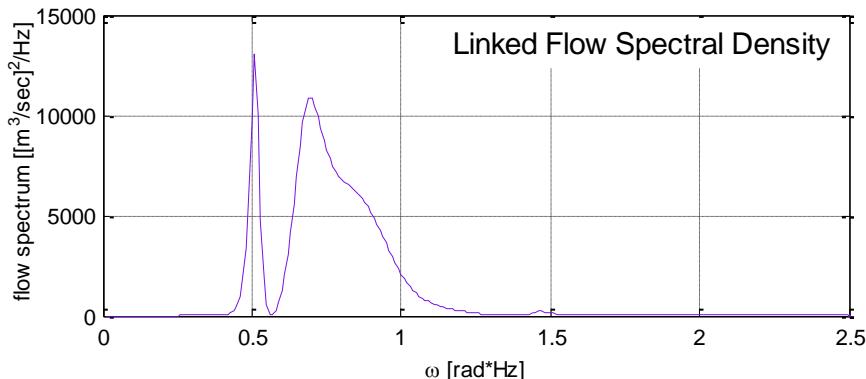
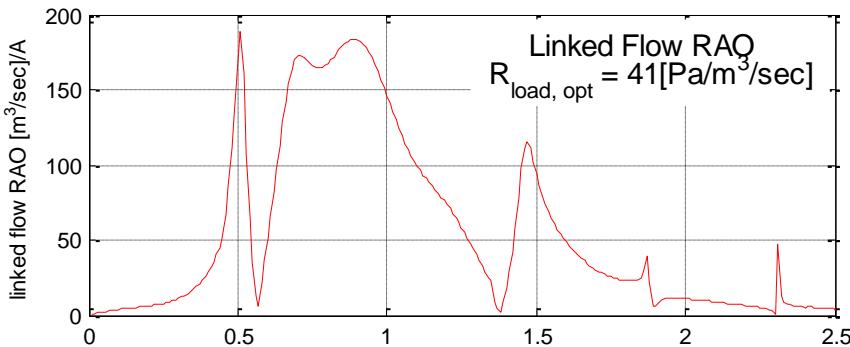
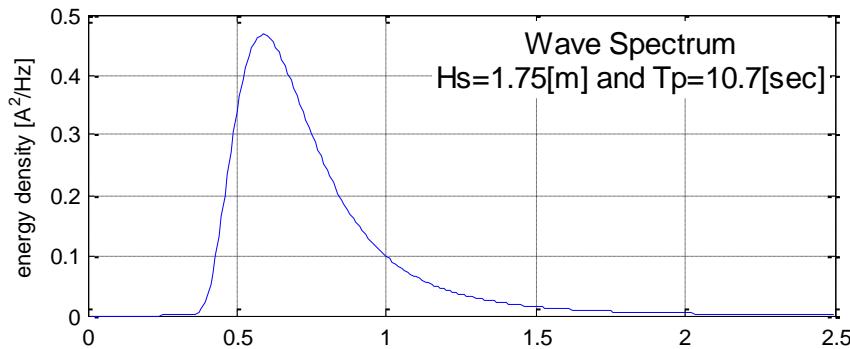
Power In Unidirectional Waves

- $J(T_p, H_s) = J_{ij} = \sum_k \rho g c_{g,k} S_{ij}(\omega_k) \Delta \omega_k$

Spectral Density

Response Spectrum for variable R:

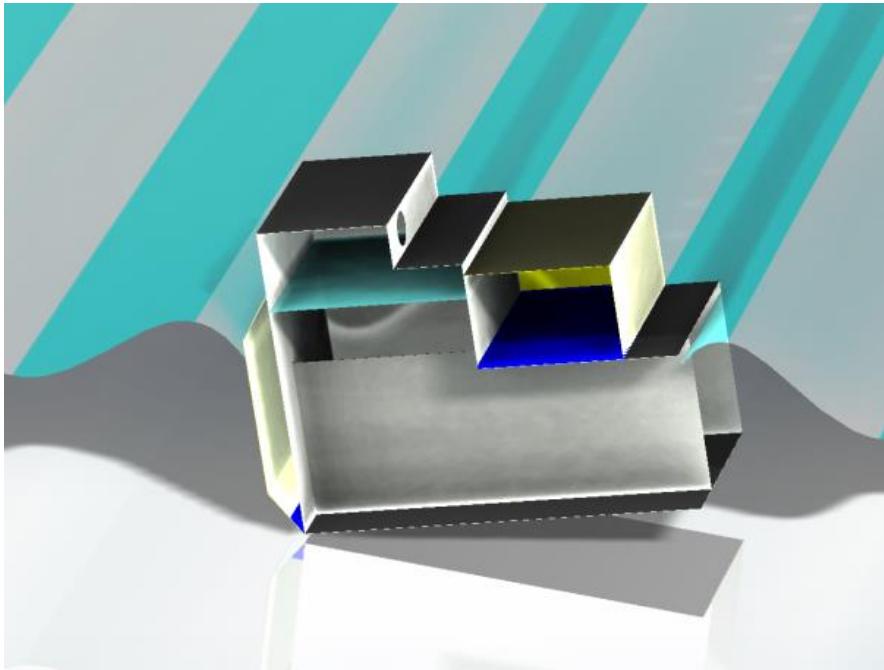
- $S_R(\omega) = [\text{RAO}(\omega)]^2 S(\omega)$




Statistical Properties

- Root-mean square

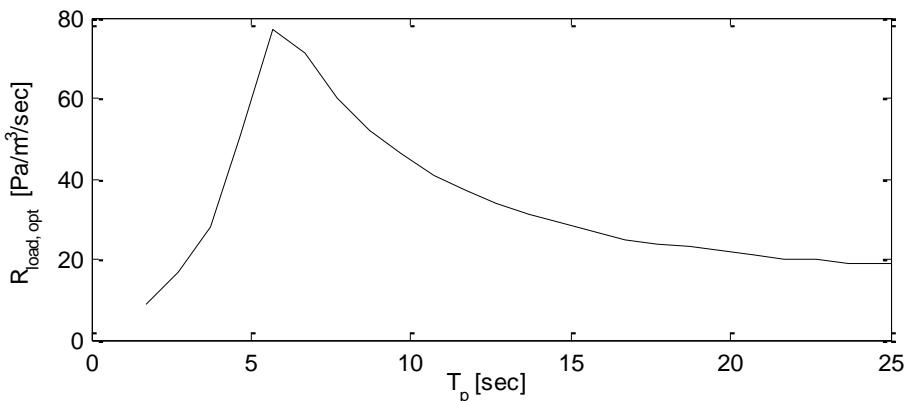
$$R_{RMS} = \sqrt{\int S_R(\omega) d\omega} = \sqrt{m_0}$$

- Significant


$$R_s = 2 \sqrt{\int S_R(\omega) d\omega} = 2\sqrt{m_0}$$

Optimization of Pneumatic Power In Random Waves

Pneumatic Power In Random Waves


- $\langle P_{ij} \rangle = R_{load,i} \int Q_{T,ij}(\omega)^2 S_{ij}(\omega) d\omega$
- Must apply a constant R_{load} across all frequencies to match the linear properties of the Wells Turbine and the Resistive Control Strategy

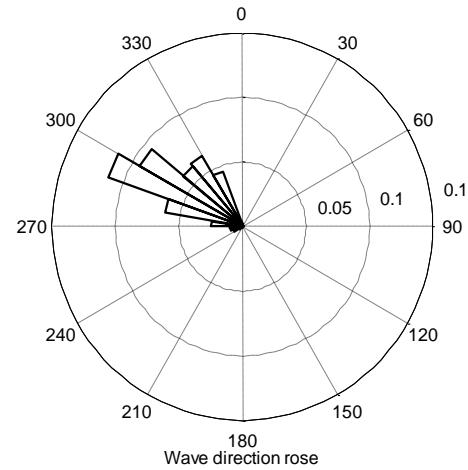
Optimization

- Run performance model with constant R_{load} 's and select the R_{load} that gives the largest pneumatic power

Optimal Resistive Damping for Hydrodynamically Coupled OWC in Random Waves

Annual Pneumatic Performance at Northern CA Deployment Location.

Sandia National Laboratories


Northern CA Characteristics

NDBC 46212 data (2004-2011)

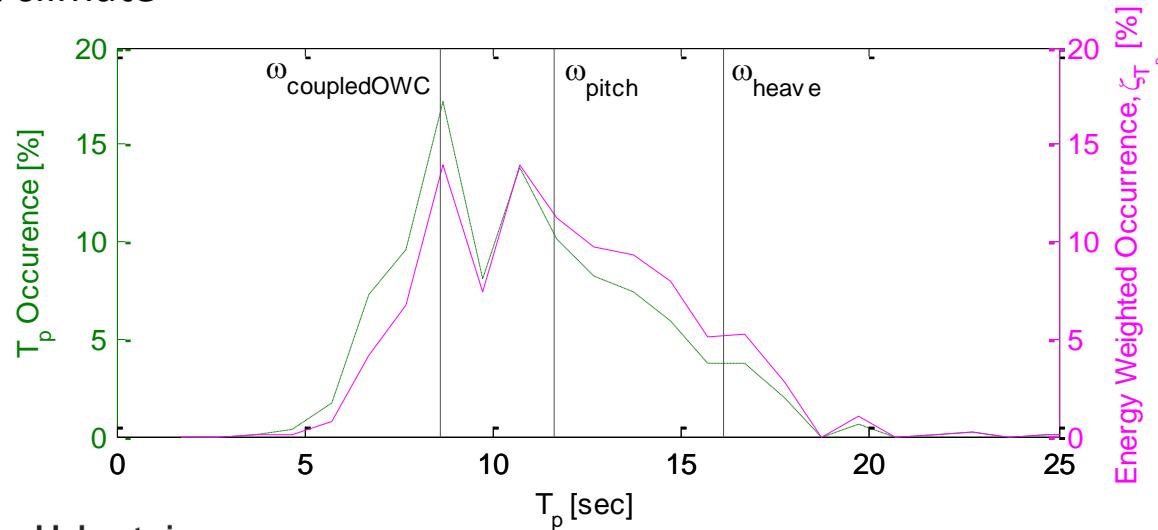
- Assume unidirectional Bretschneider spectrum.

Joint-Probability Distribution

- likelihood of a particular significant wave height, H_s , occurring with peak period T_p
- Power 31.5 kW/m

Peak Period, T_p [sec]

	4.7	5.7	6.7	7.7	8.7	9.7	10.7	11.7	12.7	13.7	14.7	15.7	16.7	17.7	18.7
Significant Wave Height, H_s [m]	0.25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.75	0.0	0.004	0.011	0.011	0.013	0.004	0.006	0.003	0.0	0.0	0.003	0.004	0.005	0.0	0.0
1.25	0.0	0.010	0.028	0.024	0.046	0.018	0.022	0.011	0.009	0.007	0.005	0.004	0.004	0.002	0.0
1.75	0.0	0.002	0.025	0.027	0.036	0.021	0.035	0.019	0.014	0.012	0.010	0.005	0.005	0.003	0.0
2.25	0.0	0.0	0.006	0.023	0.036	0.017	0.033	0.024	0.019	0.015	0.010	0.006	0.005	0.003	0.0
2.75	0.0	0.0	0.0	0.009	0.027	0.010	0.022	0.020	0.015	0.013	0.009	0.005	0.005	0.003	0.0
3.25	0.0	0.0	0.0	0.0	0.011	0.007	0.012	0.013	0.012	0.011	0.008	0.005	0.004	0.0	0.0
3.75	0.0	0.0	0.0	0.0	0.003	0.003	0.005	0.007	0.007	0.007	0.006	0.003	0.003	0.0	0.0
4.25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.003	0.004	0.004	0.0	0.002	0.0	0.0
4.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.002	0.0	0.0	0.0	0.0
5.25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4.0	4.9	5.7	6.6	7.5	8.3	9.2	10.0	10.9	11.7	12.6	13.5	14.3	15.2	16.0

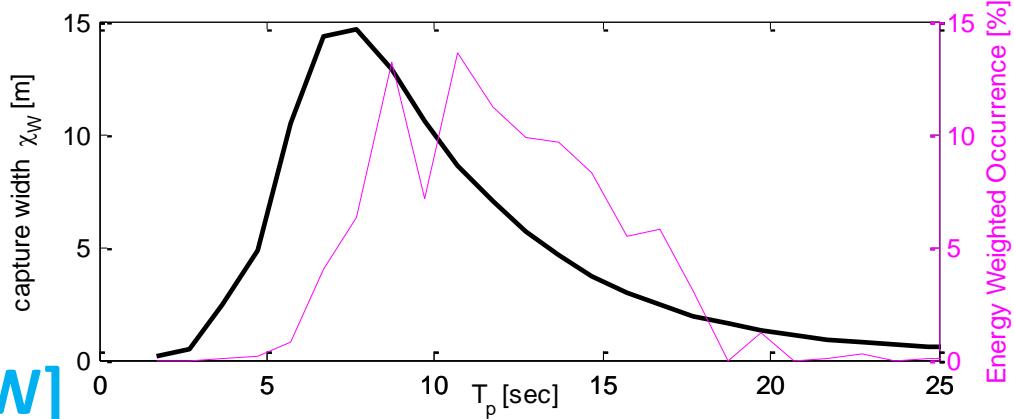

Energy Weighted Characteristics

Energy Weighted Occurrence

- $$\zeta_i = \frac{(\sum_j JPD_{ij})(\sum_j J_{ij})}{\sum_{ij} JPD_{ij} J_{ij}}$$
- Focus on the period energy weighted occurrence—resonant devices respond to frequencies!

Structural Design Match

- Ensure that the structural resonances of the device align with the energy weighted deployment climate



Annual Performance

Spectral Capture Width

- $\chi_{w,i} = \frac{\langle P_i \rangle}{J_i}$

Pneumatic Power Matrix [kW]

	Peak Period, Tp [sec]															
Significant Wave Height, Hs [m]	4.7	5.7	6.7	7.7	8.7	9.7	10.7	11.7	12.7	13.7	14.7	15.7	16.7	17.7	18.7	
0.25	1	2	3	3	3	3	3	2	2	2	2	1	1	1	1	1
0.75	5	14	23	28	28	27	24	22	20	17	15	13	11	9	8	
1.25	14	39	64	77	78	74	68	61	55	48	41	35	30	25	21	
1.75	28	76	125	150	153	144	133	120	107	93	80	69	58	49	42	
2.25	46	126	207	249	253	239	219	199	177	154	133	113	96	82	69	
2.75	69	188	309	371	378	356	328	297	264	231	199	170	144	122	103	
3.25	96	262	431	519	528	498	458	414	369	322	277	237	201	170	144	
3.75	128	349	574	691	703	663	609	552	491	429	369	315	268	227	192	
4.25	164	448	737	887	903	851	783	709	630	551	474	405	344	291	247	
4.75	205	560	921	1108	1128	1063	978	885	787	688	593	506	429	364	309	
5.25	251	684	1125	1354	1378	1299	1194	1082	962	840	724	618	525	445	377	
	4.0	4.9	5.7	6.6	7.5	8.3	9.2	10.0	10.9	11.7	12.6	13.5	14.3	15.2	16.0	

Annual Performance Metrics

	Variable		RMS Eq. 13	Significant Eq. 14
Power Performance	Pneumatic Power	kW	207.8	--
	Pneumatic Energy Production	MW-hr	1820	--
	Capture Width	m	8.89	--
Device Dynamics	Pressure	Pa	2728	5456
	Flow	m ³ /sec	66.2	132.5
	Heave	m	0.43	0.87
	Pitch	deg	2.9	5.7

Cost of Energy Proxy's	Variable	RMS			
	Capture Width Ratio	%	33	Length used	m
	Energy Capture per Displaced Mass	MW-hr / tonne	0.90	Displaced Mass	tonne
	Energy Capture per Structural Mass	MW-hr / tonne	1.01	Structural Mass	tonne
	Energy Capture per Surface Area	MW-hr / m ²	0.43	Surface Area	m ²

Next Steps

Incorporation of Wells Turbine

- **ARL at Penn State is working with SNL to size the Wells Turbine and power electronics that should be associated with this design**
 - Incorporation will include sea state – by – sea state derived efficiencies
 - This model is being completed in 2 stages:
 - Stochastic treatment of pneumatic power only⁷
 - Full stochastic treatment all the way through the generator.

Economic Model

- **NREL will be working to determine the LCOE of this device**
 - The cost model will incorporate sensitivity analysis on some of the estimates.

Thank you.

Chris Smith agreed to present this for me requiring a special acknowledgement—Thank you!

The monochromatic performance model was developed with Erick Johnson who is now at Montana State.

This research was made possible by support from the Department of Energy's Energy Efficiency and Renewable Energy Office's Wind and Water Power Program. The research was in support of the Reference Model Project.

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Diana Bull diana.bull@sandia.gov

Sandia National Laboratories

Sandia National Laboratories

References

- [1] Y. Imai, K. Toyota, S. Nagata, T. Setoguchi, and M. Takao, "An Experimental Study on Generating Efficiency of a Wave Energy Converter" Backward Bent Duct Buoy," presented at the EWTEC.
- [2] M. Suzuki, T. Kuboki, S. Nagata, and T. Setoguchi, "Numerical Investigation of 2D Optimal Profile of Backward-Bent Duct Type Wave Energy Converter," *J. Offshore Mech. Arct. Eng.*, vol. 133, no. 4, pp. 041602–8, Nov. 2011.
- [3] D. Hong, S. Hong, and S. Hong, "Numerical study on the reverse drift force of floating BBDB wave energy absorbers," *Ocean engineering*, vol. 31, no. 10, pp. 1257–1294, 2004.
- [4] D. Bull and E. Johnson, "Optimal Resistive Control Strategy for a Floating OWC Device," in *Proceedings of the 11th European Wave and Tidal Energy Conference*, Aalborg, Denmark, 2013.
- [5] D. Bull and P. Jacob, "Methodology for creating nonaxisymmetric WECs to screen mooring designs using a Morison Equation approach," in *OCEANS '12. "Harnessing the Power of the Ocean". Proceedings*, Hampton Roads, VA, 2012, pp. 1–9
- [6] P. Lenee-Bluhm, "Parameterization of Sea States for the Power Performance Assessment of WECs," SAIC, 2009.
- [7] C. Smith, D. Bull, S. Willits, and A. Fontaine, "Optimization and average annual power predictions of a Backward Bent Duct Buoy oscillating water column device using a Wells Turbine," in *Proceedings of the 2nd Marine Energy Technology Symposium*, Seattle, WA, USA, 2014.

