

 1

Development of a Software Framework
that Provides Flexible Sensor Fusion

Tiffany A. S. Pierce and Douglas G. Adams

Sandia National Laboratories
Albuquerque NM, USA, 87185-0780

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy’s National Nuclear Security Administration
under Contract DE-AC04-94AL85000.

July 13-17, 2008

ABSTRACT
Since 2006, Sandia National Laboratories has developed a sensor fusion application that com-
bines raw security sensor data in an effort to reduce nuisance alarms for security systems. This
Fusion Framework allows various algorithms to be "plugged in" to combine sensor information.
The purpose of the software is to reduce alarm data rates as well as nuisance alarms caused by
environmental conditions. The software is part of an effort by Sandia to create a security detection
system that can operate in uncontrolled exterior environments beyond the perimeter of a standard
security system for a facility. User confidence in the detection system depends on the application
of sensor fusion algorithms. Too many false or nuisance alarms can overwhelm operators, making
a security system unusable. The fusion framework team has developed a modular software
framework that handles the input, output, and flow of sensor events through the fusion application.
Various algorithms can then be attached to the framework to handle sensor fusion processing.
Algorithm developers can concentrate on development of sophisticated algorithms without the
need to spend time writing code to handle data input and output. This architecture allows new
fusion algorithms to be created, configured, and tested quickly. The design also supports
reconfiguration of algorithm parameters in real time to adapt algorithms for various external events
such as time of day or changing weather conditions. The fusion framework and a select set of
algorithms have been deployed for testing. This paper describes the sensor fusion framework and
presents some results of its performance in the field over the last several months.

1.0 INTRODUCTION
The sensor fusion framework is part of an early detection system that has been developed at
Sandia National Laboratories. This security system is intended as an extension of existing
systems that can provide early intrusion detection beyond a facility’s perimeter or in areas with low
visibility. It consists of (1) a network of sensors distributed over areas of interest, (2) infrastructure
to relay detection information to the user, and (3) a user interface that displays maps and alarm
information. The success of the detection system depends in part on the value of the information
presented to the operator. Systems that receive too many false alarms place a burden on the
operator; he must assess each alarm to determine if it represents a legitimate intrusion. A single
legitimate event can be associated with multiple detection alarms, so the operator must also verify
that each alarm is related to the same event and does not indicate a separate threat. In both
cases, the flood of alarm messages can adversely affect the usability of the security system.

To maintain data integrity, this security system includes a flexible, sophisticated sensor fusion
application. Sensor fusion consists of filtering and condensing sensor data so that the operator
sees more meaningful information and fewer false alarms. The sensor fusion application has two
main components. The first component is the fusion framework, which handles bookkeeping, data

SAND2008-3826C

 2

input and output, and configuration. The second part of the application is a set of fusion algorithms
that apply customized rules to filter and merge incoming data. Correctly configured fusion
algorithms will keep false and nuisance alarms at acceptable levels, ensuring the system is usable
and reliable. The fusion framework supports efficient development, integration, testing, and
configuration of fusion algorithms so that site-specific solutions can be implemented with relative
ease. This emphasis on flexibility yields an application that can be quickly configured to operate in
a variety of locations, configurations, and weather conditions. Since the fusion framework
architecture supports efficient algorithm development, many different ideas and approaches to
sensor fusion can be tested simultaneously within the same application.

Section 2 describes the general structure of the detection system and the design of the fusion
framework. It also describes some basic fusion algorithms that are flexible enough to handle most
fusion needs. The deployment configuration for testing the system is described in Section 3, and
preliminary performance results are presented in Section 4.

2.0 FUSION FRAMEWORK DESIGN

2.1 System Overview
The fusion application is just one component of the detection system. The detection system
consists of a hierarchy of sensors and network nodes that pass messages from the deployed
sensors to the operator of the security system. The individual sensors at the bottom of the
hierarchy are distributed over an area or along a road. Sensor distribution patterns vary according
to the particular application and terrain. The sensors pass information up the hierarchy to cluster
nodes, which gather data from a subset of sensors or other cluster nodes. Members of the top
level of cluster nodes send messages to the command node, which displays information and
interacts with the operator. The sensor fusion application can operate both on cluster nodes and
on the command node. This enables the application of local fusion algorithms at the cluster level
and implementation of global fusion algorithms at the command node. This hierarchical structure
can ease the amount of unnecessary network traffic at the command node, since data have been
filtered and condensed by the time it is reaches the top level of the hierarchy.

2.2 Framework Design
The fusion framework represents the bulk of the sensor fusion application. It handles network
input and output protocols, message sorting and bookkeeping, and algorithm configuration. The
fusion algorithms are objects that analyze incoming messages and determine the value of the
information, each according to its own rules. Each instance of an algorithm object represents a
unique fusion rule, but all fusion algorithms have a standard interface for accessing the data and
interacting with the framework. Fusion algorithms are described in more detail in a later section.

The fusion framework architecture can be considered a variant of the blackboard design pattern for
software development [1]. In the blackboard pattern, several “agents” collaboratively solve a
problem using a shared data repository, or “blackboard.” An “agent” entity is specialized to solve
one part of the problem and uses the repository to add, modify, or remove data according to its
own expertise or operation rules. Each agent monitors the blackboard for data applicable to its
own task and the agents solve the problem iteratively—the contribution of one agent may provide
enough information for another agent to contribute, and so on. This event-based architecture
naturally supports collaboration between agents since information can be communicated between
agents via the blackboard.

 3

In the fusion framework, access to shared information and interaction between fusion algorithm
objects is similar to the generic blackboard architecture. The “blackboard” contains messages from
sensors or cluster nodes, and the “agents” solve many instances of the same problem: For each
message, their task is to determine how important it is. The agents are fusion algorithms, each
with specific rules for identification and fusion of relevant data. Each algorithm object watches the
repository for new data, and if the conditions of its fusion rules are met, it creates a new fused
message, places it in the repository, and assigns it a high-priority value. The abilities of fusion
algorithms are more restricted than agents in the generic blackboard pattern. The framework acts
as a supervisor, and allows algorithms to operate only in a specified order. Further, only one agent
is allowed to erase data, and does so when it has expired or has been identified as low priority by
other algorithms. Most of the problem solving involves the agents assigning and modifying priority
values of the messages in the repository. If a message is assigned a priority value that exceeds
user-defined thresholds, it is forwarded to the next node in the network.

The framework can be notified when a new algorithm must be added or an old one halted via net-
work commands. This blackboard-style architecture provides a general interface for accessing
sensor data. Since the algorithms are “plugged in” and supervised by the framework, it is easy to
add or remove algorithms, even during runtime. This feature can be useful when the algorithm
parameters need to be tuned in response to changing weather, temperature, or time of day.
Fusion algorithms all have the same base class that provides the framework interface and several
basic methods required by most algorithms. Since the framework itself handles the bookkeeping
and data control issues, all the algorithm designer needs to do is implement the new fusion rule
and identify the configurable components. In this way, the fusion framework supports quick
development and integration by providing a flexible architecture that allows runtime configuration
and addition of fusion algorithms.

2.3 Fusion Algorithm Implementation
To ensure that fusion algorithms are as general as possible, we allow the user to specify many
algorithm parameters at startup or during runtime. For example, algorithms can be configured to
only analyze data from specific sensors or sensor types. The user can also specify a score for
certain sensors or sensor types, which affects the influence of the sensors. In this way, a noisy or
error-prone sensor can be assigned less weight than a relatively reliable sensor. Sensors can
even be assigned negative values. This is useful, for example, if a particular algorithm is designed
to ignore any events caused by vehicles. It may assign negative values to magnetic sensors, so
that messages from magnetic sensors are ignored by this algorithm. Finally, many algorithms
depend on the presence of a number of messages within a time window. This time window can
also be configured, so that the same algorithm can be applied to detection of vehicles and
pedestrians by adjusting the window to reflect the speed of the object. These configurable
parameters help ensure that the installation of a site-specific security system is relatively efficient.

Several algorithms for basic nuisance alarm filtering and data fusion are already implemented.
These algorithms help ensure that the messages received at the command node are useful and
informative. Since an algorithm must have raised the priority value of data for the message to be
seen at the command node, each of these algorithms implicitly filter nuisance alarms merely by
ignoring them.

2.3.1 Boosting Algorithms
Since the default priority of all incoming sensor messages is below the fusion threshold, the
boosting algorithm is available to detect important sensor messages and immediately boost their
priorities. This algorithm is commonly used to boost the priority of messages that are not detection
alarms. For example, the system may need state of health messages and tamper messages to

 4

pass straight through the fusion framework without delay. Also, there may be situations in which
the message from a particular sensor is always relevant, and no filtration is necessary. In this
case, a boosting algorithm can be configured to check for a certain type of event, or an event from
a specific sensor. These algorithms typically operate first to minimize the delay of important
messages.

2.3.2 Time-Gated Algorithms
Some sensors are notorious for sending a single false alarm at seemingly random times. Often the
presence of an intruder is accompanied by more than one alarm, so we can ignore these single
false alarms with time-gated algorithms that watch for a number of alarms within a specified time
window. Time-gated algorithms can be configured to watch for messages from a single sensor or
a group of sensors, and fuse them together if they occur within the specified time window. With
appropriate fusion configurations, multiple sensor alarms related to a single event can be
represented as a single, more informative message for the operator. Instead of several alarms
from different sensors assailing the operator at once, the time-gated algorithm can produce a
single message that says, for example, that five detections from the same location have been
received in the last five seconds. This time-gated algorithm is versatile enough that it is the most
often used algorithm. A set of cleverly configured time-gated fusion algorithms is generally
sufficient to reduce system-wide nuisance alarms to acceptable levels.

2.3.3 Tracking Algorithms
Another kind of fusion algorithm that adds meaning to the raw sensor messages is the tracking
algorithm. A tracking algorithm attempts to identify a pattern of sensor alarms that indicates an
intruder is traveling in a certain direction or along a path. These algorithms can report approximate
direction of travel or approximate rate of travel. They can also avoid sending fused data when an
alarm pattern seems to be a meandering path or a set of random detection alarms. Tracking
algorithms are best used when there are many sensors distributed in a grid pattern over a large
area. The sensors need to have relatively small, uniform detection areas. If the detection area of
the sensors is too large, or if they have large overlaps, pinpointing the location of a possible
intruder becomes more difficult. For sets of sensors with overlapping detection areas or detection
areas of varied size, an algorithm that learns alarm patterns may be more useful. The hardware
and configurations used at the test site were not ideal for tracking algorithms, so only time-gated
algorithms are used to evaluate the sensor fusion application's performance.

3.0 APPROACH

3.1 Test Layouts
The test deployment of our extended detection system is composed of two general sensor
configurations. In two locations, sensors are distributed over a heavily wooded area, and the goal
is to detect intruders moving through the area on foot. In other areas, sensors line small sections
of a road, and the goal is to detect both vehicles and walkers traveling along the road. For a forked
road the goal is also to determine which fork the vehicle or person takes. Each part of the sensor
network can contain several different kinds of sensors including seismic, infrared, and magnetic
(metal) sensors.

Configuration of the fusion algorithms was accomplished using test vehicles and personnel to
determine the alarm patterns and detection areas of the sensors. For identification of walkers in
the wooded area, the time-gated algorithm is used to fuse sensor alarms from groups of sensors
that are close to each other. The size of the time window was tuned experimentally. Similarly,
sensor groups were determined by location and time windows were determined experimentally.

 5

For vehicle detection, the magnetic sensors are weighted heavily and the algorithms are
configured such that without a magnetic sensor alarm, the data will not be fused. The detection
requirements for the extended detection system state that foot traffic must have a probability of
detection of at least 75% and vehicle traffic must have a probability of detection of at least 90%.
The goal for the nuisance alarm rate is less than one nuisance alarm per hour per detection zone.
Data from four detection zones are presented here. During installation, the probability of detection
was tested and verified to be above the required values. The data presented in this paper show
the alarm reduction that the sensor fusion application provides.

After system installation and configuration, log files track network activity and provide enough
information for an estimate of the effect of sensor fusion with respect to nuisance alarms. The
number of raw messages from sensors, the number of messages contributing to a fused message,
and the number of fused messages sent to the command node can all be recorded. A sampling of
several days of the fusion system's performance provides a good estimate for the average alarm
rates of the system. Section 4 presents a summary of these findings.

4.0 RESULTS

4.1 Performance of Algorithms
The primary goal of the sensor fusion application is to reduce nuisance alarm rates and combine
valid alarms that from the same event into a single message. In this way, the system avoids
overwhelming operators or losing the operator’s trust. Each fused alarm that the command node
receives is composed of at least one raw message from the sensor. The raw messages that can
be combined into a fused message are referred to as legitimate raw data. The amount of
legitimate raw data that makes up a single fused message depends on the specific configurations
of the fusion algorithms. Generally, an algorithm will continue to collect legitimate raw data after
sending a fused message to the command node, but these additional messages are not recorded.
Therefore, the legitimate raw data represent a lower bound on the number of messages related to
a single event and the actual numbers may be unknown. In situations where the total number of
raw messages from sensors is unknown, legitimate raw data also provide a lower bound for the
total number of messages. The amount of raw sensor messages per day is at least the amount of
legitimate raw data represented by fused messages at the command node.

The bar chart in Figure 1 depicts typical daily alarm activity at the command node. The heights of
the black bars indicate the number of fused alarms, which are the alarms received at the command
node; the gray bars indicate the amount of legitimate alarms represented by the fused alarms. The
number of fused alarms generally remains under 100.

 6

Daily Detection Alarms

0

50

100

150

200

250

300

350

29
-J

un

30
-J

un

1-
Ju

l

2-
Ju

l

3-
Ju

l

4-
Ju

l

5-
Ju

l

6-
Ju

l

7-
Ju

l

8-
Ju

l

9-
Ju

l

10
-J

ul

11
-J

ul

12
-J

ul

13
-J

ul

14
-J

ul

15
-J

ul

16
-J

ul

17
-J

ul

18
-J

ul

19
-J

ul

20
-J

ul

21
-J

ul

22
-J

ul

Days

A

la
rm

s

Legitimate Raw

Fused Alarms

Figure 1 - Example of daily alarm activity across the entire test site.

Assessment data are not available, so it is impossible to identify whether fused alarms represent
false alarms; but, daily alarm data seem correlated to the level of activity of personnel and
vehicles. Figure 1 shows a marked decrease of activity during the week surrounding the 4th of July
holiday, which corresponds to a decrease in general activity at the test site.

During a typical weekday, there are hundreds of nuisance and false alarms. The average total
number of raw alarms from the network varies greatly from day to day. These variations could be
due to a number of environmental factors such as wind, lightning, and changing temperature.
Encouragingly, the number of fused alarms remains low even when there are excessive nuisance
alarms. The graphs in Figures 2 and 3 show typical daily alarm rates from a single zone for
several weeks in October and February, respectively. In these graphs, the number of raw alarm
messages is often so high that in comparison, the fused alarm rate appears to be almost zero.

Daily Alarms (October)

0

100

200

300

400

500

600

700

D
ay

 1

D
ay

 2

D
ay

 3

D
ay

 4

D
ay

 5

D
ay

 6

D
ay

 7

D
ay

 8

D
ay

 9

D
ay

 1
0

D
ay

 1
1

D
ay

 1
2

D
ay

 1
3

D
ay

 1
4

D
ay

 1
5

Al

ar
m

s

Total # Messages Legitimate Raw Fused Alarms

Figure 2 - Example of daily alarm activity for fifteen days in October

 7

Notice that although the total number of messages can be very large, the number of fused
messages sent to the command node remains relatively low and stable. In general, the number of
fused messages is much less than 24 alarms/day. This means that even if most of the fused
messages are actually false alarms, the nuisance alarm rate is usually less than one alarm per
hour per zone. Only the Day 2 data point in Figure 3 exceeds 24 fused alarms in a single day.
Since it is excessively conservative to assume that all of the fused alarms represent false alarms, it
is safe to assume that the average nuisance alarm rate is much less than one alarm per hour.

Daily Alarms (February)

0

100

200

300

400

500

600

700

800

900

1000

D
ay

 1

D
ay

 2

D
ay

 3

D
ay

 4

D
ay

 5

D
ay

 6

D
ay

 7

D
ay

 8

D
ay

 9

D
ay

 1
0

D
ay

 1
1

D
ay

 1
2

D
ay

 1
3

D
ay

 1
4

D
ay

 1
5

D
ay

 1
6

D
ay

 1
7

D
ay

 1
8

D
ay

 1
9

D
ay

 2
0

D
ay

 2
1

Al

ar
m

s

Total # Messages Legitimate Raw Fused Alarms

Figure 3 - Example of daily alarm activity for three weeks in February

The values in Table 1 present the average daily alarm rates from 81 sample days distributed over
the entire deployment time. Notice that in this table, although the number of raw messages from
the sensor network varies significantly, the average daily number of fused alarms remains fairly
low. The standard deviation indicates that there is a great deal of variation in the daily level of
fused alarms, but this is to be expected given fluctuation in activity levels on weekends and during
weekdays. The average number of fused alarms per day is well below the nuisance alarm
requirements, and it is safe to assume that not all alarms are false. Further, the number of fused
alarms received at the command node on average represents only about 3.4 % of the total number
of messages, and less than 26% of the number of legitimate messages. From these data, it is
clear that the compression of valid detection information into fused alarm messages is a valuable
feature. It is also clear that the nuisance alarms are being successfully filtered: our sensor fusion
application, equipped with basic time-gated fusion algorithms, is able to reduce the message load
at the command node by an average of approximately 96.5%.

“Total Raw” indicates the average number of alarms generated by the sensor network. The
“# Legit” is a lower bound on the number of alarms that are combined into a fused alarm. The
“# Fused” is the number of fused alarms received at the command node, and the “# Nuisance”
column indicates the daily number of alarms that are not part of a fused alarm. The “% Total”
column is the average percentage of total raw alarms that the fused alarms represent. Similarly,
the “% Legit” column is the percentage of legitimate raw alarms represented by fused alarms.

 8

Table 1 - Average daily alarm rates and standard deviations.

 Total Raw # Legit # Fused # Nuisance % Total % Legit
Daily Average 349 55.5 14.6 294 3.42 % 26.1 %

Std. Deviation 683 114 28.9 604 3.19 2.73

5.0 DISCUSSION

5.1 Algorithm and Framework Performance
The goal of the fusion system is to reduce the nuisance alarm rate to less than one false alarm per
hour, or less than 24 false alarms per day. Even assuming that every alarm on a given day is
false, the average alarm rate produced by the system is well within the nuisance alarm goals. The
sensor fusion application not only reduces false alarms, but also reduces the number of alarms an
operator receives that are related to the same event. This approach ensures that the extended
detection system will be usable and reliable. Further, the fusion framework is designed with an
emphasis on flexibility and efficient algorithm development. This secondary goal ensures that
future algorithms will be easy to implement, and site-specific installation of the system will be as
efficient as possible.

REFERENCES
[1] Carver, N. and V. Lesser, The Evolution of Blackboard Control Architectures. Technical

Report. UMI Order Number: UM-CS-1992-071, University of Massachusetts, 1992.

