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Outline

•

 

Credible simulation and V&V
•

 

Characterizing and propagating uncertainty 
for risk analysis and validation

•

 

Intro to aleatory

 

and epistemic UQ in DAKOTA
•

 

Application examples:
–

 

UQ for CMOS7 ViArray

 

UQ 
–

 

Sandia’s

 

QASPR program: computational model-

 
based system qualification

To be credible, simulations must be verified, validated 
with data, and deliver a best estimate of performance, 
together with its degree of variability or uncertainty.

Slide credits:  Mike Eldred, Laura Swiler, Tony Giunta, Joe Castro, 
Genetha

 

Gray, Bill Oberkampf, Matt Kerschen, others



Insight from Computational Simulation 

d
Hurricane Katrina: weather, 

logistics, economics, 
human behavior

Electrical circuits: networks, 
PDEs, differential algebraic 

equations (DAEs), E&M

Earth penetrator: nonlinear 
PDEs

 

with contact, transient 
analysis, material modeling

Micro-electro-mechanical 
systems (MEMS): quasi-

 
static nonlinear elasticity, 

process modeling

Joint mechanics: system-

 
level FEA for component 

assessment

Systems of systems 
analysis: multi-scale, 
multi-phenomenon



Credible Simulation

•

 

Ultimate purpose of modeling and simulation is 
(arguably) insight, prediction, and decision-making 
need credibility for intended application

•

 

Historically: primary focus on

 

modeling fidelity

Bill Oberkampf



Credible Simulation: V&V and UQ

Bill Oberkampf



Verification & Validation

•

 

Ultimately, quantification of margins and uncertainties (QMU):  
How close are my uncertainty-aware code predictions to required performance? 

•

 

Validation:

 

“Are we solving the right equations?”
–

 

A disciplinary science issue:  is the science (physics, biology, etc.) model 
sufficient for the intended application?

–

 

Involves data and metrics; relies on uncertainty quantification (UQ)

•

 

Verification:

 

“Are we solving the equations correctly?”
–

 

A mathematics/computer science issue:

 

is our mathematical formulation and 
software implementation of the physics model correct?

–

 

code verification

 

(software correctness): SQE, especially unit/regression/ 
verification testing; analytic problems, method of manufactured solutions

–

 

solution verification:

 

e.g., exhibits proper order of spatial/temporal/iterative 
convergence.  Algorithms:  Richardson extrapolation, finite element error 
estimation (ZZ, QOI)



Algorithms for Computational
 Modeling & Simulation

System Design

Geometric Modeling

Meshing

Physics

Model Equations

Discretization

Partitioning and Mapping

Nonlinear solve

Linear solve

Time integration

Information Analysis & Validation

Adapt
Optimization

and UQ

Improved design and understanding

Are you sure you don’t need verification?!



Hierarchical Validation Experiments
 (Abnormal Thermal Environment)

SubassembliesSubassemblies

Full SystemFull System

Separable
Effects
Separable
Effects

ComponentsComponents

Deployed SystemDeployed System

Bill Oberkampf

increasing com
plexity, few

er experim
ents  

Validation:

 

“Are we solving the right equations?”

 

Based on experimental 
data and metrics, is the model sufficient for the intended application?



Validation Metrics: Quantitative 
Comparison with Experiment

Bill Oberkampf



Validation Metrics: Quantitative 
Comparison with Experiment

Bill Oberkampf
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Extrapolating Beyond 
Validation Domain



Uncertainties to Quantify

•

 

typical parametric uncertainty, incl. random fields/processes
–

 

physics/science parameters
–

 

statistical variation, inherent randomness
–

 

operating environment, interference
–

 

initial, boundary conditions; forcing
–

 

geometry / structure / connectivity
–

 

material properties
–

 

manufacturing quality
•

 

model form / accuracy
•

 

program: requirements, technical readiness levels
•

 

human reliability, subjective judgment, linguistic imprecision

•

 

numerical accuracy:

 

mesh, solver, approximation error
•

 

experimental error:

 

measurement error, bias

A partial list of uncertainties affecting computational model results



•
 

A single optimal design or nominal performance 
prediction is often insufficient for 
–

 
decision making / trade-off assessment

–
 

validation with experimental data ensembles

•
 

Need to make risk-informed decisions, based 
on an assessment of uncertainty

Why Uncertainty Quantification?



Verification & Validation:
 A Formal, Iterative Process

•

 

Validation

 

is “the process

 

of 
determining the degree to which a 
computer model is an accurate 
representation  of the real world 
from the perspective of the 
intended model applications.”

•

 

Relies on comparing code 
calculations to results of physical 
experiments, with

 

the goal of 
developing and quantifying 
confidence in codes to predict a 
specified problem result

•

 

Credibility

 

assesses model and 
experiment relevance, 
quantification and capture of non-

 
deterministic components, and 
model adequacy

Code
Verification

Code
Verification

DP
Application

DP
Application

PlanningPlanning

Experiment
Design, Execution

& Analysis

Experiment
Design, Execution

& Analysis

MetricsMetrics

AssessmentAssessment

Prediction 
& Credibility
Prediction 

& Credibility
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Requirements 
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Validation 
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Are we solving the equations  correctly?

Are we using the correct equations?

Are we using the converged solution?

Well-characterized result: 
BEST ESTIMATE + 

UNCERTAINTY



Coverage Matrix Shows Code 
Features Exercised in Verification Tests

Sierra Capabilities (subset) SNL-Problem LANL-Problem

Matrix helps prioritize gaps, create new verification 
problems to fill most important, w.r.t. intended use.

Fills Gap



Categories of Uncertainty

•

 

Aleatory

 

(think probability density function)
–

 

Inherent variability (e.g., in a population)
–

 

Irreducible uncertainty –

 

can’t reduce it by further knowledge

•

 

Epistemic (think bounded intervals)
–

 

Subjective uncertainty
–

 

Related to what we don’t know
–

 

Reducible:  If you had more data or more information, you 
could make your uncertainty estimation more precise

•

 

In practice, people try to transform or translate 
uncertainties to the aleatory

 

type and perform sampling 
and/or parametric analysis

Often useful algorithmic distinctions, but not always a clear division



•

 

based on uncertain inputs, determine 
variance of outputs and probabilities 
of failure (reliability metrics)

•

 

identify parameter correlations/local 
sensitivities, robust optima

•

 

identify inputs whose variances 
contribute most to output variance 
(global sensitivity analysis)

•

 

quantify uncertainty when using 
calibrated model to predict

Uncertainty Quantification
Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

Potential Goals:

Input Variables u

 
(physics parameters, 
geometry,  initial and 
boundary conditions)

Computational

 
Model

Variable 
Performance

 
Measures f(u)

(possibly given distributions)

Output 
Distributions

N samples

measure 1

measure 2

Model

Typical method: Monte Carlo Sampling

u1

u2

u3



Uncertainty Quantification Example

•

 

Device subject to heating

 

(experiment or 
computational simulation)

•

 

Uncertainty in composition/ 
environment (thermal conductivity, 
density, boundary), parameterized by 
u1

 

, …, uN
•

 

Response temperature f(u)=T(u1

 

, …, uN

 

)

 
calculated by heat transfer code

Given distributions of u1

 

,…,uN

 

, 
UQ methods calculate 
statistical info on outputs:
•

 

Probability distribution of 
temperatures
•

 

Correlations (trends) and 
sensitivity of temperature
•

 

Mean(T), StdDev(T), 
Probability(T

 

≥

 

Tcritical

 

)
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UQ: Sampling Methods

Given distributions

 

of u1

 

,…,uN

 

, UQ 
methods…
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Output 
Distributions

N samples

measure 1

measure 2

Model
…calculate statistical info 
on outputs T(u1

 

,…,uN

 

)
u1

u2

u3

• Monte Carlo sampling
• Quasi-Monte Carlo
• Centroidal

 

Voroni

 

Tessalation

 

(CVT)
• Latin Hypercube sampling
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Latin Hypercube Sampling (LHS)

•

 

Specialized Monte Carlo (MC) sampling technique: 
workhorse method in DAKOTA / at Sandia

•

 

Stratified random sampling among equal probability bins

 

for 
all 1-D projections of an n-dimensional set of samples.

•

 

McKay and Conover (early), restricted pairing by Iman

A B C D

G

H

I

J

K

L
−∞ ∞

Intervals Used with a LHS of Size n = 5 in 
Terms of the pdf

 

and CDF for a Normal 
Random Variable

A Two-Dimensional Representation of One 
Possible LHS of size 5 Utilizing X1 (normal)  

and X2 (uniform)
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Calculating Probability of Failure

•

 

Given uncertainty in materials, geometry, and 
environment, determine likelihood of failure 
Probability(T

 

≥

 

Tcritical

 

)

•

 

Could perform 10,000 
Monte Carlo samples and 
count how many exceed the 
threshold…

•

 

Or directly determine input 
variables which give rise to 
failure behaviors by solving 
an optimization problem.



Alternatives to Sampling

•

 

for a modest number of random variables, polynomial chaos 
expansions

 

may converge considerably faster to statistics of 
interest

•

 

if principal concern is with failure modes (tail probabilities),

 
consider global reliability methods

LHS sampling is robust, trusted, ubiquitous,

 

but advanced 
methods may offer advantages:

Hybrid

Surrogate Based

OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2nd Order ProbabilityUncOfOptima

Pareto/Multi-Start

Upcoming (Mike):  DAKOTA enables 
more efficient UQ by combining 
optimization, uncertainty analysis 
methods, and surrogate (meta-) 
modeling in a single framework.



Challenge: Epistemic UQ

•

 

Epistemic uncertainty:

 

insufficient information to specify a 
probability distribution

•

 

Subjective, reducible, or lack-of-knowledge uncertainty 
(given more resources to gather information, could reduce the uncertainty)

•

 

For example:
–

 

“I expect this parameter to have a lognormal distribution, but only 
know bounds on its mean and standard deviation,”

 

or
–

 

Dempster-Shafer belief structures: “basic probability assignment”

 

for 
each interval where the uncertain variable may exist; 
contiguous, overlapping, or gapped

BPA=0.5 BPA=0.2
BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2



Propagating Epistemic UQ

Second-order probability
–

 

Two levels: distributions/intervals on 
distribution parameters

–

 

Outer level can be epistemic (e.g., interval)
–

 

Inner level can be aleatory

 

(probability distrs)
–

 

Strong regulatory history (NRC, WIPP).

Dempster-Shafer theory of evidence
–

 

Basic probability assignment (interval-based)
–

 

Solve opt. problems (currently sampling-based)

 
to compute belief/plausibility for output intervals

New

New



Circuit UQ Analysis

Use DAKOTA with Xyce

 

circuit simulator to perform pre-

 fabrication uncertainty analysis of new CMOS7 ViArray

•

 

ViArray: generic ASIC implementation platform
•

 

Target applications: guidance, satellite, command & control
•

 

Assess voltage droop/spike during photocurrent event
•

 

Consider effect of process variation in each ‘layer’

 

on 
supply voltages; representative distributions:

•

 

Truncated normals

 

used for METAL and VIA; truncated 
lognormals used for CONTACT and polyc.



ViArray: Benefits of UQ

•

 

One ensemble of UQ calculations used to 
determine most sensitive parameters and output 
ranges: determined that sensitivity depends on 
final chip configuration

•

 

Suspicious UQ results led to correcting simulation 
failures not observed at nominal parameters

•

 

Gave process engineers and circuit designers 
insight into possible circuit behaviors

•

 

Sensitivity could help guide data collection

•

 

Ongoing work: assess interaction of package 
parasitics

 

with on-chip parasitics, V&V for 
photocurrent generation models



•

 

Military requirement: certify to hostile 
environment

neutrons create damage
Emitter 
(n-type)

Base 
(p-type)

Collector 
(n-type)

x
x

x
xx

x
x

damage degrades gain

Neutron Radiation Exposure 
Degrades Electronics 



•

•

 

SPR dismantled end of FY06 to improve  
security posture

•

 

Military requirement: certify to hostile 
environment

neutrons create damage
Emitter 
(n-type)

Base 
(p-type)

Collector 
(n-type)

x
x

x
xx

x
x

damage degrades gain

Neutron Radiation Exposure 
Degrades Electronics 

pass/fail

 testing



quantified

 uncertainty

•

•

 

SPR dismantled end of FY06 to improve  
security posture

•

 

Military requirement: certify to hostile 
environment

neutrons create damage
Emitter 
(n-type)

Base 
(p-type)

Collector 
(n-type)

x
x

x
xx

x
x

damage degrades gain

QASPR (Qualification Alternatives to Sandia Pulse Reactor) 
methodology will certify qualification via modeling & 

simulation with quantified uncertainty

Neutron Radiation Exposure 
Degrades Electronics 



UQ

M&SEC

select 
experiments 
in alternate 
facilities

γ,n – 100 ms
long pulse

ion – 100 μs
short pulse

QASPR: Science-Based 
Engineering Methodology For Qualification
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high performance, 
multi-fidelity, predictive 
computational modeling

validation



V&V for QASPR Components

•

 

Developing formal V&V 
plans

•

 

Each computational code 
subject to code and 
solution verification

•

 

UQ used to validate 
device model response 
against data ensembles

•

 

Ultimately systems 
(circuit) V&V for 
qualification



Device Prototype: 
UQ Extrapolation to SPR

•

 

Calibrated to other 
facilities, CHARON 
fills SPR gap

•

 

Uncertainty & bias 
characterized by 2 
degrees of freedom
–

 

facility multiplier
–

 

device multiplier

•

 

Uncertainty 
quantified with D.O.E 
+ statistical approach

End UQ Methodology Goal: Best Estimate 
+ Uncertainty Prediction for SPR

Facility Multiplier, F

Device Multiplier, M

μM-MS

 

= 1.0

μF-SPR

 

= 1.0μF-ACR

 

= 0. 88

μM-FA

 

= 1.07

Model DevelopmentFacility Bias

BE+U Prediction

σF-SPR

Device Bias

σM-FA



+2σ

peak damage

-2σ

mean

Model Validation: Blind Prediction

UQ algorithms have a critical role in 
system validation

Transient Device Damage Response
•

 

Fairchild response data 
within SPR hidden

•

 

First prototype

 

of the 
QASPR methodology 
(and real validation of 
the QASPR system)  

•

 

Prediction + Uncertainty 
(+/-2σ

 

device and facility 
uncertainty)



Model Validation: Blind Prediction

UQ algorithms have a critical role in 
system validation

+/- 1-2% vertical error on 
experimental measurement
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Model Validation: Blind Prediction
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Model Validation: Blind Prediction

UQ algorithms have a critical role in 
system validation

+/- 1-2% vertical error on 
experimental measurement

Transient Device Damage Response
•

 

Fairchild response data 
within SPR hidden

•

 

First prototype

 

of the 
QASPR methodology 
(and real validation of 
the QASPR system)  

•

 

Prediction + Uncertainty 
(+/-2σ

 

device and facility 
uncertainty)



Electrical Modeling Complexity

•

 

simple devices:

 

1 parameter, 
typically physical and 
measurable

•

 

e.g., resistor @ 100Ω

 

+/-

 

1%
•

 

resistors, capacitors, inductors, 
voltage sources

Circuit Board

Large Digital Circuit
(e.g., ASIC)

Sub-circuit 
(analog)

Single Device

device: 1 to 100s of params

sub-circuit: 10s to 
100s of devices

ASIC: 1000s to 
millions of devices

•

 

complex devices:

 

many parameters, some 
physical, others “extracted”

 

(calibrated)
•

 

multiple modes of operation
•

 

e.g., zener

 

diode: 30 parameters, 3 bias 
states; many transistor models (forward, 
reverse, breakdown modes) 

sim
ulation tim

e grow
s exponentially

(G. Gray, M. M-C)

complex device models + replicates in circuits



UQ: Mitigate Explosion of Factors!

L

H

N

•

 

Consider bounding parameter 
sets?

•

 

Exploit natural hierarchy or 
network structure?

•

 

Use surrogate/macro-models as 
glue between levels?

•

 

Need approaches curbing the 
curse of dimensionality



Summary

•

 

Formal V&V process helps certify credible simulation

•

 

Uncertainty quantification algorithms are essential in 
validation and calibration under uncertainty

•

 

Complex, large-scale simulations demand research in 
advanced efficient UQ methods

Thank you for your attention!
briadam@sandia.gov 

http://www.sandia.gov/~briadam

To be credible, simulations must be verified, validated 
with data, and deliver a best estimate of performance, 
together with its degree of variability or uncertainty.
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