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Outline

To be credible, simulations must be verified, validated
with data, and deliver a best estimate of performance,
together with its degree of variability or uncertainty.

e Credible simulation and V&V

« Characterizing and propagating uncertainty
for risk analysis and validation

* Intro to aleatory and epistemic UQ in DAKOTA

« Application examples:
— UQ for CMOS7 ViArray UQ

— Sandia’s QASPR program: computational model-
based system qualification

Slide credits: Mike Eldred, Laura Swiler, Tony Giunta, Joe Castro,
Genetha Gray, Bill Oberkampf, Matt Kerschen, others
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nsight from Computational Simulation

Micro-electro-mechanical
systems (MEMS): quasi-
static nonlinear elasticity,
process modeling
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Earth penetrator: nonlinear
PDEs with contact, transient
analysis, material modeling
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Electrical circuits: networks,
PDEs, differential algebraic
equations (DAEs), E&M
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Systems of systems
analysis: multi-scale,
multi-phenomenon

Speed in Knots
I 34 10 50 knots
[ 5010 65 knots
I &5 knots or greater
®  Oéfshore Platforms

Hurricane Katrina: weather,
logistics, economics,
human behavior
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}.‘ Credible Simulation

 Ultimate purpose of modeling and simulation is
(arguably) insight, prediction, and decision-making -
need credibility for intended application

Analysis Credibility
Deterministic Results

fll ! B

/i W
/i \
/i )

Bill Oberkampf

 Historically: primary focus on modeling fidelity
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Credible Simulation: V&V and UQ

oy it
A
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VALIDATION ACTIVITIES

Validation experiments
Hierarchical experiments
Validation simulations
Validation metrics

Spatial discretization error
Temporal discretization

SIMULATION CREDIBILI

ondeterministic Results

\ VERIFICATION ACTIVITIES

Software quality assurance
Static testing

Dynamic testing

Traditional analytical solutions
Manufactured solutions

Order of accuracy assessment

UNCERTAINTY QUANTIFICATION

Parametric uncert&inty N&mial environments

Model form uncertainty Abnormal environments

Sensitivity analysis

Extrapolation uncertainty -

Bill Oberkampf

Hosgile environments
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Verification & Validation

 Ultimately, quantification of margins and uncertainties (QMU):
How close are my uncertainty-aware code predictions to required performance?

- Validation: “Are we solving the right equations?”

— A disciplinary science issue: is the science (physics, biology, etc.) model
sufficient for the intended application?

— Involves data and metrics; relies on uncertainty quantification (UQ)

* Verification: “Are we solving the equations correctly?”

— A mathematics/computer science issue: is our mathematical formulation and
software implementation of the physics model correct?

— code verification (software correctness): SQE, especially unit/regression/
verification testing; analytic problems, method of manufactured solutions

— solution verification: e.g., exhibits proper order of spatial/temporal/iterative
convergence. Algorithms: Richardson extrapolation, finite element error
estimation (ZZ, QOI)

. E . _ 3
p= ! 111{ g”dll n“ = | T(u,): (G(Vz,) —Vz,) dQ
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Algorithms for Computational
Modeling & Simulation

_'}

Are you sure you don’t need verification?!

+ System Design Physics
v

v
Geometric Modeling Model Equations

I Weshing J [ Biscretization J
ORI | g | [ Tmemegmion |

| —
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~, 'Hlerarchlcal Validation Experiments

(Abnormal Thermal Environment)

Validation: “Are we solving the right equations?” Based on experimental
data and metrics, is the model sufficient for the intended application?

sjuswiiadxa 1oma} ‘AJxajdwod Buiseasoul

Bill Oberkampf

Components

Separable
Effects
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—~y ' Validation Metrics: Quantitative
e Comparison with Experiment

» experiment

{ experiment
-o- computation

-o— computation

Experiment Computation
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- « ' Validation Metrics: Quantitative
o Comparison with Experiment

Final Temperature Values

Experiment

Test
Data

+1 Model
Data

£ 3

Temeprature [deg C]

§ experiment
-$- computation
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response

input

(d) Numerical Error

Bill Oberkampf

response

%+ experiment
-~ computation
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y, 1

E

input

(e) Nondeterministic

Computation

Computation - Experiment

o0 =

(f) Statistical
Comparison
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Extrapolating Beyond
Validation Domain
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V '
} Uncertainties to Quantify

A partial list of uncertainties affecting computational model results

* typical parametric uncertainty, incl. random fields/processes
— physics/science parameters
— statistical variation, inherent randomness
— operating environment, interference
— initial, boundary conditions; forcing
— geometry / structure / connectivity
— material properties
— manufacturing quality
 model form / accuracy
* program: requirements, technical readiness levels
« human reliability, subjective judgment, linguistic imprecision

* numerical accuracy: mesh, solver, approximation error
« experimental error: measurement error, bias
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}I Why Uncertainty Quantification?

* A single optimal design or nominal performance
prediction is often insufficient for

— decision making / trade-off assessment
— validation with experimental data ensembles

* Need to make risk-informed decisions, based
on an assessment of uncertainty
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Verification & Validation:
A Formal, Iterative Process

« Validation is “the process of
DP determining the degree to which a
Application ) Requirements computer model is an accurate
and planning representation of the real world
from the perspective of the
intended model applications.”

Planning

v

* Relies on comparing code
calculations to results of physical

Experiment ; !
Design, Execution experiments, with the goal of
& Analysis developing and quantifying

confidence in codes to predict a
specified problem result

Calculation
Verification

Are we solving the equations |correctly?

Code
Verification

» Credibility assesses model and
experiment relevance,
quantification and capture of non-
deterministic components, and
model adequacy

Verification

Assessment

Prediction Well-characterized result:
& Credibility BEST ESTIMATE +
UNCERTAINTY

SOLIJ9I UoHEpIjeA

~

Are we using the converged solution?

Are we using the correct equations?

Document Sandia
@ National
Trucano et al; SAND Report 2002-0341 Laboratories
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Coverage Matrix Shows Code
Features Exercised in Verification Tests

Sierra Capabilities (subset) SNL-Problem LANL-Problem

Application

PDE terms

Conduction (diffusion term)
Capacitance (transient term)
Src (source term)

EnciRad 3 X
CM (chemistry source term) X X
Thermal Conductivity

k0 (constant conductivity)

k1 (tabular T-dependant)

k2 {user subroutine T-dependant, mostly)
k3 (defimed variable)

k4 (anisotropic constant)

k5 {anisotropic tabular T-dependant)
Heat capacity

Cp0 (constant)

Cp1 (tabular T-dependant)

Cp2 (user subroutine T-dependent)

Cp3 (user variable)

Density

DO (constamt) x
D1 (tabular T-dependent) X X

D2 (user subroutine T-dependent) X I I
D3 (user variable)

D4 (volume dependant)
Source terms

GO (constant) XN XX B EaBEEEEEEEREEEEEE

Git (tabular, time varing) x | |
GAT (tabular, temp varing)

G2 (user subroutine, time or temp varing) X X X X X

G3 (user variable)

Temperature boundary conditions

T-0 {constant) x X X X 0 N0 o o a0 A a0 M a0 ol ol Al Al a0 o0 o0l ol a0

T-1t (tabular, time dependent) X L | |
T-2 (user subroutine) X X X

Flux boundary conditions

Q-0 {constant) X X ¥ M OM M M M oM M OM M OX X MM MM X KX X XXX .S
Q-1t (tabular, time dependant) X [ ] 1
Q-1T (tabular, temp dependant)
Q-2 {user subroutine) x X X X X X
Convective boundary conditions

h-0 (constant) X X
h-1t {tabular, time dependent)

h-1T ({tabular, temp dependent)

h-2 (user subroutine)

Tref-0 (constant ref temp)

Tref-1t ({tabular, time dependent, ref temp)
Tref-1T tabular, temp depentdent, ref temp)
Tref-2 (user subroutine, ref temp)

Tref-B (bulk fluid element)

Radiation boundary conditions

e-0 (constant emissity) X X
e-1 (tabular, T-dependent)

@-2 (user subroutine, T dependent)

Trad-0 (constant radiation temperature) X
Trad-1t (tabular, time dependent rad temp) X

X X X X X XXX X X X X X XX
X X X X
X X X x XX X X X

X X X X X X X X X

X X X
X X X
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V
* Categories of Uncertainty

Often useful algorithmic distinctions, but not always a clear division

» Aleatory (think probability density function)
— Inherent variability (e.g., in a population)
— Irreducible uncertainty — can’t reduce it by further knowledge

» Epistemic (think bounded intervals)
— Subjective uncertainty
— Related to what we don’t know

— Reducible: If you had more data or more information, you
could make your uncertainty estimation more precise

* In practice, people try to transform or translate
uncertainties to the aleatory type and perform sampling

and/or parametric analysis
@ Sandia
National
Laboratories



V '
} Uncertainty Quantification

Forward propagation: quantify the effect that uncertain
(nondeterministic) input variables have on model output

4 _ )

I:pu_t Varlablets u T utationaﬂ Variable
(physics parameters, P Performance
geometry, initial and Model ) M f
boundary conditions) easures f(u)

/(possibly given distributions)

Potential Goals:

/‘

* based on uncertain inputs, determine N samples\ _Output
variance of outputs and probabilities — Distributions
of failure (reliability metrics) ﬁ — —

u, —

* identify parameter correlations/local — —sure 1
sensitivities, robust optima A\ = >-< meas_ure

- identify inputs whose variances . _ —
contribute most to output variance /N = measure 2
(global sensitivity analysis) u, _J \_

« quantify uncertainty when using Typical method: Monte Carlo Sampling

National
Laboratories

calibrated model to predict @ Sandia



V

}I Uncertainty Quantification Example

- Device subject to heating (experiment or S g atany
computational simulation) A L_ 17
* Uncertainty in composition/ S ;M

* Response temperature f(u)=T(u,, ...,

environment (thermal conductivity,
density, boundary), parameterized by
U, ...,

Uy

calculated by heat transfer code

uy)

% in Bin
o — N w N (@)

Final Temperature Values

30

36

42

48

54 60 66 72 78 84

Temeprature [deg C]

gm

Given distributions of u,,..
UQ methods calculate
statistical info on outputs:
* Probability distribution of
temperatures

 Correlations (trends) and
sensitivity of temperature

* Mean(T), Sthev(T)
Probability(T2 T_...)

Sandia
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UQ: Sampling Methods

Given distributions of u,,...,u,, UQ
methods...

N samples\ 4 Output

| Distributions

u, ...calculate statistical info
N >-< measure 1 on outputs T(u,,...,u,)

Uy =
/\ % me;,e 2 Final Temperature Values
u3 -/ \ 5 1
4 =-.
* Monte Carlo sampling 5 9]
* 2
* Quasi-Monte Carlo 1
» Centroidal Voroni Tessalation (CVT) o - cenratTLALMEIA
30 36 42 48 54 60 66 |72 78 84
- Latin Hypercube sampling Temeprature [deg C]

Sandia
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V '
}- Latin Hypercube Sampling (LHS)

» Specialized Monte Carlo (MC) sampling technique:
workhorse method in DAKOTA / at Sandia

 Stratified random sampling among equal probability bins for
all 1-D projections of an n-dimensional set of samples.

 McKay and Conover (early), restricted pairing by Iman

G
@

H

I
02 |02]02]/02| 02

—oo A B C D o J

1 K

0.8 @

L
0.6 —0 A B C D 0

A Two-Dimensional Representation of One
Possible LHS of size 5 Utilizing X1 (normal)
and X2 (uniform)

0.4

0.2

0

Intervals_OOUsed with a LHS of S?ze n=5in _
Terms of the pdf and CDF for a Normal @ S
Random Variable Laboratories



V '
}- Calculating Probability of Failure

» Given uncertainty in materials, geomeftry, and
environment, determine likelihood of failure
Probability(T 2 T, ..)

Final Temperature Values - Could perform 10,000
Monte Carlo samples and

° | count how many exceed the

e threshold...

D 3] '

® 2 * Or directly determine input
T variables which give rise to
0 | —ermiTILIHIITHLILL] failure behaviors by solving

30 36 42 48 54 60 66 72 78 84 . .
an optimization problem.

Temeprature [deg C]
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Alternatives to Sampling

LHS sampling is robust, trusted, ubiquitous, but advanced
methods may offer advantages:

» for a modest number of random variables, polynomial chaos
expansions may converge considerably faster to statistics of
interest

« if principal concern is with failure modes (tail probabilities),
consider global reliability methods

Upcoming (Mike): DAKOTA enables
more efficient UQ by combining
optimization, uncertainty analysis
methods, and surrogate (meta-) Optimization Uncertainty|

modeling in a single framework.
OptUnderUnc
UncOfOptimal’ | 2" Order Probability |
| Pareto/Multi-Start

Sandia
National
[Branch&Bound/PICO| Laboratories

Strategy

| Surrogate Based [
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‘ Challenge: Epistemic UQ

« Epistemic uncertainty: insufficient information to specify a
probability distribution

» Subjective, reducible, or lack-of-knowledge uncertainty
(given more resources to gather information, could reduce the uncertainty)

* For example:

— “l expect this parameter to have a lognormal distribution, but only
know bounds on its mean and standard deviation,” or

— Dempster-Shafer belief structures: “basic probability assignment” for
each interval where the uncertain variable may exist;
contiguous, overlapping, or gapped

BPA=0.2 !
Variable 1

BPA=0.5 | BPA=0.3| BPA=0.2

Variable 2

Sandia
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i Propagating Epistemic UQ

Total Normalized Releases: Replicate R1

Second-order probability oo 100 Cienatons, 10000 PubrealOiovaios
— Two levels: distributions/intervals on ol e 1
distribution parameters = ]
New _ Quter level can be epistemic (e.g., interval) %wzé.r i ]
— Inner level can be aleatory (probability distrs) fz;m L_ﬂ,.
— Strong regulatory history (NRC, WIPP). Tl ;
; Frame 2a |

105 - d ek itunssssal

105 104 10 02 10t 100 10 102
Normalized Release (EPA units), R

Dempster-Shafer theory of evidence

10° p—

— Basic probability assignment (interval-based) ? H\LLL = e
— Solve opt. problems (currently sampling-based) % 0k oloy)
New  to compute belief/plausibility for output intervals ““ Beley)—>{  PGY)
D.IEI l].l1 l]l.2 I]I.S ﬂl.4 ﬂI.E l]l.ﬁ l]l.? I]I.B DI.Q 1I.1‘.'.I DB- ]
Source 1 oy 2T ’_Em.a:_ _:
Source 2 | 10% : T0% : 20% e g 3
33% , . 33% I
Source 3 | & | 10_;.6 ‘ 0?8 I 1?0 I 1?2 I 1?4 I 16 1.8 I 2.0 I 2.2



# Circuit UQ Analysis

Use DAKOTA with Xyce circuit simulator to perform pre-
fabrication uncertainty analysis of new CMOS?7 ViArray

* ViArray: generic ASIC implementation platform
* Target applications: guidance, satellite, command & control

« Assess voltage droop/spike during photocurrent event

« Consider effect of process variation in each ‘layer’ on
supply voltages; representative distributions:

METAL 1-4 METAL 5 VIA 1-4 CONTACT polyc
40

| 1 AL

0.5 1 15 0.5 1 15 0.5 1 1.5 0 2 4 0 o 4
% variation % variation % variation % variation % variation

N
o

50

frequency
]
[ome]

o

* Truncated normals used for METAL and VIA; truncated _
lognormals used for CONTACT and polyc. @ Niona

Laboratories



‘ ViArray: Benefits of UQ

* One ensemble of UQ calculations used to
determine most sensitive parameters and output
ranges: determined that sensitivity depends on
final chip configuration Best case, nods max

[=]

» Suspicious UQ results led to correcting simulation -
failures not observed at nominal parameters

« Gave process engineers and circuit designers £
insight into possible circuit behaviors

» Sensitivity could help guide data collection

6 0.7 08 08 1 11 12
vdd droop, millivolts

« Ongoing work: assess interaction of package
parasitics with on-chip parasitics, V&V for
photocurrent generation models

Sandia
National
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~ ' Neutron Radiation Exposure
" | Degrades Electronics

neutrons create damage

Emitter
(n-type)
Base
(p-type)
Collector 7= Ociusuiongmemmes..
(n-type)
damage degrades gain
HH . = . 4.0 [T AR ——
- Military requirement: certify to hostile ez ]| Prerad
I 35 et 8= i
environment By @ i
3.0 X
Q i
c 23 =
8 A
2.0 i
15 L L
0.0004 0.001 0.01 0.1 1

Seconds after peak neutron pulse
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g 'Neutron Radiation Exposure
‘ Degrades Electronics

neutrons create damage

Emitter
(n-type)
Base
. -type
passifail TP LGN ]
testing Collector (I Raiswromaemmm... oo
(n-type)
damage degrades gain
=y = - - 4.0 [T TTII £
 Military requirement: certify to hostile s || Prerad B
environment 38 M1[fecore By = @ [
. . o 3.0 -
- SPR dismantled end of FY06 to improve e -
security posture 3 ) Ps
15 oLHE -t
0.0004 0.001 0.01 0.1 1

Seconds after peak neutron pulse
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e 'Neutron Radiation Exposure
}- Degrades Electronics

neutrons create damage

Emitter
(n-type)
QASPR
- -type
QUALIFICATION ALTERNATIVES T0 SPR quantlfled (p-type) i RN
uncertainty Colloctor MMMEREEEER e T
(n-type)
damage degrades gain
HH = . - 4.0 [T TTII S ——
* Military requirement: certify to hostile Ml || Prerad: [}
environment 35 60-1/5?
- -~ 3.0 -
* SPR dismantled end of FY06 to improve e . -
security posture 3 ) Ps
QASPR (Qualification Alternatives to Sandia Pulse Reactor) |-

methodology will certify qualification via modeling & ™ 1
simulation with quantified uncertainty putron pulse
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National
Laboratories




QASPR: Science-Based
Engineering Methodology For Qualification

Risk Informed
Decisions

Qualification
Evidence

4 uncertainty
quantification

PRRS select /
= experiments
C ‘

high performance,
multi-fidelity, predictive
computational modeling

k]

validation

in alternate
facilities

Ll )@[ce

g I||B I-:
Y,n — 100 ms ion — 100 ps
long pulse short pulse
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tight external
coupling

| NuGET

neutron, ¥

SPR, WsME,
ACER

e Beam
Little Mountain

Ion Beam
SNL IBL

uQ

Methodology

i

Transient Gain
Results

DFT

Quest, Socorro

internal

DAKOTA Component
and System UQ

Data link
_—

Data +UQ link

—_—

physics link
T

* Developing formal V&V
plans

« Each computational code
subject to code and
solution verification

* UQ used to validate
device model response
against data ensembles

» Ultimately systems
(circuit) V&V for
qualification

Sandia
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Device Prototype:
UQ Extrapolation to SPR

Device Multiplier, M
A

e Calibrated to other
facilities, CHARON
fills SPR gap

Huea = 1.07 1

« Uncertainty & bias
characterized by 2
degrees of freedom

— facility multiplier
— device multiplier

Mmms = 1.0 7

() A  y
“I a ]
icrosemi !
1

Microsemi Bisr:8

it * Uncertainty
Facility Bias Model Development | quantified with D.O.E

| >

br-ac = 0. 88 pesr=1.0 + statistical approach
Facility Multiplier, F

End UQ Methodology Goal: Best Estimate ;
+ Uncertainty Prediction for SPR @ Niona

Laboratories
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Model Validation: Blind Prediction

Transient Device Damage Response

* FaerhIId response data All Experiments (grey), Mean (black), +/-2 Sigma (blue)

within SPR hidden :

< peak damage

* First prototype of the

QASPR methodology T IAVIAW
(and real validation of IN/AY
the QASPR system) s | HAY

* Prediction + Uncertainty
(+/-2c device and facility
uncertainty) 2

102 1073 107 107 100
Time in seconds

UQ algorithms have a critical role in
system validation @ Sandia
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V '
}" Model Validation: Blind Prediction

Transient Device Damage Response
SPR 1326791 (black) and Simulation bounds (yellow)

 Fairchild response data
within SPR hidden ?

gl
+/- 1-2% vertical error on
experimental measurement

* First prototype of the |
QASPR methodology \
(and real validation of I
the QASPR system)

* Prediction + Uncertainty
(+/-2c device and facility 7|

uncertainty)
157 107 102 107 10°
Time in seconds
UQ algorithms have a critical role in
system validation @ SR,
Laboratories




V '
}" Model Validation: Blind Prediction

 Fairchild response data
within SPR hidden

* First prototype of the
QASPR methodology
(and real validation of
the QASPR system)

* Prediction + Uncertainty
(+/-2c device and facility
uncertainty)

Transient Device Damage Response

SPR 1326891l (black) and Simulation bounds (yellow)

+/- 1-2% vertical error on
experimental measurement | |

1073 104 101 10°
Time in seconds

UQ algorithms have a critical role in
system validation @ Sandia

National
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 Fairchild response data
within SPR hidden

* First prototype of the
QASPR methodology oI
(and real validation of

the QASPR system) ;;5_

* Prediction + Uncertainty |
(+/-2c device and facility

uncertainty)

V '
}" Model Validation: Blind Prediction

Transient Device Damage Response

SPR 13564q1l (black) and Simulation bounds (yellow)

TE
+/- 1-2% vertical error on

experimental measurement

1072 10T

o

il0-4 107
Time in seconds

UQ algorithms have a critical role in
system validation

&)
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Electrical Modeling Complexity

complex device models + replicates in circuits

Circuit Board -~

ASIC: 1000s to  \, — / ik

millions of devices | Large Digital Circuit
(e.g., ASIC)

Sub-circuit : PR
sub-circuit: 10s to
(analog) \ 100s of devices

- |
-

i . . e
T— Single Device e

+

Ajlenuauodxa smoub swi uonenwis

device: 1 to 100s of params (G. Gray, M. M-C)

* simple devices: 1 parameter, - complex devices: many parameters, some
typically physical and physical, others “extracted” (calibrated)

measurable - multiple modes of operation
* e.g., resistor @ 100Q +/- 1% . e.g., zener diode: 30 parameters, 3 bias

* resistors, capacitors, inductors, states; many transistor models (forward,

voltage sources reverse, breakdown modes) @ ﬁgtqdial
ona
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Reverse Current (A)

1e+2

Te+1 4
1e+0 A
1e-1 A
1e-2 A
1e-3 A
1e-4 4
1e-5 4
1e-6 4
1e-7 A
1e-8 A
1e-9 4
1e-104
1e-114
1e-124
1e-134

1e-14

UQ: Mitigate Explosion of Factors!

» Consider bounding parameter
sets?

* Exploit natural hierarchy or
network structure?

» Use surrogate/macro-models as
glue between levels?

* Need approaches curbing the
curse of dimensionality

T T T T T T T
0 5 10 15 20 25 30 35
Reverse Voltage (V)
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_ '
} Summary

To be credible, simulations must be verified, validated
with data, and deliver a best estimate of performance,
together with its degree of variability or uncertainty.

 Formal V&V process helps certify credible simulation

* Uncertainty quantification algorithms are essential in
validation and calibration under uncertainty

« Complex, large-scale simulations demand research in
advanced efficient UQ methods

Thank you for your attention!

briadam@sandia.gov
http://www.sandia.gov/~briadam @ Sandia
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