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Time and Context
Computation of Neurogenesis 10 years ago...
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Pattern Separation in DG

Overlapping EC inputs are encoded separately by the DG
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So how do new neurons affect this?

Neuron

Computational Influence of Adult
Neurogenesis on Memory Encoding

James B. Aimone,' Janet Wiles,? and Fred H. Gage'”
Labormatory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
28choal of Information Technalagy and Electrical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
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Different types of model...

“Predictive” model
Extrapolate from low-level data points to

predict what will be seen at a systems or
behavior level

Prediction

“Explanatory” model

Interpolate between low-level data
points and those at a systems or
behavior level to explain relationship
between scales




Three predictions at the ti

* Pattern Integration

* Temporal Separation

* Dentate Specialization

Aimone et al., Neuron 2009
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So how do these look five years later?



Overall what has changed

More details on neural physiology

— Generally consistent with model

Improved knockdown methods

— Transgenic mice
— Temozolomide (TMZ)

Focused behavior tasks

— i.e., Tim Bussey pattern separation task

Increasing focus on in vivo DG physiology



Temporal Separation
Five years later

That reminds me of the day
when old Nellie left town...

Adapted from
Aimone, Deng and Gage, Hippocampus, 2011



d Sparse coding of events without neurogenesis
Initial event Later event Memory structure
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Time coding evidence?

Long temporal associations in DG...

CUED RECALL FOR SPATIAL LOCATION

[ A, B, C,and D = Spatial Locations I
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Fig. 1. Schematic representation of behavioral procedures for cued recall for spatial location task.
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New Neuron Specialization
Five years later

Back in my day, everything was
in Fortran, so I learned Fortran

Adapted from
Aimone, Deng and Gage, Hippocampus, 2011



Do new neurons “specialize”? —
Immediate early gene evidence
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Do new neurons “specialize”? —
DG tet-tag evidence
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Do new neurons “specialize”? —
In vivo physiology evidence
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Do new neurons “specialize”? —
In vivo physiology evidence
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Do new neurons “specialize”? —
In vivo physiology evidence
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Do new neurons “specialize”? -
Overview

* |EG studies suggest some
specialization, though timing and
extent varies from study to study

* Whole DG cross temporal labeling
(tet-tag) suggests complex overall

mechanism
* In vivo physiology of DG shows some Looking good, but
cross temporal specialization, though somewhat complex

young neurons are not specifically results
identified



Pattern Integration
Five years later

Everyone has their place and
should stick to themselves!

Adapted from
Aimone, Deng and Gage, Hippocampus, 2011



Does NG Perform “Integration” ?—
Behavioral Evidence
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Does NG Perform “Integration” ?—
More realistic computational modeling
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Function of neurogenesis is scale

dependent...
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* Neurogenesis networks show activity to novel
information at much higher scales

* As we approach human scales, mature neurons appear
essentially silent in response to novel information

* Signal (immature) to noise (mature) is amplified in
larger networks



Neurogenesis maintains compressibility and
increases total representation
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Neurogenesis strikes a balance
between pattern separation and
memory information content

No neurogenesis yields
very little activity
DG representations are
separate but very sparse

Neurogenesis increases
activity while preserving
separation
DG representations
increase their resolution
but avoid interference

Increasing activity
directly ruins pattern
separation
DG representations are
dense and informative but
potentially interfere with
each other



Integration Evidence —
Overview

* Behavior strongly indicates
new neurons are required
for pattern separation

* Higher resolution modeling
shows new neurons increase
encoding without

“integration” effect Not looking that good
in the form presented

 How brain compensates for
loss of new neurons is big
guestion



So what next?

* Always good to revise models over time

— If there is new data or new capabilities, never
hurts to look again...

* Compensation and
neurogenesis knockdowns

— Big question regarding behavior..
* Focused in vivo physiology

— Hard to see how single neurons map to population
functions

Prediction




Questions?



% That reminds me of the day

when old Nellie left town...



% Back in my day, everything was

in Fortran, so I learned Fortran



%Everyone has their place and

should stick to themselves!



