
Tolerating Silent Data Corruption in Opaque
Preconditioners

James Elliott∗†, Mark Hoemmen†, and Frank Mueller∗
∗ Computer Science Department, North Carolina State University, Raleigh, NC

† Sandia National Laboratories Albuquerque, NM

Abstract—We demonstrate algorithm-based fault tolerance for
silent, transient data corruption in “black-box” preconditioners.
We consider both additive Schwarz domain decomposition with
an ILU(k) subdomain solver, and algebraic multigrid, both im-
plemented in the Trilinos library. We evaluate faults that corrupt
preconditioner results in both single and multiple MPI ranks. We
then analyze how our approach behaves when then application
is scaled. Our technique is based on a Selective Reliability
approach that performs most operations in an unreliable mode,
with only a few operations performed reliably. We also investigate
two responses to faults and discuss the performance overheads
imposed by each. For a non-symmetric problem solved using
GMRES and ILU, we show that at scale our fault tolerance
approach incurs only 22% overhead for the worst case. With
detection techniques, we are able to reduce this overhead to 1.8%
in the worst case.

I. INTRODUCTION

Recent studies indicate that large parallel computers will
continue to become less reliable as energy constraints tighten,
component counts increase, and manufacturing sizes decrease
[1], [2], [3]. This unreliability may manifest in two different
ways: either as “hard” faults, which cause the loss of one or
more parallel processes, or as “soft” faults, which cause in-
correct arithmetic or storage, but do not kill the running appli-
cation. Large-scale systems today experience frequent process
loss. Applications recover from it using global checkpoint /
restart (C/R), with current research looking at optimizing the
process through, e.g., multi-level checkpointing [4] or by using
domain knowledge of algorithms to create checkpoint schemes
that have lower overhead [5].

This paper focuses on soft faults. Specifically, we consider
those that corrupt data or computations, without the hardware
or system detecting them and notifying the application that
a fault occurred. We call this type of soft fault Silent Data
Corruption (SDC). SDC is much less frequent than process
failures, but much more threatening, since the application may
silently return an incorrect answer. In physical simulations, the
wrong answer could have costly and even life-threatening con-
sequences. Users’ trust in the results of numerical simulations
can lead to disaster if those results are wrong, as for example
in the 1991 collapse of the Sleipner A oil platform [6]. Unlike
with hard faults, applications currently have few recovery
strategies. Hardware detection without correction may cost
nearly as much as full hardware correction. Hardware vendors
can harden chips against soft faults, but doing so will increase
chip complexity and likely either increase energy usage or

decrease performance. An open field of research and the focus
of this paper is designing algorithms that can tolerate SDC.

We present the following contributions:

• We show an algorithm-based fault tolerance approach for
iterative linear solvers that enables the use of opaque pre-
conditioners without algorithmic or code modifications.

• We demonstrate our approach for two different iterative
solvers: the Conjugate Gradient method (CG) for sym-
metric positive definite matrices, and the Generalized
Minimal Residual Method (GMRES) for nonsymmet-
ric matrices. We do so for two preconditioners: addi-
tive Schwarz preconditioner with an ILU(k) subdomain
solver, and algebraic multigrid (AMG).

• We relate the scale at which the problem is run to the
overhead introduced by our fault tolerance approach.

• We present detection and rollback strategies that work
with our fault-tolerance approach to reduce lost time due
to SDC significantly.

Many engineering and scientific applications solve large
sparse linear systems using iterative algorithms. Almost all
of these solves use preconditioners. They may take time
to set up, and will add to the time per iteration, but aim
to save overall run time by reducing the total number of
iterations. An important contribution of our work is that we
treat preconditioners as opaque. That is, we do not need to
modify the preconditioning algorithm or implementation. This
matters because preconditioners are often orders of magnitude
more complex than the iterative solvers that utilize them, in
terms of both algorithms and lines of code. For example, one
can express CG in a dozen lines of code, but the algebraic
multigrid implementation MueLu [7] we use in this work
includes over half a million lines of code from several Trilinos
packages, as of the 11.8 Trilinos release, not counting third-
party sparse direct factorization libraries for coarse-grid solves.

Prior work in algorithm-based fault tolerance for linear
algebra problems focused on introducing checksums or other
encoding schemes into the algorithm itself. One designs the
algorithm to maintain a checksum relationship either while
it is running, or after it completes [8], [9], [10], [11], [12].
This requires in-depth knowledge of the method and data
structures, and requires modifying algorithms to incorporate
fault detection and correction code. Even if this could be
done for preconditioner algorithms as complicated as algebraic
multigrid, adding checksums to an implementation would be

SAND2014-3452C



impractical and error-prone, given the sheer amount of code
to modify. Such a code would need to be rewritten from the
ground up to use checksums.

Rather than attempt to rewrite every method to use an
encoding scheme, we advocate a selective reliability approach
[13], [14] that focuses fault tolerance effort on iterative
solvers rather than preconditioners. The primary focus of
this work is the use of preconditioners in linear solvers,
where the preconditioner is assumed to be faulty. We consider
the domain decomposition technique Additive Schwarz using
an Incomplete LU factorization ILU(k), and a multi-level
preconditioner Algebraic Multigrid. We also demonstrate that
selective reliability can be used to create other fault-tolerant
solvers besides the original “FT-GMRES” [13].

We also assess a concept presented by Elliott et al. [14]
showing that enforcing bounded error is sufficient for iterative
linear solvers. We consider the “Skeptical Programming”
approach presented by Elliott et al. [14], and draw conclusions
about the amalgamation of these approaches. The faults that
motivate these fault tolerance approaches require scale to be
observed. We conjecture that any approach has to consider
the implications of both strong and weak scaling. Specifically,
we evaluate a preconditioning strategy that runs at scale and
keeps faults local, while also evaluating a preconditioning
approach that may spread corruption to other processes as part
preconditioning.

This paper is organized as follows:
1) In §II, we introduce the preconditioned linear solvers we

evaluate.
2) In §III, we describe the types of preconditioners we

chose and discuss how they propagate errors.
3) In §IV, we describe our fault injection methodology, and

explain how we characterize faults.
4) In §V, we present findings that show the average number

of extra preconditioner calls, given various types of
faults.

5) In §VIII, we summarize results and discuss future work.

II. PRECONDITIONED LINEAR SOLVERS

We consider two solvers that are capable of solving differ-
ent classes of problems. The Generalized Minimal Residual
Method (GMRES) from Saad and Schultz [15] can solve
nonsymmetric problems. The Method of Conjugate Gradients
(CG) [16] can only solve symmetric positive definite (SPD)
linear systems, but is faster for doing so. CG is used in the
NAS Parallel Benchmarks [17] and in Mantevo miniapps like
HPCCG [18].

Linear solvers often utilize preconditioners as a means to
accelerate convergence. More specifically, preconditioning is
a transformation that attempts to improve some aspect of the
linear system, typically the condition number. We consider
preconditioning in two different ways. Left preconditioning
solves the preconditioned problem M−1(Ax − b), which
requires a preconditioner application at the start of the solve.
Right preconditioning solves AM−1Mx = b, and requires a
preconditioner application to also compute a solution update.

Algorithm 1 presents right-preconditioned GMRES. GM-
RES applies the preconditioner in lines 5 and 14. Note
that the solution update (Line 14) need not be calculated
every iteration, and is often not computed until the solver
exits. Algorithm 2 presents left-preconditioned CG. Precon-

Algorithm 1 (Right-preconditioned) GMRES
Input: Linear system Ax = b and initial guess x0
Output: Approximate solution xm for some m ≥ 0

1: r0 := b−Ax0 . Unpreconditioned initial residual vector
2: β := ‖r0‖2
3: q1 := r0/β
4: for j = 1, 2, . . . until convergence do
5: Solve Mzj = qj for zj . Apply preconditioner
6: vj+1 := Azj . Apply the matrix A
7: for i = 1, 2, . . . , k do . Orthogonalize
8: H(i, j) := q∗i vj+1

9: vj+1 := vj+1 − qiH(i, j)
10: end for
11: H(j + 1, j) := ‖vj+1‖2
12: qj+1 := vj+1/H(j + 1, j) . New basis vector
13: yj := argmin

y
‖H(1 : j + 1, 1 : j)y − βe1‖2

14: xj := x0 +M−1[q1, q2, . . . , qj ]yj . Solution update
15: end for

ditioner applications occur on Lines 2 and 8. Note that left-
preconditioned CG does not require a preconditioner applica-
tion to compute its solution update.

Algorithm 2 (Left-preconditioned) CG
Input: Linear system Ax = b and initial guess x0
Output: Approximate solution xm for some m ≥ 0

1: r0 := b−Ax0 . Unpreconditioned initial residual vector
2: Solve Mz0 = r0 for z0 . Apply preconditioner
3: p0 := z0
4: for j = 1, 2, . . . until convergence do
5: αj := (rj , zj)/(Apj , pj)
6: xj+1 := xj + αjpj
7: rj+1 := rj − αjApj
8: Solve Mzj+1 = rj+1 for zj+1 . Apply

preconditioner
9: βj := (rj+1, zj+1)/(rj , zj)

10: pj+1 := zj+1 + βjpj
11: end for

Our results center around observing the number of extra
preconditioner applications relative to solving the problem
without SDC. That is, we observe the impact of z̃ =M−1w,
where z̃ indicates the corrupted output of a preconditioner
call. In § III we give more details on on how we decompose
problems across multiple processes, and in § IV we explain
what z̃ looks like given faults on some (or all) parallel
processes.

A. Selective Reliability
Our fault-tolerance strategy rests on relating numerical

methods that naturally correct errors to system-level fault



tolerance. In particular, we assume a selective reliability or
“sandboxing” programming model that lets algorithm devel-
opers isolate faults to certain parts of the algorithm in a coarse-
grained way. Bridges et al. [13] used this idea to develop
the fault-tolerant linear solver FT-GMRES. FT-GMRES uses a
reliable “outer” solver, preconditioned by an unreliable “inner”
solver. Any faults that occur in the inner solver manifest as
a “different preconditioner” to the outer solver. The outer
solver is chosen to be Flexible GMRES [19], which can
tolerate a preconditioner that changes between iterations. The
inner solver was chosen to be GMRES, though any linear
solver would work. Nested solvers are a common idea in
numerical algorithms; the authors applied this idea to fault
tolerance by choosing the right outer solver and observing
that inner solves could run unreliably. Selective reliability
is a programming model that requires codesign between
algorithms, system software, and hardware. Neither Bridges
et al. [13] nor we attempt to implement this programming
model; possible implementation strategies include redundancy
or software error-correcting codes.

In this paper, we express FT-GMRES as
FGmres->Gmres. This notation captures the outer
solver FGmres and the inner solver Gmres. Should the
inner solver uses a preconditioner, e.g., ILU, we then write
FGmres->Gmres->ILU. The authors of FT-GMRES
assumed that since GMRES is considered “robust” as a
solver, it would makes sense to use FGmres->Gmres over
combinations like FGmres->Cg. We evaluate this in § V.

B. Implementation

We implemented our solvers using the Tpetra [20] sparse
linear algebra package in the Trilinos framework [21] and
validated them against both MATLAB and the solvers in
Trilinos’ Belos package [22]. Implementing our solvers using
Trilinos lets us benefit from the scalability and performance
of its sparse matrices and dense vectors. In addition, basing
our research in Trilinos also gives us access to a wealth of
numerical algorithms, on which we elaborate in § III.

III. PRECONDITIONERS

This paper shows how solvers behave in the presence of
faulty preconditioners. Given that our solvers are parallel,
we must consider parallel preconditioners. We examine two
popular examples: single level additive Schwarz domain de-
composition with no overlap, and Algebraic Multigrid (AMG).
We have chosen preconditioners that utilize these decom-
position techniques because each exhibits different types of
communication patterns with respect to preconditioning.

A. Additive Schwarz

Single-level additive Schwarz domain decomposition (see
[23]) divides the solution vector into k subdomains, either
with or without overlap. Typical MPI implementations assign
one subdomain to each MPI process. Each subdomain applies
a solver (of any kind) locally. Additive Schwarz then “glues”

the subdomains’ results back together to form the precondi-
tioner’s output. We use Trilinos’ implementation in the Ifpack2
package to create our preconditioner, and choose Incomplete
LU with zero fill, ILU(0) (see [19]), as our subdomain solver.

We use no overlap with additive Schwarz, because this
means that any corruption in a subdomain will not impact
output from other subdomains. That is, with zero overlap, there
is no communication between subdomains after applying the
local preconditioner. This differs from multigrid precondition-
ers.

B. Algebraic Multigrid

Algebraic Multigrid (AMG) is a robust multilevel precon-
ditioner. While geometric Multigrid requires knowledge of a
grid, AMG operates directly on the matrix. In a setup phase,
restriction operators are defined that “coarsen” the matrix,
creating consecutively smaller matrices. Likewise, prolonga-
tion operators are determined that interpolate the coarse level
information back to finer levels of the multigrid hierarchy.
Coarsening from the finest level to coarsest and back is
referred to as a V-cycle. Prior to prolongation, AMG applies
a smoother to the current level. Smoothers are often cheap
solvers, e.g., a single sweep of Jacobi or Gauss-Seidel. We
choose a single Gauss-Seidel sweep at all but the coarsest
level, and we use SuperLU [24] as the smoother for our
coarsest matrix.

C. Hierarchy vs. Overlap

Due to AMG’s hierarchical structure, a fault in a multigrid
method may propagate from the process where the fault occurs
to other processes. Should SDC occur at the coarsest level,
it is possible that half (or all) of the nodes absorb some
amount of corruption into their final solutions. Alternatively,
if SDC occurs in one process’ data at the finest level, the
error will remain local if no further V-cycles are performed.
(In our setup, with MueLu as a preconditioner, we enforce
only one V-cycle.) To illustrate this communication pattern,
we show the communication pattern at the finest and coarsest
levels for a 7 level AMG configuration in Fig. 1. This differs
from additive Schwarz: without overlap, subdomains do not
communicate, and even with overlap, they only communicate
with their nearest neighbors.

(a) Finest (b) Coarsest

Fig. 1: Communication patterns for MueLu at different hier-
archy levels (no repartitioning).



IV. FAULT MODEL AND INJECTION METHODOLOGY

This work is motivated by the premise that soft errors will
become more likely in future systems, and that SDC has
been observed in current systems. Much uncertainty remains
about how how often soft errors will occur, and how they will
manifest in applications. Most prior work modeled soft errors
as one or more flipped bits e.g., [25]. Researchers injected bit
flips and observed their effects on running applications [26],
[9], [27]. These works showed that current algorithms can
misbehave badly if their data are corrupted. In the presence
of SDC, iterative methods can either return the wrong answer,
or fail to converge and iterate forever. What previous results
have not achieved, though, is to give algorithm designers tools
to prove that one algorithm is better than another algorithm.

For this reason, we intentionally choose a fault model that
is abstract. Regardless of how a soft error occurs, we do know
that if the soft error creates SDC, then we can represent the
SDC as a numerical error in our algorithm. We make neither
a claim to address all problems that soft errors may introduce,
nor do we specifically focus on the event that incorrect data
are used in a calculation. This enables our work to address a
larger set of errors than the bit flip model does, e.g., corruption
of a network packet. Since our results show what happens if
an entire MPI process returns tainted data, they may also guide
development of alternatives to C/R recovery that replace data
from a lost process with a best guess.

We intentionally avoid injecting faults at a high rate, because
it is not clear that soft error rates will be high. Vendors have
strong incentives to sell reliable machines, at least at small
scales of parallelism, but may accept that the largest-scale
parallel machines might expose some faults to applications.
Alternately, some systems might provide less reliable “stochas-
tic circuits” as low-power or high-performance accelerators, to
which users may allocate portions of their computation. Our
model covers all of these cases.

A. Modeling “Bad” Faults in Preconditioners

Since we do not know the answers to many questions
regarding soft errors in future systems, we choose to create
errors that we know are “very bad” and observe how our
algorithms handle these egregious errors. We define “bad”
errors in the next paragraph, but the idea is for such errors
to have meaningful effects on the solver. We denote the
vector output of a preconditioner as z (see, e.g., Line 8 of
Algorithm 2). In numerical analysis, we describe errors using
norms. GMRES minimizes the residual error with respect to
the L-2 norm, and CG minimizes the A-norm of the solution
error, which is also an L-2 norm of a different vector. For
this reason, we choose to characterize errors with respect to
the L-2 norm. This leads us to two classifications of errors:
Those that change the L-2 norm of the output, and those that
preserve its L-2 norm.

We define a bad error to be a faulty subdomain permuting
its portion of the global vector. Permutations preserve the L-2
norm. We also consider the case that this bad error changes
the L-2 norm. To change the L-2 norm, a faulty subdomain

may also scale its portion of the vector by some constant
(faulty domains always permute). Scaling a portion of the
global (distributed) vector might not change the L-2 norm by
that amount globally, since only a portion of the vector is
scaled. Should we fault all ranks, then we see in that case that
the global vector’s length is changed by some factor.

B. Granularity of Faults

In our fault model, we let subdomains (one subdomain per
MPI process) return completely corrupt solutions. That is, we
consider faults at the MPI process level, rather than single
values. This seems pessimistic, but it lets us model faults inside
a preconditioner that may affect more than one entry of its
output vector, and possibly even more than one process. For
example, an incorrect pivot in a sparse factorization for AMG’s
coarse-grid solve may cause incorrect values on all processes.
What our fault model promises is to characterize SDC that
arises from the preconditioner in the inner solver of our fault-
tolerant inner-outer iteration. We show in our results that these
types of faults are sufficiently bad to cause the entire inner
solve to become divergent.

C. SDC and Solvers

In FT-GMRES, GMRES was chosen as the inner solver
because it is commonly accepted as “more robust” than CG.
Given that CG can only solve SPD linear systems, if a fault
occurs in CG, the error can cause problems by appearing to
be nonsymmetric [28], and CG can behave very poorly. It is
for these reason we that CG is not considered as an outer
solver. SDC may also change the sign of key values, e.g., a
negative projection length. We consider sign-changing SDC by
negatively scaling the output vector, which is length preserving
if the scaling factor is −1.

V. RESULTS

A. Methodology

We described in § IV how we corrupt the preconditioner’s
output. To evaluate the impact of our preconditioned solvers
in the presence of SDC, we perform the following steps:

1) Solve the problem injecting no SDC, and compute the
number of times, K, the preconditioner was applied.

2) For all j in [1,K], reattempt the solve, introducing SDC
at the j-th preconditioner application. This results in K
total solves.

3) For all K solves with SDC, compute the rel-
ative percent of additional preconditioner applies
over the SDC-free solve1, e.g., (Appliesobserved −
AppliesFailureFree)/AppliesFailureFree × 100

4) Repeat Steps 2 and 3, letting various numbers of MPI
processes participate in the SDC injection.

5) Repeat Steps 2-4, varying the scaling factor applied to
the SDC.

6) For each combination of scaling factor and number of
faulty processes, plot the average number of additional

1If Appliesobserved − AppliesFailureFree < 0, i.e., SDC accelerated
convergence, we record zero overhead.



preconditioner applies as a percentage. 0% means no
additional applies; 100% means twice as many.

B. Strong Scaling

We present two studies. First, we fix the problem size and
strongly scale by increasing the number of MPI processes. We
start with 32 processes, and then use 1032 processes on the
NERSC Hopper cluster. We choose 5 fixed numbers of faulty
ranks: 1, 2, 8, 16, and 32. By strong scaling the problem, the
percentage of work per process decreases. Hence, the percent
of the global output vector that is tainted by SDC decreases.

C. Weak Scaling

Second, we weak scale a problem such that the work per
process remains fixed at 105 unknowns. In this experiment,
we consider faults as a percentage, rather than a fixed number,
of the process count. This decision is based on the fact that
strong scaling demonstrates how increasing the process count
minimizes the amount of corruption a single process can
introduce. With weak scaling, the global problem size must
increase sufficiently to minimize the impact of a single pro-
cess faulting. Also, multilevel preconditioners communicate
information at different grid levels. A fault at the coarsest
grid could propagate, tainting data on all nodes by the time
the finest grid is reached. Thus, it makes sense for multigrid to
explore a percentage of ranks faulting. 100% of ranks faulting
is akin to a drastic fault at the coarsest level that corrupts
everything. 50% of ranks faulting would be a drastic fault at
the 2nd coarsest level of the hierarchy.

D. Test Problems

We evaluate two classes of problems and use solvers and
preconditioners appropriate for each. We consider a SPD linear
system (Poisson problem), which is solvable by both CG and
GMRES. For this type of problem AMG (MueLu) represents
a good preconditioner. This yields the fault tolerant solvers
FGmres->Cg->MueLu and FGmres->Gmres->MueLu.
We also consider a non-symmetric problem, CoupCons3D
[29], which is very ill-conditioned. We may only solve Coup-
Cons3D using GMRES, and ILU(0) is a suitable precondi-
tioner, yielding FGmres->Gmres->ILU. We may only weak
scale our Poisson problem, as it is generated, allowing us to
dynamically increase the matrix size.

E. Preconditioner Effectiveness

We intentionally chose the preconditioners evaluated. For
the problems presented, MueLu represents a very good pre-
conditioner, while ILU represents a “better than nothing”
preconditioner. In terms of computational cost, MueLu is much
more expensive to apply than ILU, and also requires more
communication. The increased work performed by MueLu
results in it solving the Poisson problem in approximately 6
total applies. Contrasted to ILU and the CoupCons3D problem,
FGmres->Gmres->ILU requires 100 ILU applications. So,
MueLu is expensive to apply, meaning we do not want to
apply it significantly more times than necessary. Conversely,

ILU is cheap to apply and additional applications are not as
costly.

VI. STRONG SCALING RESULTS

A. Incomplete LU Preconditioning

Fig. 2 shows the result of strong scaling the CoupCons3D
problem from 32 to 1032 MPI processes. For the CoupCons3D
problem, we require 100 preconditioner applications in
a failure free environment. Consider Fig. 2a, the y-axis
represents the number of Additive Schwarz subdomains that
participate in the fault. The x-axis indicates whether the SDC
decreases, maintains (center column), or increases the L-2
norm of the preconditioners output. The color indicates the
percent increase in preconditioner applications. The bottom
row of colored squares represent rare, bad SDC. Moving
vertically, we increase the number of ranks that experience
a fault.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

3

6

9

12

15

18

21

24

27

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(a) 32 subdomains

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

3

6

9

12

15

18

21

24

27

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) 1032 subdomains

Fig. 2: Strong Scaling (32 vs. 1032 subdomains): Average
percent increase of preconditioner applies when solving a non-
symmetric problem using FGmres->Gmres->ILU precon-
ditioning.

In general, we see that a single faulty subdomain is tolerated
with very low overhead, that is, we perform little or no
additional work relative to if no fault had occurred. We also see



that SDC that increases the 2-norm is universally bad, while
SDC that maintains or shrinks the 2-norm is typically better
than increasing the 2-norm. The exception to this is the upper
left-hand block, which corresponds to 32 fault subdomains (all
ranks faulted), and all ranks decreased the 2-norm by a factor
of 10−5.

In Fig. 2b, we strong scale the problem from 32 processes to
1032. We see a trend: faults that corrupt, while preserving or
shrinking the 2-norm have considerably lower overhead than
faults that increase the 2-norm.

We can conclude from this experiment that our Selective
Reliability scheme offers dynamic fault tolerance. That is,
when faults are rare, we perform less fault tolerance work,
and when faults are more common we automatically perform
more work without the need to explicitly detect and correct any
errors. This dynamic approach is enabled by coupling systems
fault tolerance and numerical analysis.

B. Algebraic Multigrid Preconditioning

Next, we consider solving the SPD Poisson problem. This
problem is suitable for CG or GMRES, and MueLu is a
very effective preconditioner. The effectiveness of MueLu as a
preconditioner means that we apply it a very small number of
times: We require 6 preconditioner applications in a failure
free environment.

Fig. 3 shows the average percentage of additional MueLu
applies given Fgmres->Cg->MueLu as the solver. It is
immediately clear that there is a trend (see Fig. 2), where
length preserving or shrinking faults incur lower overhead than
length increasing SDC. Starting in the lower left-hand corner
of Fig. 3a, we see that SDC induced very little additional
work (typically 0 or 1 additional MueLu apply). Moving
towards the right, we observe that SDC slightly shrinks the
L-2 norm of the preconditioner output. Again, we see a low
overhead. As we continue to move towards the lower right-
hand corner, we observe that SDCs introduce large overhead.
These faults correspond to length (L-2 norm) increasing SDC.
If we start in the lower left-hand corner and move vertically,
we increase the number of subdomains that participate in
the SDC. Given a single faulty subdomain (MPI rank), we
observe that the overhead introduced by SDC is lower, and
as the number of faulty subdomains increases, the overhead
from SDC increases. This result is expected, since increasing
the number of faulty subdomains increases the amount of
corruption introduced into the calculations. And because we
have strongly scaled the experiments, this also means we have
increased the percentage of corruption. For the 32 subdomain
run (Fig. 3a), the top row shows that every rank faulted.

We now observe the same trend as above, in the 1032
subdomain job. Starting in the lower left-hand corner and
moving towards the right, we see very low overhead until we
encounter an SDC that increases the L-2 norm (bottom right-
most two squares). Here, SDC caused slightly more overhead
for a small increase in the L-2 norm, and very high overhead
for a large increase (the bottom right-most square). Moving
vertically from the lower left-hand corner, we observe an SDC

that shrinks the L-2 norm also provides the lowest overhead.
When moving towards the right, the overhead increases.

We further observe a 3.2x increase in preconditioner calls in
the worst case when 32 processors are used. But when strongly
scaled to 1032 processors, we see that length preserving or
decreasing faults incur relatively low overhead, e.g., a 0-40%
increase in preconditioner calls (0-3 additional applies).

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

40

80

120

160

200

240

280

320

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(a) 32 subdomains

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

40

80

120

160

200

240

280

320

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) 1032 subdomains

Fig. 3: Strong Scaling (32 vs. 1032 subdomains): Av-
erage percent increase of preconditioner applies when
solving a symmetric positive definite problem using
FGmres->Cg->MueLu preconditioning.

Fig. 4 depicts results from FGmres->Gmres->MueLu to
solve the SPD problem. We see the same trend as described in
the FGmres->Cg->MueLu case. The lower left-hand corner
represents the lowest overhead, and moving vertically or hori-
zontally from this quadrant increases the overhead introduced
by SDC. This trend is shown in both the 32 subdomain and
1032 subdomain runs.

It is immediately clear that FGmres->Cg->MueLu is su-
perior in terms of overhead at both 32 and 1032 processes. The
worst case for GMRES is a 500% increase versus CG’s 320%.
We believe the cause for this is due to GMRES preserving state
(having “memory”), while CG is mostly stateless. A fault in
GMRES is embedded into the subspace that is built, where
as CG is effectively a 3-term recurrence. This gives CG as an



inner solver a chance to recover without wasting an entire inner
solve. GMRES appears to have difficulty recovering from
corruption to its basis. We leave further analysis to future work
but recommend FGmres->Cg for SPD problems with a good
preconditioner. We next consider some detection strategies,
i.e., if you are using an expensive preconditioner, it may pay
off to check the explicit residual.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

50

100

150

200

250

300

350

400

450

500

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(a) 32 subdomains

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

50

100

150

200

250

300

350

400

450

500

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) 1032 subdomains

Fig. 4: Strong Scaling (32 vs. 1032 subdomains): Av-
erage percent increase of preconditioner applies when
solving a symmetric positive definite problem using
FGmres->Gmres->MueLu preconditioning.

C. Optional Detection Strategies

Faults in inner solves are silent. Our solvers must either
converge through them or detect them and possibly roll back
a failed inner solve. Detection cannot catch all SDC, and it
also does not even need to, particularly for small errors. We
discussed a trend in our results showing that SDCs that shrink
or maintain the L-2 norm of the preconditioner’s output are
optimal with respect to SDC that increases the L-2 norm.
Nonetheless, detection may help avoid wasted work in a failed
inner solve. In the previous section’s results, we did not
attempt to detect SDC or roll back iterations in inner solves.
With an expensive but effective preconditioner, failed inner
solves may have high overhead.

In this section, we evaluate two different error detectors
by observing whether they would have triggered given the
faults presented. We saw in the last section (compare Figures
3 and 4) that GMRES as an inner solver has less resilience
to faults than CG for SPD problems. However, GMRES has
a built-in invariant that CG lacks, namely that the 2-norm of
the explicitly computed residual rk = b − Axk will never
increase. Both CG and GMRES can use projection length
bounds on intermediate basis vectors to detect faults, but only
GMRES can use the monotonicity of ‖rk‖2. We now consider
if detection strategies in GMRES make sense relative to CG’s
relatively lower fault tolerance overhead.

D. Detection Strategies: Non-Symmetric Problem

We use the data from Fig. 2a to create Fig. 5a. We have
superimposed ’\’ to indicate that the explicit residual detected
the error, and ’/’ to indicate whether a projection length norm
bound proposed by Elliott et al. [14] would be triggered. We
see that the explicit residual caught all SDCs introduced, while
the projection length bound only caught errors that drastically
increased the 2-norm of the preconditioner’s output. The
norm bound proves extremely effective, given its cheapness to
evaluate relative to the cost of computing the explicit residual.

Fig. 5b shows the effect of responding to these checks. We
see at most 2 = 100× .018 extra preconditioner applications.
Recall that CoupCons3D with GMRES required 100 precondi-
tioner applications with no faults. Given the cost of computing
the explicit residual, relative to the cost of applying ILU, it
is not clear that checking the explicit residual every iteration
is worth the overhead. We found experimentally that checking
the explicit residual every 5 iterations sufficed (data omitted
due to space).

E. Detection Strategies: Symmetric Problem

Fig. 6 takes the data from Fig. 4a and superimposes the de-
tectors. Recall that GMRES had very poor behavior compared
to CG in this case. We see that the norm bound by Elliott et
al. [14] has good coverage for the Poisson problem. This is
due to the spectral norm of A being relatively small compared
to the CoupCons3D spectral norm (which has order 10+6).
We see that by using detectors, we can make GMRES’s fault
tolerance overhead much smaller than CG: 120% (GMRES) vs
320% (CG). Seven extra preconditioner calls are required for
GMRES and 20 for CG. Given the cost of applying MueLu, it
pays to use GMRES and then to compute the explicit residual.

We now take into account the cost of a GMRES iteration
vs a CG iteration. GMRES’s work grows linearly with the
number of iterations it performs. We consider work to be the
number of dot products per iteration, since sparse matrix-
vector multiplication (SpMVs) are the same for CG and
GMRES. Given that GMRES needs a total of 6 + 7 inner
iterations to converge (one preconditioner apply per inner
iteration) and CG required 6 + 20 inner iterations, the dot
products for GMRES are (13×14)/2 = 91, while CG requires
26× 2 = 52.



1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

3

6

9

12

15

18

21

24

27

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(a) Faults that could be detected by the norm bound presented in [14]
are hatched right /, and faults that could be detected by checking the
explicit residual are hatched left \.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) Responding to norm bound or explicit residual check to exit inner
solve early (note the colorbar range is different).

Fig. 5: Strong Scaling: Average percent increase of preconditioner applies when solving a non-symmetric problem using
FGmres->Gmres->ILU preconditioning, and checking projection lengths and explicit residuals every iteration. These plots
uses 32 subdomains (MPI ranks).

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

50

100

150

200

250

300

350

400

450

500

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(a) Faults that could be detected by the norm bound presented in [14]
are hatched right /, and faults that could be detected by checking the
explicit residual are hatched left \.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

15

30

45

60

75

90

105

120

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) Responding to norm bound or explicit residual check to exit inner
solve early (note the colorbar range is different).

Fig. 6: Strong Scaling: Average percent increase of preconditioner applies when solving an SPD problem using
FGmres->Gmres->MueLu preconditioning, and checking projection lengths and explicit residuals every iteration. These
plots uses 32 subdomains (MPI ranks).

We now account for the preconditioner applications. Right
preconditioned GMRES requires a preconditioner application
to compute the explicit residual, meaning that if the explicit
residual was checked every iteration, then 13 inner iterations
would require 13 × 2 = 26 preconditioner applies. Left
preconditioned CG requires no preconditioner applications to
compute the explicit residual, and, hence, just 26 precondi-
tioner applications suffice.

In summary, with detectors, GMRES required 91 dot prod-
ucts and 26 preconditioner applications, while CG required
52 dot products and 26 preconditioner applications. These
findings still favor CG as the inner solver. The norm bound
from Elliott et al. [14] flagged 50% of the errors, meaning

no explicit residual check would be required. We found
experimentally that checking the explicit residual every 5
iterations was sufficient for lowering the overhead in GMRES.
Taking this into account, we can slightly reduce the number
of preconditioner applies required, but also incur more dot
products (as we can iterate up to 5 iterations before detecting
that a fault occurred).

This is a surprising result. GMRES + detectors beats CG,
but the overhead of computing the detectors allows CG to win.
If the preconditioner is sufficiently expensive to apply, then it
makes sense to use GMRES + detectors, since it can detect
and rollback the inner solve should an error occur. CG does
not support the explicit residual check, as it does not promise a



non-increasing residual. We leave to future work incorporating
the norm bound check into CG. With a projection length
check, we expect CG to be a clear winner over GMRES.

1) FGMRES as the Inner Solver: The premise behind
Selective Reliability and nesting solvers is that users who are
not experts in numerical algorithms can take existing solver
/ preconditioner combinations and easily nest them inside a
reliable Flexible GMRES outer solver. This enables a “black
box” approach to iterative solver reliability. If we also choose
the inner solver to yield the lowest fault tolerance overhead,
then we should consider all solvers, including Flexible GM-
RES, as the inner solver, e.g., FGmres->FGmres->MueLu.
Fig. 7 presents this case. We see that if we trade memory
(Flexible GMRES requires storing two sets of basis vectors),
then we obtain significantly lower fault tolerance overhead.
Also, FGMRES does not require the application of the precon-
ditioner to compute the explicit residual, meaning that explicit
residual checks are inexpensive even if the preconditioner is
very expensive.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

4

8

12

16

20

24

28

32

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

Fig. 7: Faults that could be detected by the norm bound
presented in [14] are hatched right /, and faults that
could be detected by checking the explicit residual are
hatched left \, when solving an SPD problem using
FGmres->FGmres->MueLu. This plot uses a total of 32
subdomains (MPI ranks).

2) Robustness of Projection Length: An unexpected result
is shown in Fig. 6a. The projection length check flags SDC
where the L-2 norm of the preconditioner output preserves,
increase, or decreases. In this case, the norm bound from
Elliott [14] is approximately 3.6 × 102, which is relatively
tight. The projection length bound is not checked immediately
after calling the preconditioner, but is instead checked as the
upper Hessenberg is formed, e.g., in Line 8 of Algorithm 1.
In Fig. 8 we show what is detectable when then problem is
strongly scaled, e.g., Fig. 4 with detectors overlaid. We see that
the explicit residual failed to detect any errors, yet the norm
bound still succeeded in detecting the most costly errors.

F. Impact of Sign Changes

We now consider the impact of a sign-changing fault with
CG. CG can behave badly if its step length (α in Alg. 2) is

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

50

100

150

200

250

300

350

400

450

500

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

Fig. 8: Strong Scaling: Faults that could be detected by
the norm bound presented in [14] are hatched right /, and
faults that could be detected by checking the explicit residual
are hatched left \, when solving an SPD problem using
FGmres->Gmres->MueLu. This plot uses a total of 1032
subdomains (MPI ranks) and should be compared to Fig. 5a .

incorrect. Figure 9 shows the results of solving the Poisson
problem using FGmres->Cg->MueLu, with both positive
and negative SDC scaling factors. We see that the errors
we deem “bad”, i.e., permuting and scaling, are large. For
GMRES, the figure is a symmetric version of Fig. 4a (omitted
due to space).

-1
e+

05

-2
e+

00

-1
e+

00

-5
e-
01

-1
e-
05

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

40

80

120

160

200

240

280

320

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

Fig. 9: Strong Scaling: Average number of additional precondi-
tioner applies given faults that change the sign of the precon-
ditioner output when solving with FGmres->Cg->MueLu.
This plot uses 32 subdomains (MPI processes).

VII. WEAK SCALING RESULTS

We now take the Poisson problem and fix the work per pro-
cessor to 100k unknowns. We then weakly scale the problem
to 24 process (one node) and 1032 processes (43 nodes) on
the NERSC Hopper cluster. This yields a global matrix size of
approximately 102.3 million and required approximately 1TB
of memory.

Fig. 10 shows that the problem size has a clear impact on
fault tolerance. Should an error taint every subdomain, e.g.,



from interpolations from a coarse grid, then we see nearly
a 100% different in fault tolerance overhead between the
worst SDC in the smaller problem (Fig. 10a) and the larger
problem (Fig. 10b). We also see the repeated trend that faults
that maintain and do not drastically increase the 2-norm of
the preconditioner output typically incur lower fault tolerance
overhead. Note: The bottom row of squares (4% and 0% Faulty
Subdomains) correspond to a single process creating SDC.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

4%

13%

25%

50%

100%

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

25

50

75

100

125

150

175

200

225

250

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(a) 24 subdomains with 100k unknowns per process.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

0%

12%

25%

50%

100%

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

25

50

75

100

125

150

175

200

225

250

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) 1032 subdomains with 100k unknowns per process.

Fig. 10: Weak Scaling (24 vs. 1032 subdomains): Average
percent increase of preconditioner applies when solving an
SPD problem using FGmres->Cg->MueLu preconditioning
weak scaled to 24 processors and 1032 processors

VIII. CONCLUSION

This paper demonstrates that iterative linear solvers can
get the right answer despite incorrect arithmetic or storage
in their preconditioners. They can do so without algorithmic
or implementation changes to preconditioners by combining
selective reliability and inner-outer iterations. Fault detection
in inner solves need not catch all incorrect preconditioner re-
sults in order to reduce overhead much below just running the
solver twice. This justifies even an expensive implementation
of reliability in outer solves, since most of the work goes into
inner solves with their more effective preconditioner. We have
also shown that analytical approaches that detect and filter out
large errors scale well and significantly reduce faults’ over-
head. This is particularly true for effective preconditioners like

algebraic multigrid, that require only a few solver iterations,
but whose complexity and global communication patterns may
make them more vulnerable to SDC. Combining the projection
norm bound from Elliott [14] with an occasional check for
monotonicity of the explicit residual norm in GMRES detected
more faults than either alone.

We have presented results based on a fault model that is
possible given future soft fault projections. Given what little
we know about how faults will appear in future hardware,
we have chosen to use faults that represent an entire MPI
process returning incorrect data. Our fault model does not aim
to predict actual behavior of future SDC. Rather, it shows a
case sufficiently “bad” for us to assess how our fault tolerance
strategies behave when presented with very damaging SDC.

Whether SDC turns out to be a real “monster in the closet”
or not, our findings are relevant for other fields of research.
We observe a consistent trend in our data: Faults that increase
the 2-norm are worse than faults that maintain or decrease the
2-norm. We also see that when the number of faulty ranks
is low, returning data that is wrong but “small” (in the L-2
norm sense) is optimal. This suggests a strategy for dealing
with failure of MPI processes or other data loss, namely,
replacing the missing data with “small” values and continuing
the solve. Future work will pursue with our collaborators this
common strategy for recovery from both soft and hard faults.
We also plan to compare the performance of this paper’s
approach with that of software checksums and other resilience
techniques. Finally, we will investigate the development and
use of programming models that provide selective reliability.

ACKNOWLEDGMENT

This work was supported in part by grants from NSF
(awards 1058779 and 0958311) and the U.S. Department of
Energy Office of Science, Advanced Scientific Computing
Research, under Program Manager Dr. Karen Pao.

Sandia National Laboratories is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000.

REFERENCES

[1] S. Michalak, A. Dubois, C. Storlie, H. Quinn, W. Rust, D. DuBois,
D. Modl, A. Manuzzato, and S. Blanchard, “Assessment of the impact of
cosmic-ray-induced neutrons on hardware in the Roadrunner supercom-
puter,” Device and Materials Reliability, IEEE Transactions on, vol. 12,
no. 2, pp. 445–454, 2012.

[2] P. Kogge et al., “ExaScale computing study: Technology challenges
in achieving exascale systems,” Defense Advanced Research
Project Agency, Information Processing Techniques Office, Tech.
Rep., 2008. [Online]. Available: http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/exascale final report 100208.pdf

[3] A. Geist, “What is the monster in the closet?” Aug. 2011, invited Talk at
Workshop on Architectures I: Exascale and Beyond: Gaps in Research,
Gaps in our Thinking.

[4] A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing sys-
tem,” in Supercomputing, Nov. 2010.

[5] Z. Chen, “Algorithm-based recovery for iterative methods without check-
pointing,” in Symposium on High-Performance Parallel and Distributed
Computing, Jun. 2011, pp. 73–84.



[6] J. Schlaich and K.-H. Raineck, “Die Ursache für den Totalverlust der
Betonplattform Sleipner A,” Beton- und Stahlbetonbau, vol. 88, pp. 1–4,
1993.

[7] J. Gaidamour, J. Hu, C. Siefert, and R. Tuminaro, “Design considerations
for a flexible multigrid preconditioning library,” Scientific Programming,
vol. 20, no. 3, pp. 223–239, 2012.

[8] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen, “High perfor-
mance LINPACK benchmark: A fault tolerant implementation without
checkpointing,” in Proceedings of the 25th Annual International Con-
ference on Supercomputing, May 2011, pp. 162–171.

[9] T. Davies and Z. Chen, “Correcting soft errors online in LU factor-
ization,” in Proceedings of the 22nd International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’13. New
York, NY, USA: ACM, 2013, pp. 167–178.

[10] Y. Chen and Y. Deng, “A detailed analysis of communication load
balance on bluegene supercomputer,” Comp. Phys. Comm., vol. 180,
no. 8, pp. 1251–1258, 2009.

[11] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518–528, Jun. 1984.

[12] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Fault tolerant
preconditioned conjugate gradient for sparse linear system solution,” in
Proceedings of the 26th ACM International Conference on Supercom-
puting, ser. ICS ’12. New York, NY, USA: ACM, 2012, pp. 69–78.

[13] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen, “Fault-
tolerant linear solvers via selective reliability,” ArXiv e-prints, Jun. 2012,
provided by the SAO/NASA Astrophysics Data System.

[14] J. Elliott, M. Hoemmen, and F. Mueller, “Evaluating the impact of SDC
on the GMRES iterative solver,” in 28th IEEE International Parallel &
Distributed Processing Symposium (IEEE IPDPS 2014), Phoenix, USA,
May 2014.

[15] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat.
Comput., vol. 7, no. 3, pp. 856–869, Jul. 1986.

[16] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for
Solving Linear Systems,” Journal of Research of the National Bureau
of Standards, vol. 49, no. 6, pp. 409–436, Dec. 1952.

[17] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and
S. K. Weeratunga, “The NAS Parallel Benchmarks,” The International
Journal of Supercomputer Applications, vol. 5, no. 3, pp. 63–73, Fall
1991. [Online]. Available: citeseer.ist.psu.edu/article/bailey94nas.html

[18] M. A. Heroux et al., “Improving performance via mini-applications,”
Sandia National Laboratories, Tech. Rep. SAND2009-5574, September
2009.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2003.

[20] C. G. Baker and M. A. Heroux, “Tpetra, and the use of generic
programming in scientific computing,” Scientific Programming, vol. 20,
no. 2, pp. 115–128, 2012.

[21] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq,
K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tu-
minaro, J. Willenbring, and A. Williams, “An Overview of Trilinos,”
Sandia National Laboratories, Tech. Rep. SAND2003-2927, 2003.

[22] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist, “Ame-
sos2 and Belos: Direct and iterative solvers for large sparse linear
systems,” Scientific Programming, vol. 20, no. 3, pp. 241–255, 2012.

[23] B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations.
New York: Cambridge University Press, 1996.

[24] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H.
Liu, “A supernodal approach to sparse partial pivoting,” SIAM J. Matrix
Analysis and Applications, vol. 20, no. 3, pp. 720–755, 1999.

[25] J. Sloan, R. Kumar, and G. Bronevetsky, “Algorithmic approaches to
low overhead fault detection for sparse linear algebra,” in Proceedings
of the 2012 42nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), ser. DSN ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 1–12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2354410.2355166

[26] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing the
impact of soft errors on iterative methods in scientific computing,” in
Proceedings of the 25th International Conference on Supercomputing,
ser. ICS ’11. New York, NY, USA: ACM, 2011, pp. 152–161.

[27] P. Sao and R. Vuduc, “Self-stabilizing iterative solvers,” in Proceedings
of the Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems, ser. ScalA ’13. New York, NY, USA: ACM, 2013, pp.
4:1–4:8.

[28] A. Meek, V. Howle, and M. Hoemmen, “Fault Tolerant QMR,” Min-
isymposium talk at SIAM Computational Science and Engineering, Feb.
2013.

[29] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Transactions on Mathematical Software, vol. 38, no. 1,
pp. 1:1–1:25, 2011.


