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Optimization Problem

Objective: Generate set of operations for
computing matrix-vector product with
minimal number of multiply-add pairs (MAPs)
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Motivation
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Based on reference
element, generate code to Can use optimized code

optimize construction of for every element in
local stiffness matrices domain

» Reducing redundant operations in building finite
element (FE) stiffness matrices
- Reuse optimized code when problem is rerun
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Related Work

- Finite element “Compilers” (FEniCS project)

- www.fenics.org

- FIAT (automates generations of FEs)

- FFC (variational forms -> code for evaluation)

* Following work by Kirby, et al., Texas Tech,
University of Chicago on FErari

- Optimization of FFC generated code

- Equivalent to optimizing matrix-vector product code



http://www.fenics.org

Matrix-Vector Multiplication

For 2D Laplace equation, we obtain following matrix-

vector product to determine entries in local

stiffness matrix
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Possible Optimizations - Collinear Rows
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Possible Optimizations - Collinear Rows
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ro = 1.5r7 = yo = 1.5y; |1 MAP




Possible Optimizations - Collinear Rows

n|l (22202
21 | 333 0]|]=
| |22 2 0 |]|®s
Y 555 8 ||

rs =I1 = Y3 = Y1 |0 MAPs

Special case when
rows identical




Possible Optimizations - Partial Collinear Rows
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'y = 2.51‘1 + 884




Possible Optimizations - Partial Collinear Rows

n|l (22202
21 | 333 0]|]=
| |22 2 0 ||
Y 555 8 ||

rqy = 2.9r1 + 38€4 = Ya = 2.5Y1 + 8T4
2 MAPs
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Graph Model - Resulting Vector Entry Vertices

§4 4 8
-2-2 -4

+ Enftries in resulting vector represented by vertices in
graph model
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Graph Model - Inner-Product Vertex and Edges

Yo — —22?2 — 2513’3 — 4[1’:4

Y1 = 8xr1 + 4xo + 43 + 814

- Additional inner-product (IP) vertex

- Edges connect IP vertex to every other vertex,
representing inner-product operation
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Graph Model - Row Relationship Edges

—2y2 + 821
—0.9y1 + 4z

Y1
Y2

* Operations resulting from relationships between rows
represented by edges between corresponding vertices
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Graph Model - Edge Weights

Yo = —2x0 — 213 — 414

I‘1T84
0 2

Y1 = 8xr1 + 4xo + 43 + 814
—2y2 + 8:15’1

—0.9y1 + 4z

Y1
Y2

+ Edge weights are MAP costs for operations
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Graph Model Solution
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Matrix Graph MST(5)

Solution is minimum spanning tree (MST)
- Minimum subgraph

- Connected and spans vertices

- Acyclic
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Graph Model Solution

2
' 8 4 4 8 Yo = —2T2 — 213 — 4T
rz- |0 -2 -2 -4 y1 = —2y2 + 8z
1
Matrix MST Traversal Instructions

* Prim's algorithm to find MST (polynomial time)
* MST traversal yields operations to optimally compute
(for these relationships) matrix-vector product
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Graph Model Example

* Matrix used for building FE local
stiffness matrices
- 2D Laplace Equation
- 2nd order Lagrange polynomial basis
- Simplified version of matrix

- Identical rows removed
- Several additional rows removed
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N H 4 54 5N 494 H 49 9

Graph Model Example - Vertices
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Graph Model Example - Inner Product Edges
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N N 4 54 54 4 H 49 9

Graph Model Example - Collinear Edges
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Graph Model Example - Partial Collinear Edges
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Graph Model Example - Solution (MST)
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Graph Model Example - Instructions

r{1| o 4:3 0
rol| 0 0 §1f2
rgl 1f2§ 0 0
r,t 1!651!6% 0
r5l| 0 éwséus
rgl| 0 §~2f3§—-2f3
rol -4;'3;-4;3; 0
rgl| O 5-4;'3%-4;3
rol|4/3 4/3 4/3

Matrix (16 nz)

MST traversal

Generated
yz3 = 0.5x1
yo = 0.bxs
yi = (4/3)z2
ys = —y1— (4/3)x3
yr = —y1— (4/3)x1
Yo = —Ys+(4/3)x1
ye = 0.5ys
ys = (—1/8)ys
ya = (—1/8)yz

Instructions (9 MAPSs)
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Graph Model Results - 2D Laplace Equation

Unoptimized | Graph

Order MAPs MAPs
1 10 7

2 34 14

3 108 43

4 292 152

5 589 366

6 1070 686

<4 50% decrease

Graph model shows significant improvement over
unoptimized algorithm
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Graph Model Results - 3D Laplace Equation

Unoptimized | Graph
Order MAPs MAPs
1 21 17
2 177 79
3 789 342
4 2086 1049 | €= 599, decrease
5 7125 | 3592
6 16749 | 8835

Again graph model requires significantly fewer MAPs
than unoptimized algorithm
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Limitation of Gr'aph Model

| Y1 ) 1

Y2 4

Ys O

y4 2
ro — 2r3 + 214

Edges connect 2 vertices

Can represent only binary row relationships

Cannot exploit linear dependency of more than two rows

Thus, hypergraphs needed
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Hypergraph Model

P1T323é33
2711 1.0 0| —» (1)
I‘3T0§0é1 1

Y1 = 3Y2 + 3Y3

« Same edges (2-vertex hyperedges) as graph model

« Additional higher cardinality hyperedges for more
complicated relationships
— Limiting to 3-vertex linear dependency hyperedges for this talk
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Hypergraph Model

Extended Prim’s algorithm to include hyperedges
Polynomial time algorithm

Solution not necessarily a tree
- {IP,1,3,5}
— {IP,2,4,5}

No guarantee of optimum solution
Finding optimum solution to hypergraph problem NP-hard

1 3

(P 5
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Hypergraph Model Results - 2D Laplace Equation

Unoptimized | Graph | HGraph
Order MAPs MAPs | MAPs

1 10 7 6
2 34 14 14
3 108 43 43
4 292 152 150
5 589 366 363
6 1070 686 686

Hypergraph solution slightly better for some orders
but not significantly better

Graph algorithm close to optimal?
- 3 Columns
- Binary relationships may be good enough
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Hypergraph Model Results - 3D Laplace Equation

Unoptimized | Graph | HGraph
Order MAPs MAPs | MAPs
1 21 17 17
2 177 79 68
3 789 342 297
4 2586 | 1049 852 | €= 19% additional
D 7125 3092 3261 decrease
6 16749 8835 8340

Hypergraph solution significantly better than graph
solution for many orders
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Future Work

* Higher cardinality hyperedges

- Perhaps useful for 3D FE problems

- Implemented 4, 5, 6 vertex hyperedges

- Hyperedge explosion

- Need efficient hyperedge pruning algorithms

* More complicated hyperedge relationships

- Similar to partial collinear row relationships for edges
» Optimal and more nearly optimal solution methods
- Combinatorial optimization formulation

- Other matrices
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2D Laplace Equation Matrices

Order || Rows | Entries | Nonzeros
1 6 18 10
2 21 63 34
3 55 165 108
4 120 360 292
5 231 693 589
6 406 1218 1070

3 Columns
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3D Laplace Equation Matrices

Order || Rows | Entries | Nonzeros
1 10 60 21
2 55 330 177
3 210 1260 789
4 630 3780 2586
5 1596 9576 7125
6 3570 21420 16749

6 Columns
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Accuracy

Relative Error 2D Laplace

Relative Error 3D Laplace

GPCR HGraph GPCR HGraph
Order Error Error Order Error Error
1 0 0 1 0 0
2 2.53565e-09 | 2.55594e-09 2 9.33830e-09 | 7.35996e-09
3 6.40668e-09 | 2.44340e-09 3 2.60053e-08 | 3.51190e-08
4 2.47834e-10 | 9.30090e-09 4 8.31206e-09 | 1.47134e-08
5 4.95544e-09 | 5.87721e-09 5 4.22496e-08 | 6.30277e-08
6 4.28141e-09 | 4.28166e-09 6 1.07992e-06 | 1.41391e-06

Single precision input matrices
Single precision code generation
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