

Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication

Michael Wolf
University of Illinois,
Sandia National Laboratories

2008 SIAM Annual Meeting
7/11/2008

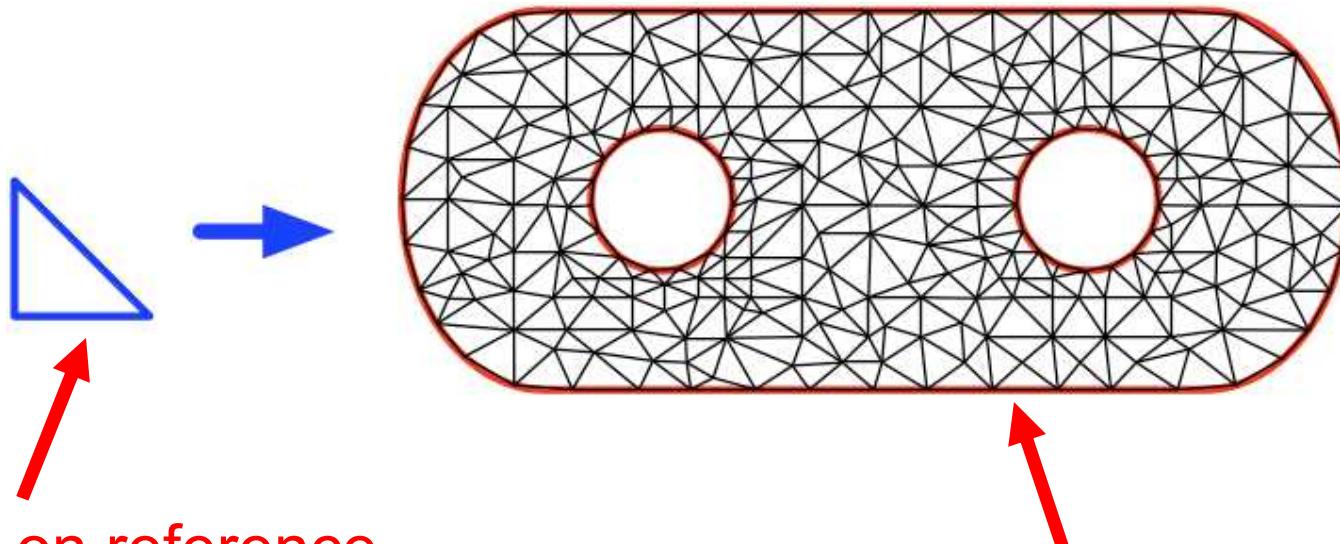
Optimization Problem

Objective: Generate set of operations for computing matrix-vector product with minimal number of multiply-add pairs (MAPs)

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^T \\ \hline \mathbf{r}_2^T \\ \hline \vdots \\ \hline \mathbf{r}_m^T \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{r}_1^T \mathbf{x} \\ \mathbf{r}_2^T \mathbf{x} \\ \vdots \\ \mathbf{r}_m^T \mathbf{x} \end{bmatrix}$$

Motivation



Based on reference element, generate code to optimize construction of local stiffness matrices

Can use optimized code for every element in domain

- Reducing redundant operations in building finite element (FE) stiffness matrices
 - Reuse optimized code when problem is rerun

Related Work

- Finite element “Compilers” (FEniCS project)
 - www.fenics.org
 - FIAT (automates generations of FEs)
 - FFC (variational forms → code for evaluation)
- Following work by Kirby, et al., Texas Tech, University of Chicago on FErari
 - Optimization of FFC generated code
 - Equivalent to optimizing matrix-vector product code

Matrix-Vector Multiplication

For 2D Laplace equation, we obtain following matrix-vector product to determine entries in local stiffness matrix

$$\mathbf{S}_{i,j}^e = y_{ni+j} = \mathbf{A}_{(ni+j,*)} \mathbf{x}$$

where

$$\mathbf{A}_{(ni+j,*)}^T = \begin{bmatrix} \left\{ \frac{\partial \phi_i}{\partial r}, \frac{\partial \phi_j}{\partial r} \right\}_{\hat{e}} \\ \left\{ \frac{\partial \phi_i}{\partial r}, \frac{\partial \phi_j}{\partial s} \right\}_{\hat{e}} \\ \left\{ \frac{\partial \phi_i}{\partial s}, \frac{\partial \phi_j}{\partial r} \right\}_{\hat{e}} \\ \left\{ \frac{\partial \phi_i}{\partial s}, \frac{\partial \phi_j}{\partial s} \right\}_{\hat{e}} \end{bmatrix}$$

$\mathbf{x} = \det(\mathbf{J})$

Element dependent

$\begin{bmatrix} \frac{\partial r}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial r}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial s}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial s}{\partial y} \end{bmatrix}$

Element independent

Possible Optimizations - Collinear Rows

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 0 \\ 3 & 3 & 3 & 0 \\ 2 & 2 & 2 & 0 \\ 5 & 5 & 5 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\mathbf{r}_2 = 1.5\mathbf{r}_1$$

Possible Optimizations - Collinear Rows

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 0 \\ 3 & 3 & 3 & 0 \\ 2 & 2 & 2 & 0 \\ 5 & 5 & 5 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\mathbf{r}_2 = 1.5\mathbf{r}_1 \Rightarrow y_2 = 1.5y_1$$

1 MAP

Possible Optimizations - Collinear Rows

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 0 \\ 3 & 3 & 3 & 0 \\ 2 & 2 & 2 & 0 \\ 5 & 5 & 5 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$r_3 = r_1 \Rightarrow y_3 = y_1 \quad \boxed{0 \text{ MAPs}}$$

Special case when
rows identical

Possible Optimizations - Partial Collinear Rows

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 0 \\ 3 & 3 & 3 & 0 \\ 2 & 2 & 2 & 0 \\ 5 & 5 & 5 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\mathbf{r}_4 = 2.5\mathbf{r}_1 + 8\mathbf{e}_4$$

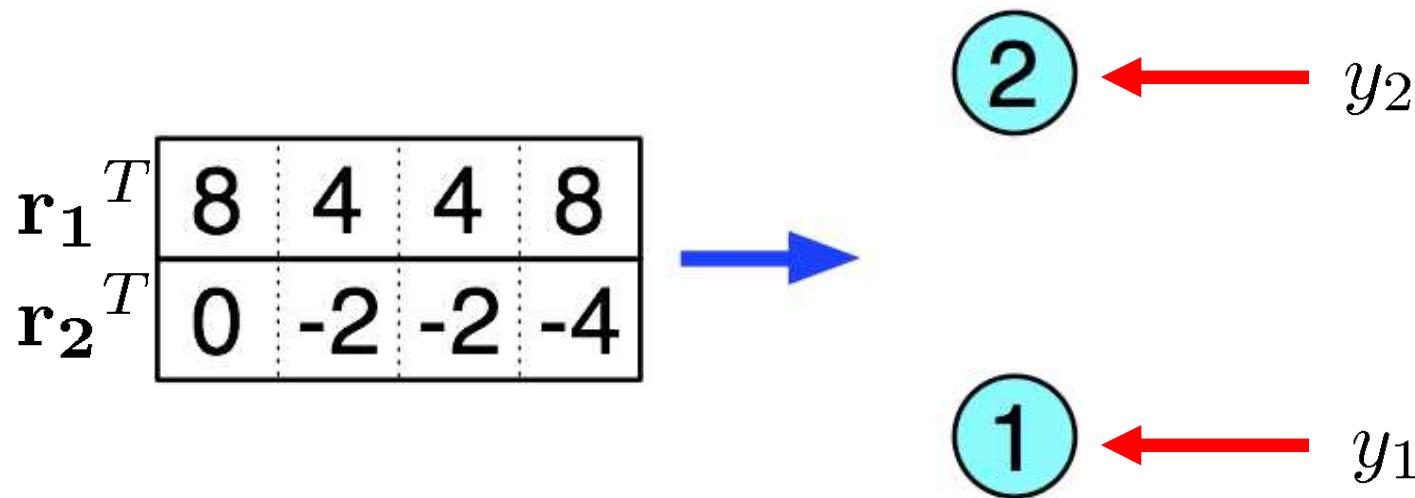
Possible Optimizations - Partial Collinear Rows

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 0 \\ 3 & 3 & 3 & 0 \\ 2 & 2 & 2 & 0 \\ 5 & 5 & 5 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\mathbf{r}_4 = 2.5\mathbf{r}_1 + 8\mathbf{e}_4 \Rightarrow y_4 = 2.5y_1 + 8x_4$$

2 MAPs

Graph Model - Resulting Vector Entry Vertices

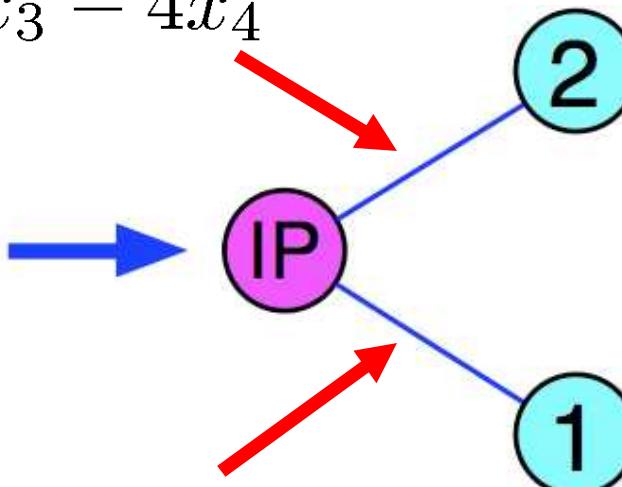


- Entries in resulting vector represented by vertices in graph model

Graph Model - Inner-Product Vertex and Edges

$$y_2 = -2x_2 - 2x_3 - 4x_4$$

$$\begin{matrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \end{matrix} \begin{matrix} 8 & 4 & 4 & 8 \\ 0 & -2 & -2 & -4 \end{matrix}$$

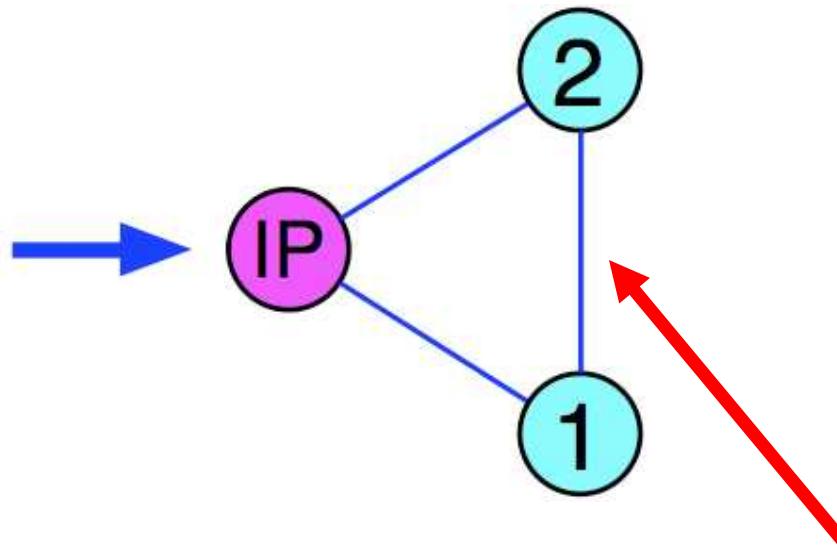


$$y_1 = 8x_1 + 4x_2 + 4x_3 + 8x_4$$

- Additional inner-product (IP) vertex
- Edges connect IP vertex to every other vertex, representing inner-product operation

Graph Model - Row Relationship Edges

$$\begin{matrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \end{matrix} \begin{matrix} 8 & 4 & 4 & 8 \\ 0 & -2 & -2 & -4 \end{matrix}$$



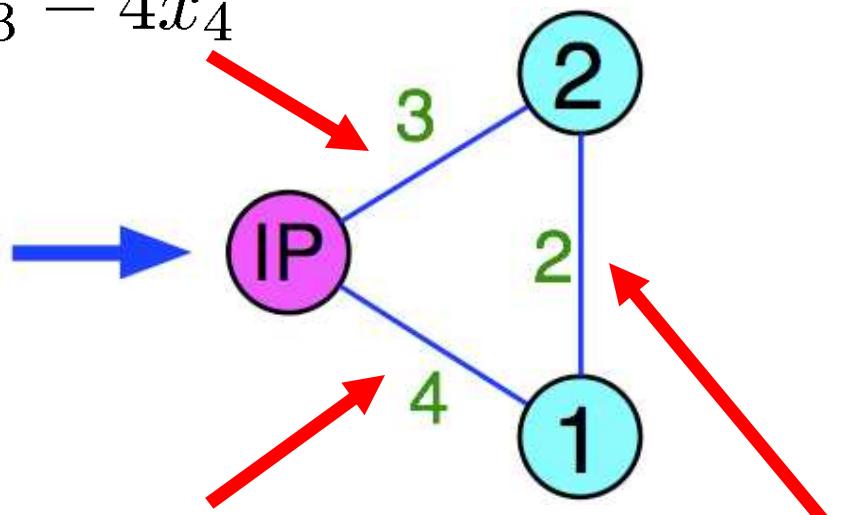
$$\begin{aligned} y_1 &= -2y_2 + 8x_1 \\ y_2 &= -0.5y_1 + 4x_1 \end{aligned}$$

- Operations resulting from relationships between rows represented by edges between corresponding vertices

Graph Model - Edge Weights

$$y_2 = -2x_2 - 2x_3 - 4x_4$$

$$\begin{matrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \end{matrix} \begin{matrix} 8 & 4 & 4 & 8 \\ 0 & -2 & -2 & -4 \end{matrix}$$



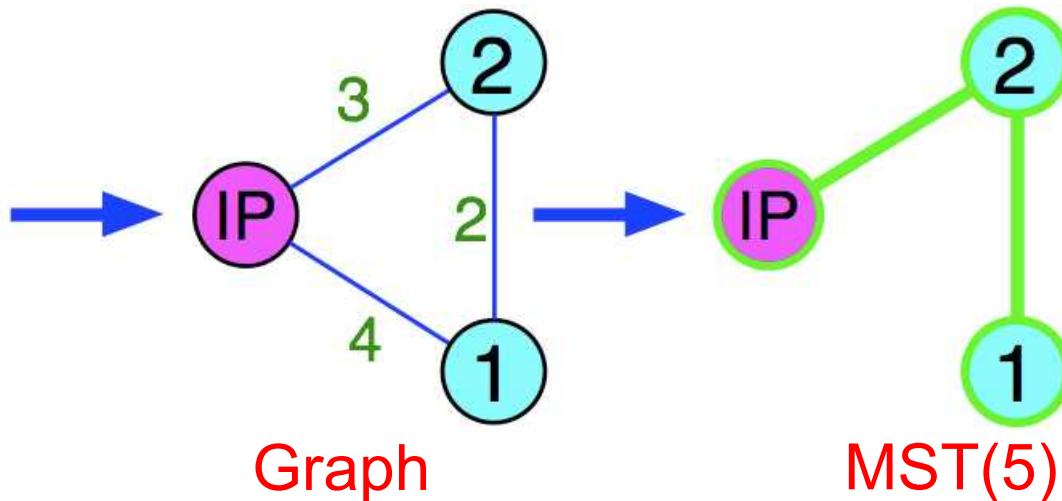
$$y_1 = 8x_1 + 4x_2 + 4x_3 + 8x_4$$

$$\begin{aligned} y_1 &= -2y_2 + 8x_1 \\ y_2 &= -0.5y_1 + 4x_1 \end{aligned}$$

- Edge weights are MAP costs for operations

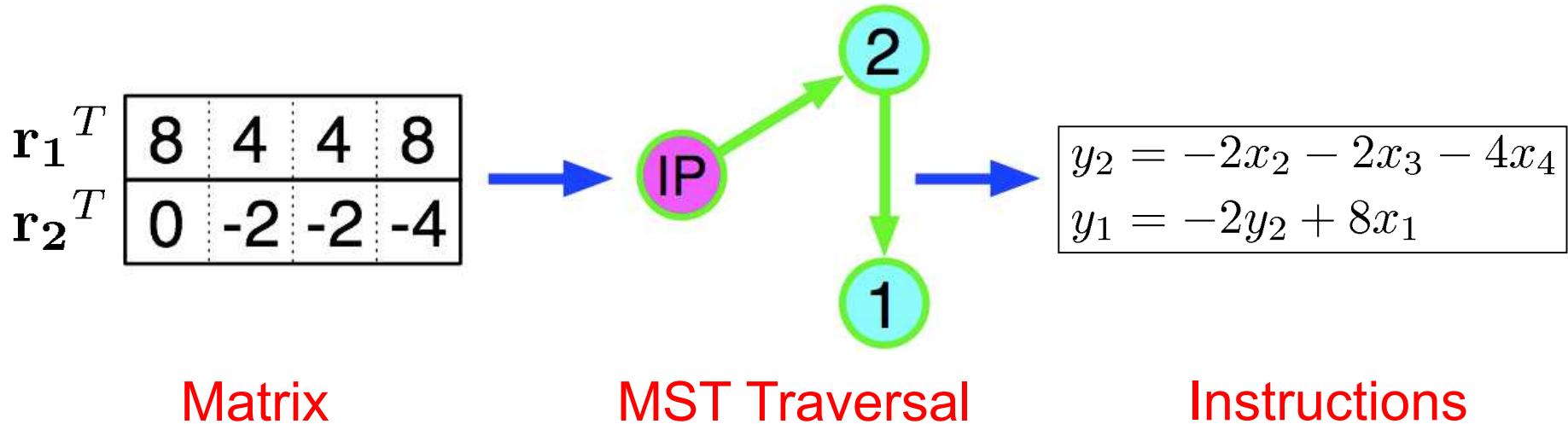
Graph Model Solution

r_1^T	8	4	4	8
r_2^T	0	-2	-2	-4



- Solution is minimum spanning tree (MST)
 - Minimum subgraph
 - Connected and spans vertices
 - Acyclic

Graph Model Solution



- Prim's algorithm to find MST (polynomial time)
- MST traversal yields operations to optimally compute (for these relationships) matrix-vector product

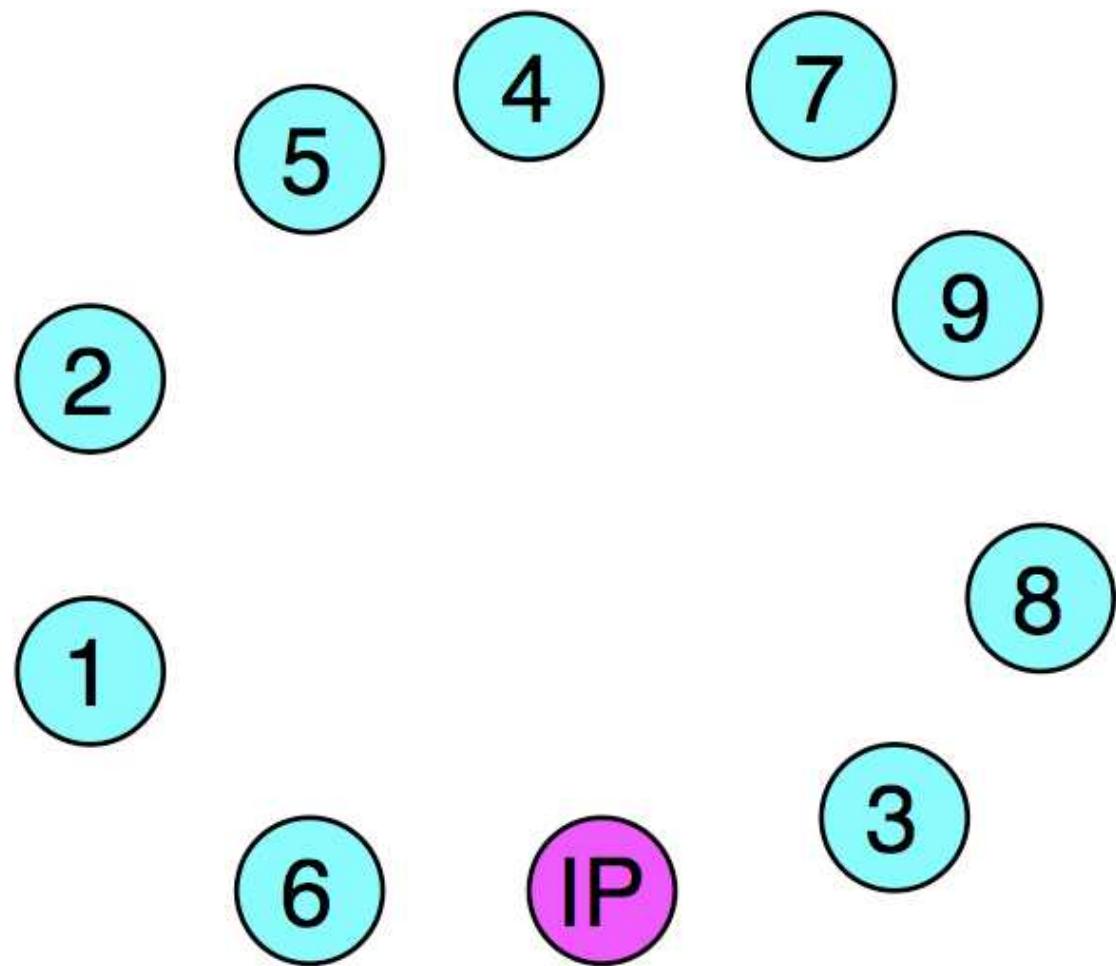
Graph Model Example

r_1^T	0	4/3	0
r_2^T	0	0	1/2
r_3^T	1/2	0	0
r_4^T	1/6	1/6	0
r_5^T	0	1/6	1/6
r_6^T	0	-2/3	-2/3
r_7^T	-4/3	-4/3	0
r_8^T	0	-4/3	-4/3
r_9^T	4/3	4/3	4/3

- Matrix used for building FE local stiffness matrices
 - 2D Laplace Equation
 - 2nd order Lagrange polynomial basis
- Simplified version of matrix
 - Identical rows removed
 - Several additional rows removed

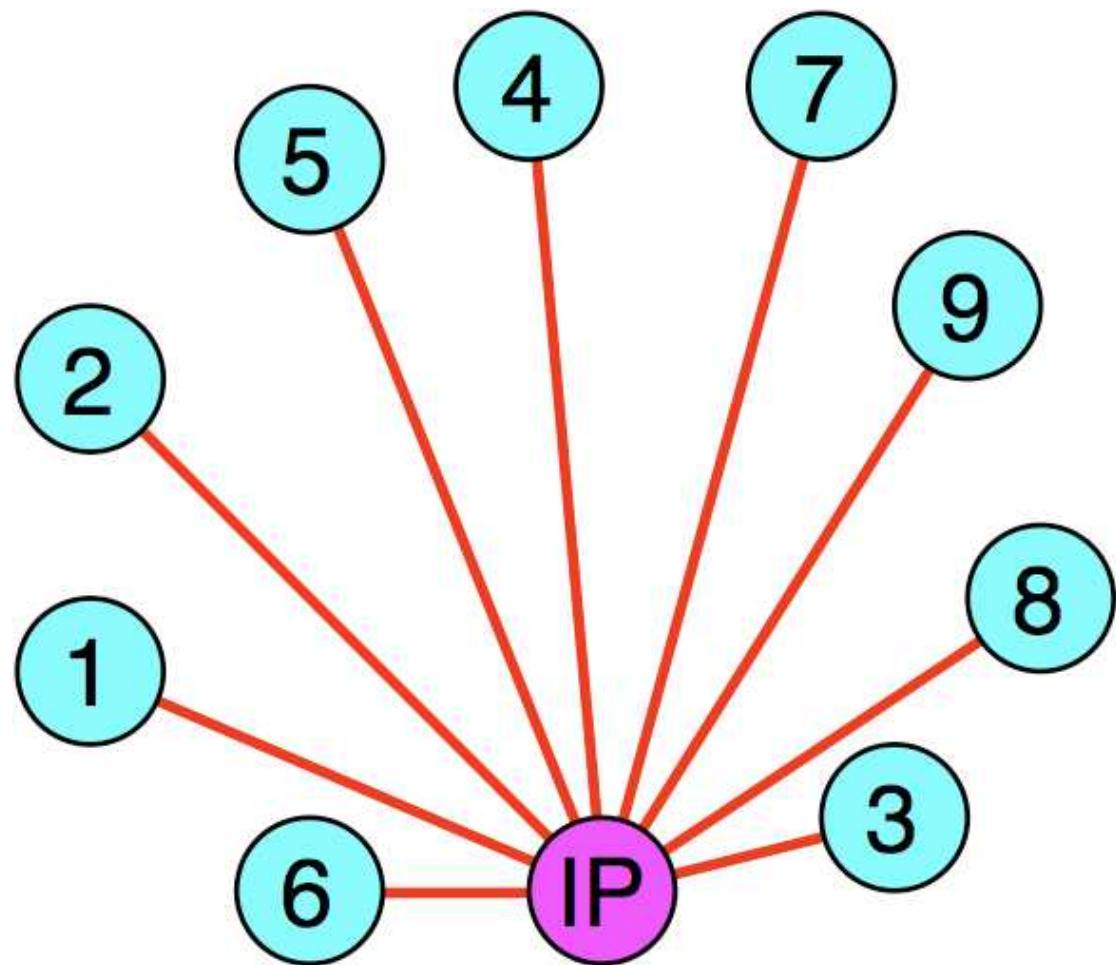
Graph Model Example - Vertices

r_1^T	0	$4/3$	0
r_2^T	0	0	$1/2$
r_3^T	$1/2$	0	0
r_4^T	$1/6$	$1/6$	0
r_5^T	0	$1/6$	$1/6$
r_6^T	0	$-2/3$	$-2/3$
r_7^T	$-4/3$	$-4/3$	0
r_8^T	0	$-4/3$	$-4/3$
r_9^T	$4/3$	$4/3$	$4/3$



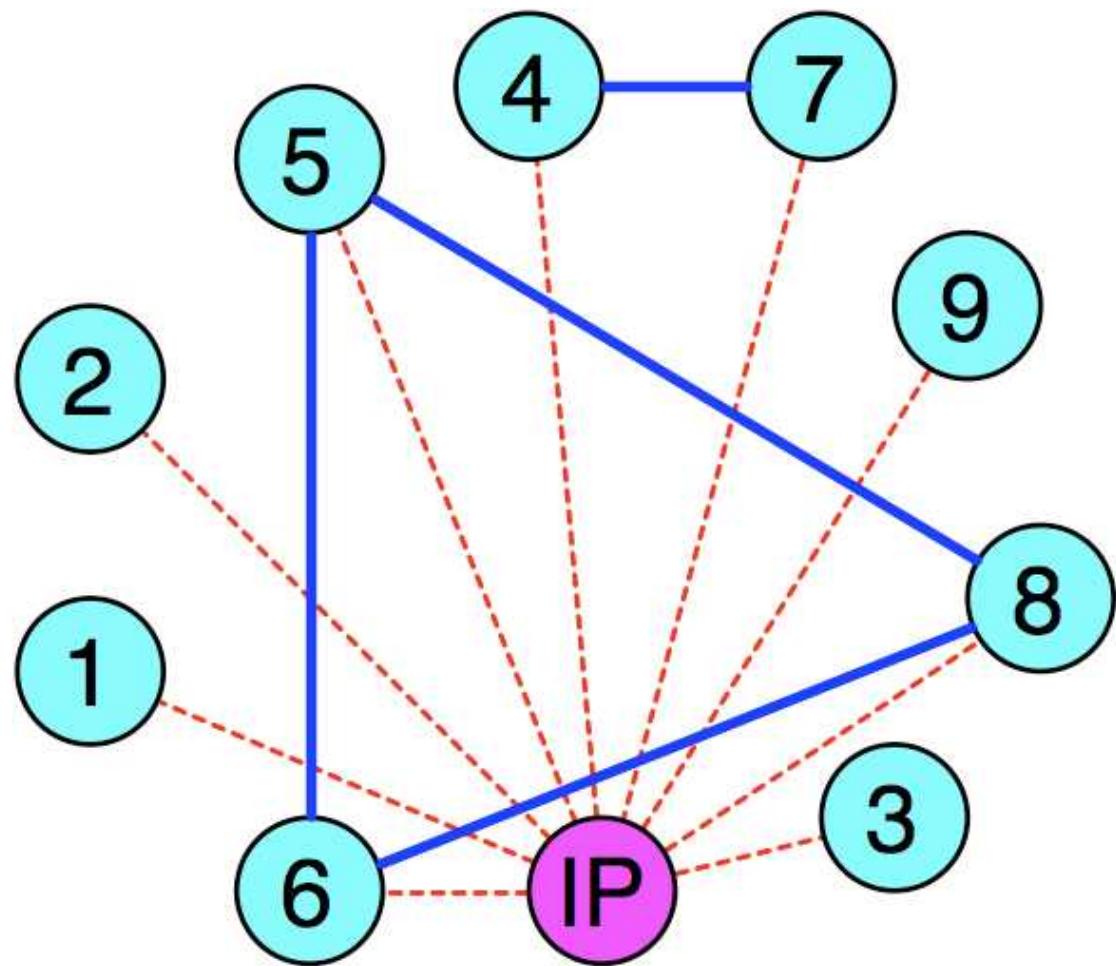
Graph Model Example - Inner Product Edges

r_1^T	0	$4/3$	0
r_2^T	0	0	$1/2$
r_3^T	$1/2$	0	0
r_4^T	$1/6$	$1/6$	0
r_5^T	0	$1/6$	$1/6$
r_6^T	0	$-2/3$	$-2/3$
r_7^T	$-4/3$	$-4/3$	0
r_8^T	0	$-4/3$	$-4/3$
r_9^T	$4/3$	$4/3$	$4/3$



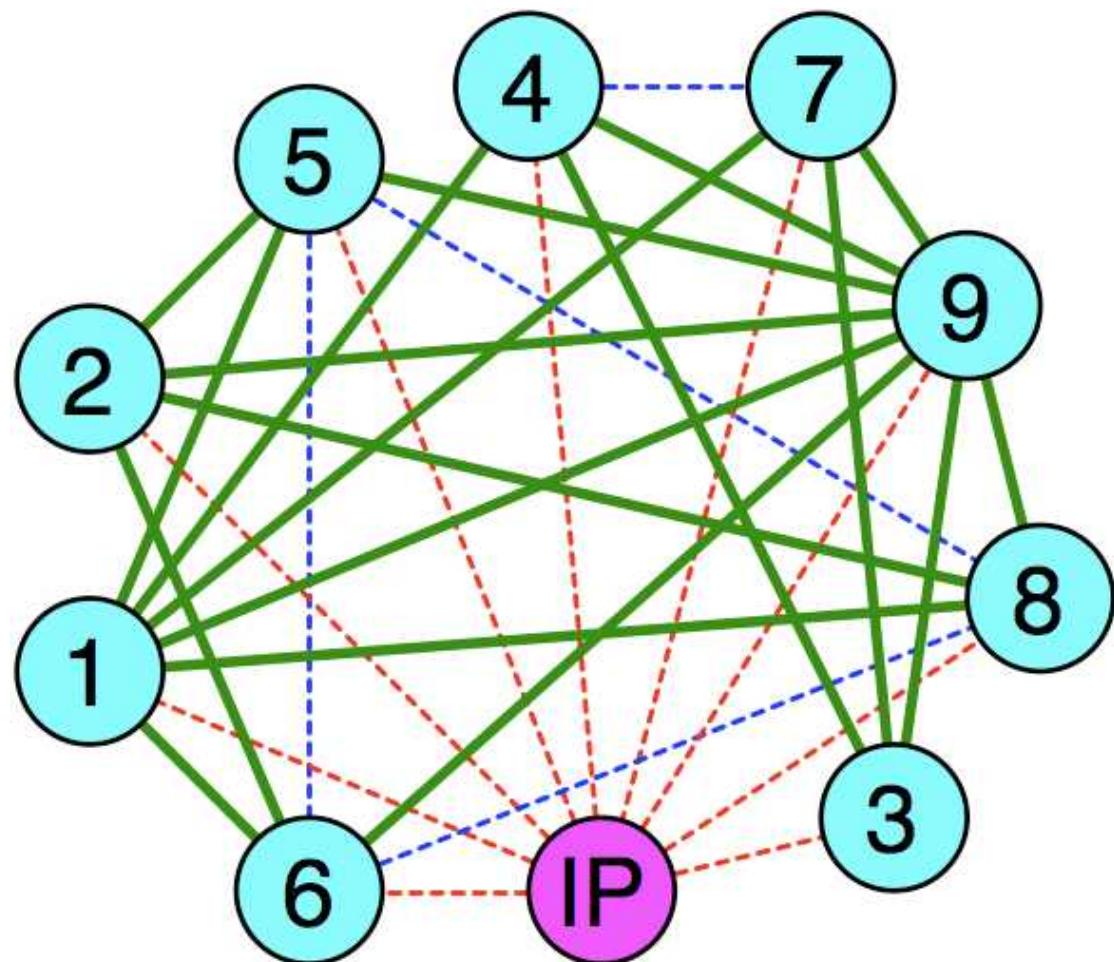
Graph Model Example - Collinear Edges

r_1^T	0	$4/3$	0
r_2^T	0	0	$1/2$
r_3^T	$1/2$	0	0
r_4^T	$1/6$	$1/6$	0
r_5^T	0	$1/6$	$1/6$
r_6^T	0	$-2/3$	$-2/3$
r_7^T	$-4/3$	$-4/3$	0
r_8^T	0	$-4/3$	$-4/3$
r_9^T	$4/3$	$4/3$	$4/3$



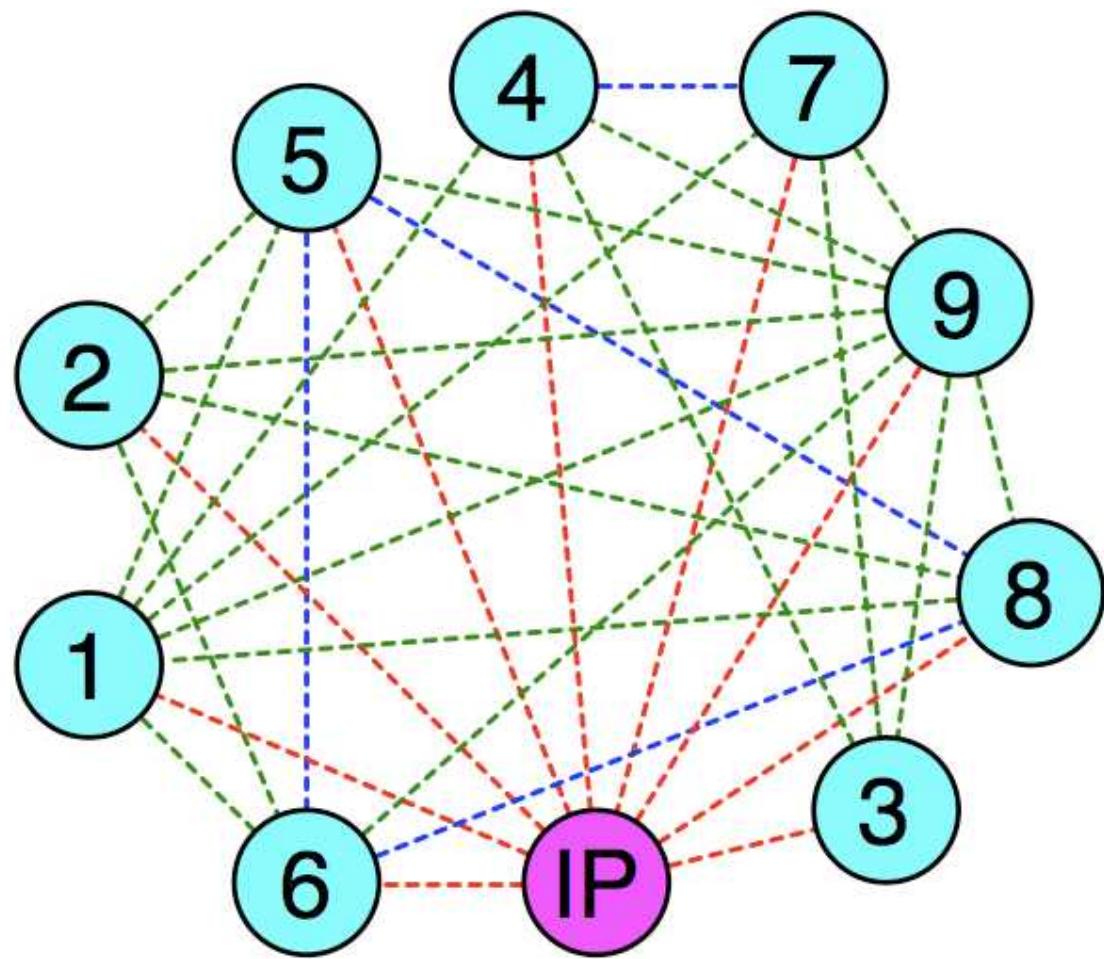
Graph Model Example - Partial Collinear Edges

r_1^T	0	$4/3$	0
r_2^T	0	0	$1/2$
r_3^T	$1/2$	0	0
r_4^T	$1/6$	$1/6$	0
r_5^T	0	$1/6$	$1/6$
r_6^T	0	$-2/3$	$-2/3$
r_7^T	$-4/3$	$-4/3$	0
r_8^T	0	$-4/3$	$-4/3$
r_9^T	$4/3$	$4/3$	$4/3$



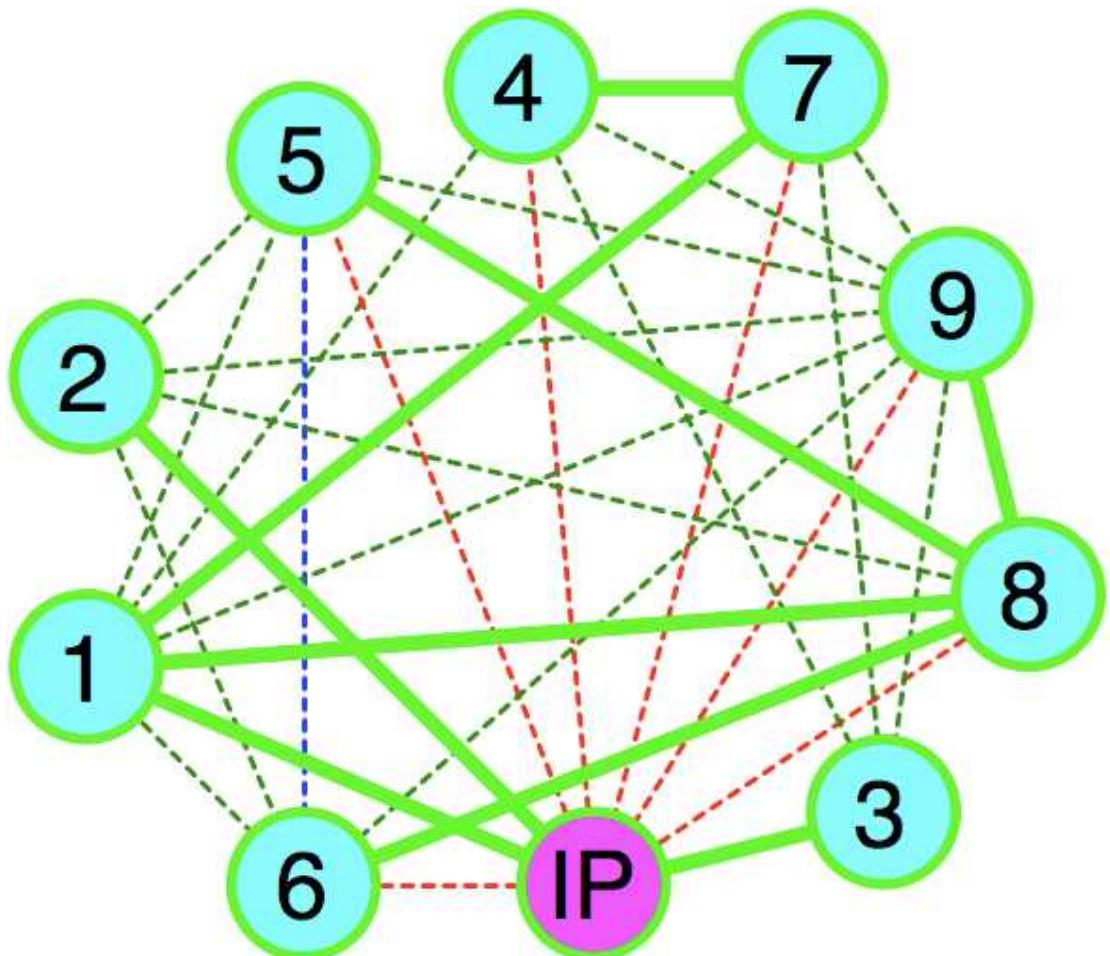
Graph Model Example - Final Graph

r_1^T	0	$4/3$	0
r_2^T	0	0	$1/2$
r_3^T	$1/2$	0	0
r_4^T	$1/6$	$1/6$	0
r_5^T	0	$1/6$	$1/6$
r_6^T	0	$-2/3$	$-2/3$
r_7^T	$-4/3$	$-4/3$	0
r_8^T	0	$-4/3$	$-4/3$
r_9^T	$4/3$	$4/3$	$4/3$



Graph Model Example - Solution (MST)

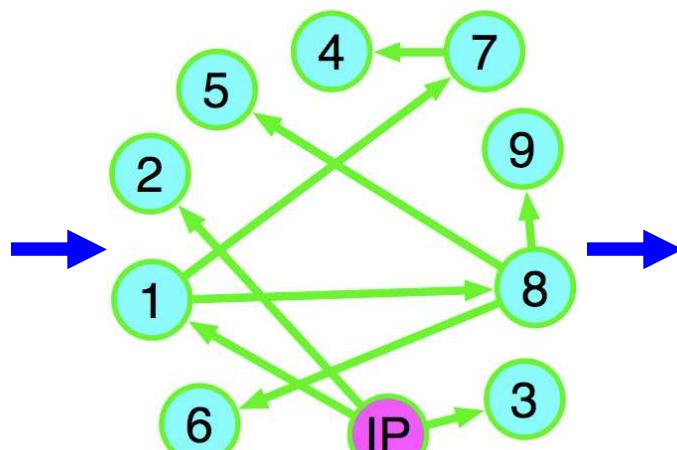
r_1^T	0	$4/3$	0
r_2^T	0	0	$1/2$
r_3^T	$1/2$	0	0
r_4^T	$1/6$	$1/6$	0
r_5^T	0	$1/6$	$1/6$
r_6^T	0	$-2/3$	$-2/3$
r_7^T	$-4/3$	$-4/3$	0
r_8^T	0	$-4/3$	$-4/3$
r_9^T	$4/3$	$4/3$	$4/3$



Graph Model Example - Instructions Generated

r_1^T	0	$4/3$	0
r_2^T	0	0	$1/2$
r_3^T	$1/2$	0	0
r_4^T	$1/6$	$1/6$	0
r_5^T	0	$1/6$	$1/6$
r_6^T	0	$-2/3$	$-2/3$
r_7^T	$-4/3$	$-4/3$	0
r_8^T	0	$-4/3$	$-4/3$
r_9^T	$4/3$	$4/3$	$4/3$

Matrix (16 nz)



MST traversal

y_3	$= 0.5x_1$
y_2	$= 0.5x_3$
y_1	$= (4/3)x_2$
y_8	$= -y_1 - (4/3)x_3$
y_7	$= -y_1 - (4/3)x_1$
y_9	$= -y_8 + (4/3)x_1$
y_6	$= 0.5y_8$
y_5	$= (-1/8)y_8$
y_4	$= (-1/8)y_7$

Instructions (9 MAPs)

Graph Model Results - 2D Laplace Equation

Order	Unoptimized MAPs	Graph MAPs
1	10	7
2	34	14
3	108	43
4	292	152
5	589	366
6	1070	686

← 60% decrease

- Graph model shows significant improvement over unoptimized algorithm

Graph Model Results - 3D Laplace Equation

Order	Unoptimized MAPs	Graph MAPs
1	21	17
2	177	79
3	789	342
4	2586	1049
5	7125	3592
6	16749	8835

← 59% decrease

- Again graph model requires significantly fewer MAPs than unoptimized algorithm

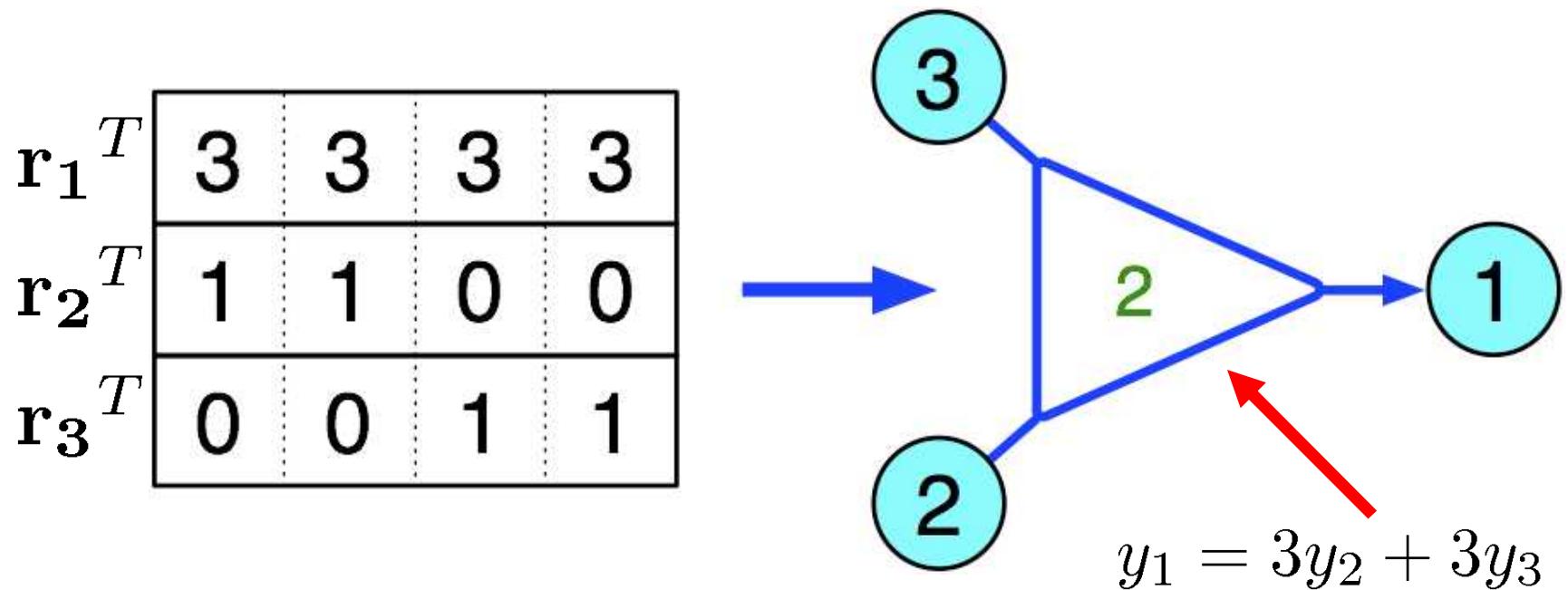
Limitation of Graph Model

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 4 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 2 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\mathbf{r}_2 = 2\mathbf{r}_3 + 2\mathbf{r}_4 \Rightarrow y_2 = 2y_3 + 2y_4$$

- Edges connect 2 vertices
- Can represent only binary row relationships
- Cannot exploit linear dependency of more than two rows
- Thus, hypergraphs needed

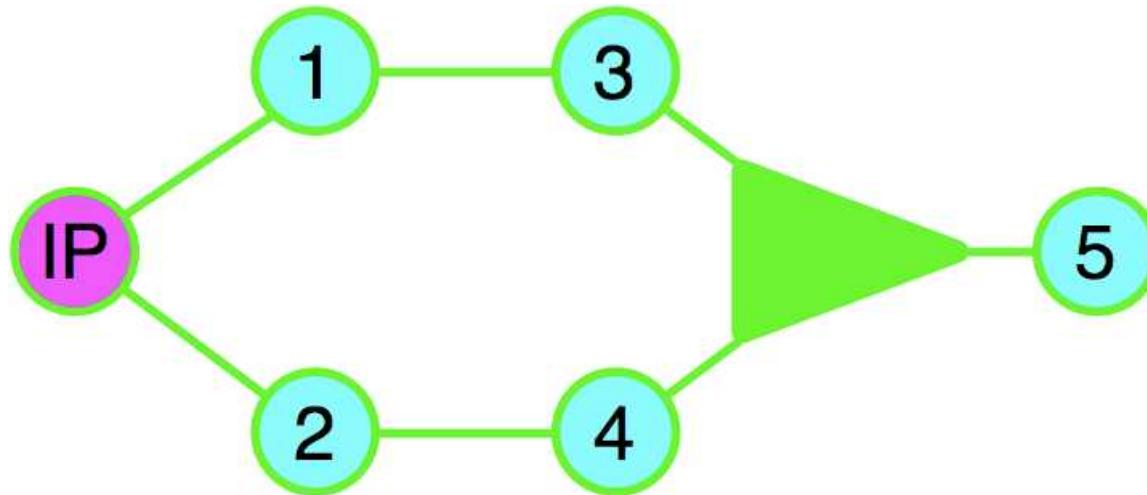
Hypergraph Model



- Same edges (2-vertex hyperedges) as graph model
- Additional higher cardinality hyperedges for more complicated relationships
 - Limiting to 3-vertex linear dependency hyperedges for this talk

Hypergraph Model

- Extended Prim's algorithm to include hyperedges
- Polynomial time algorithm
- Solution not necessarily a tree
 - {IP,1,3,5}
 - {IP,2,4,5}
- No guarantee of optimum solution
- Finding optimum solution to hypergraph problem NP-hard



Hypergraph Model Results - 2D Laplace Equation

Order	Unoptimized MAPs	Graph MAPs	HGraph MAPs
1	10	7	6
2	34	14	14
3	108	43	43
4	292	152	150
5	589	366	363
6	1070	686	686

- Hypergraph solution slightly better for some orders but not significantly better
- Graph algorithm close to optimal?
 - 3 Columns
 - Binary relationships may be good enough

Hypergraph Model Results - 3D Laplace Equation

Order	Unoptimized MAPs	Graph MAPs	HGraph MAPs
1	21	17	17
2	177	79	68
3	789	342	297
4	2586	1049	852
5	7125	3592	3261
6	16749	8835	8340

← 19% additional decrease

- Hypergraph solution significantly better than graph solution for many orders

Future Work

- Higher cardinality hyperedges
 - Perhaps useful for 3D FE problems
 - Implemented 4, 5, 6 vertex hyperedges
 - Hyperedge explosion
 - Need efficient hyperedge pruning algorithms
- More complicated hyperedge relationships
 - Similar to partial collinear row relationships for edges
- Optimal and more nearly optimal solution methods
 - Combinatorial optimization formulation
- Other matrices

Acknowledgements/Thanks

- Professor Michael Heath, advisor
- Professor Robert Kirby, Texas Tech University
- Dr. Erik Boman, Sandia National Laboratories
- Funding
 - DOE CSGF
 - SIAM, Sandia -- travel support

2D Laplace Equation Matrices

Order	Rows	Entries	Nonzeros
1	6	18	10
2	21	63	34
3	55	165	108
4	120	360	292
5	231	693	589
6	406	1218	1070

- 3 Columns

3D Laplace Equation Matrices

Order	Rows	Entries	Nonzeros
1	10	60	21
2	55	330	177
3	210	1260	789
4	630	3780	2586
5	1596	9576	7125
6	3570	21420	16749

- 6 Columns

Accuracy

Relative Error 2D Laplace

Order	GPCR Error	HGraph Error
1	0	0
2	2.53565e-09	2.55594e-09
3	6.40668e-09	2.44340e-09
4	2.47834e-10	9.30090e-09
5	4.95544e-09	5.87721e-09
6	4.28141e-09	4.28166e-09

Relative Error 3D Laplace

Order	GPCR Error	HGraph Error
1	0	0
2	9.33830e-09	7.35996e-09
3	2.60053e-08	3.51190e-08
4	8.31206e-09	1.47134e-08
5	4.22496e-08	6.30277e-08
6	1.07992e-06	1.41391e-06

- Single precision input matrices
- Single precision code generation