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Catalytic (Ecoli-like) Nanomotors:
Paxton (CINT), Mallouk and Sen (Penn State)
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~400 nmI\ Au Pt —
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Angew. Chem. Int. Ed. 2008, 47, 8565 — 8566

Xie Group, Harvard
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Catalytic (Ecoli-like) Nanomotors:
Built from Ecoli

Cell growth
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Chem. Commun.,(2010) 46, 5268-5270.
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MPE Protein Photocrosslinking

Kaehr, B. et al. Anal Chem

k’ \protein microstructure

protein solution

objective




MPE Protein Photocrosslinking

B. Kaehr, J. Shear, Lab on a Chip 2009, 9, 2632.

protein solution

K \protein microstructure

Sensitizers

Rose Bengal, Methylene
Blue, Porphyrins, Flavins

Reactive Residues

Tyr, His, Lys, Cys, Trp

Proteins

BSA, avidin, lysozyme, cytochrome c,
GDH, GOx, Con A, Catalase



Mask-Directed Multiphoton Lithography

Objective

B. Kaehr and J. B. Shear, J. Am. Chem. Soc 2007 129 (7),1904-1905.



Dynamic-Mask Multiphoton Lithography

Mask Inputs

a) waveplate/beam
splitting cube

receptacle

entrance
spiral passage

CAD data

Animations Nielson, Kaehr and Shear, Small, 2009, 5, 120-125

All scales, 5 um




Static Structures to Direct Cell
Behaviors




Static Structures to Direct Cell
Behaviors

Kaehr & Shear (2009) Lab on a Chip, 9, 2632-2637



Static Structures to Direct Cell
Behaviors

Kaehr & Shear (2009) Lab on a Chip, 9, 2632-2637



In situ cell confinement using biocompatible microfabrication

S. aureus,
BSA ~ 320 mg/ml
MB ~4 mM




In situ cell confinement using biocompatible microfabrication Cell communication
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Nature Reviews Microbiology 5, 230-239 (March 2007)
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Extensions

(b)  nask

Gresn + F!Ed

1om

o Mol B 2011} 405, 315324
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—Cell1 ——Cell 3
——Cell2 ——Cell 4

Cell 3

Jeff Tabor (Rice)

In vitro tumor, cancer cell differentiation

mammary carcinoma 4T1

A Tamsir et al. Nature, 1-4 (2010) doi:10.1038
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*What environmental
factors contribute to
cancer cell differentiation
within primary tumors?
«Can we build a
tractable, in vitro model
for metastasis?

Jason Townson, UNM
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Measuring cell/materials interactions in situ

AFM PROTEIN
<. CANTILEVER CANTILEVER

focus low

6.0 pm

Cantileve

AFM cantilever \.rert]c-al Iocation._um fOCUS h i g h

AFM cantilever detlection, nm

AFM image of chamber

C. Y. Khripin, C. J. Brinker and B. Kaehr*, Soft Matter, 2010, 6, 2842-2848



Mechanical Properties of Protein Matrices
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Images from Carter et al Adv Prot Chem 1994

C. Y. Khripin, C. J. Brinker and B. Kaehr*, Soft Matter, 2010, 6, 2842-2848



Stimuli-Responsive Behavior
of Protein Matrices

protein matrix

B. Kaehr and J. B. Shear, Proc Natl Acad Sci U S A, 2008, 105, 8850-8854.



Protein Specific Response

Stimuli-Responsive Behavior 1675 - : _
of Protein Matrices o I

—a— avidin

—a=—BSA
—s— lysozyme

protein matrix

Swelling Ratio

B. Kaehr and J. B. Shear, Proc Natl Acad Sci U S A, 2008, 105, 8850-8854.




Life-like behaviors from protein-based
microfabricated structures




Integration into complex surfaces

g St

- hydrogel micro-muscle
synthetic cilia

pH responsive hydrogel:
poly(acrylic acid-co-acrylamide) (poly(AAc-co-AAmM).
20% AAm, 20% AAc, 2% bis-AAm, 1% Irgacure 819 in ethylene glycol

temperature-responsive hydrogel:

poly(N-isopropylacrylamide) (PNIPAM)
40% NIPAM, 2% bis-AAm, 1% Irgacure 819 in ethylene glycol (w/w)

Zarzar, L.D., Kim, P., Kolle, M., Brinker, C.J., Aizenberg, J., Kaehr, B. (2011) Angew. Chem. Int. Ed., 50, 9356—9360.



Integration into complex surfaces

hydrogel micro-muscle

synthetic cilia

Zarzar, L.D., Kim, P., Kolle, M., Brinker, C.J., Aizenberg, J., Kaehr, B. (2011) Angew. Chem. Int. Ed., 50, 9356—9360.



Nature’s exceptional hierarchical structures

Synthetic Nanomaterials:

Bone

Structure

Spongy bone

Bone tissue

-50¢m Compact

bone

Osteons and
Haversian canals
=100 mm

Fibre patterns
-50 mm

Fibril arrays —
= —————
Mineralized
collagen fibrils
-Tmm

Tropocallagen
=300 nm

ouep

Amino acids
-1nm

Lawrence Berkeley

Bark
e —

o i
Living phloem
i

Periderm
)
Cork cambium

[

particles, surfaces, porosity

Concave Octahedra

Tetrahexahedra

JACS, 2010, 132 (41), pp 14546-14553
Square

Cork

Triangular

Vascular
cambium

Silicon columns (Aizenberg) (Lewis, Atwater)

M. Hildebrand, Chemical Reviews 2008, 108, 4855. Yu-Shen Lin, CJ Brinker




Enabling functional (photonic, electronic, catalytic, etc.) materials:

If you can’t make ‘em, use ‘em.

[a]
"*-FE'D'COatE*(EI Pollen Grain Fe'-:o.-: Replicaiﬂf Si’me particle) .O__E
S
Ve
e
£
=% : 0

o _‘ DMP dehydrated
Sty 2 Jade plant leaf

Nano Lett., 2006, 6 (10), pp 2325-2331 Chem. Mater., 2012, 24 (22), pp 4301-4310

Static, mechanically stable structures




Biogenic silica (e.g., diatoms, radiolaria, sponges)

Haeckel, 1904 M. Hildebrand, Chemical Reviews 2008, 108, 4855.




Silica polymerization and organization using peptides/proteins

sy, sy
Tesson B, Hildebrand M (2010). PLoS ONE 5(12)
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Table 1 Silica precipitating ability of various enzymes

Physical state
Enzyme pl Product  of solid silica Time

Negative control Gel 9 hours
Trypsin 0 Solid Bimodal

J. Mater. Chem., 2009, 19, 7606—-7609
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Mask Sequence 3D Protein Template

1) Mg(g), 650°C

Silicic Acid Calcination
—_ —_—
pH 3,50°C 500 °C 2) HCI
Protein Template Protein/Silica Silica Replica Silicon Replica

o 5 P 1 d 10" B protein template
¥ [Iprot/silica (wet)
o gt 10 Oprotisilica (dry) [T |
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Khripin, C.Y., Pristinski, D., Dunphy, D.R., Brinker
C. J., Kaehr, B. (2011) ACS Nano, 5, 1401-1409.



Protein scaffolds direct silica deposition —regardless of protein identity?!

ScanningTi:S

- 150

Mask Sequence 3D Protein Microstructure

Charge per protein
joues Jad afieyn

-100H

=150 1
2 3

Colloids and Surfaces B: Biointerfaces 29 (2003) 189/196

Protein Template ——> Inorganic Replica

Khripin, C.Y., Pristinski, D., Dunphy, D.R., Brinker C. J., Kaehr, B.* (2011) ACS Nano, 5, 1401-1409.
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Primarily monomers, nucleation, flocculation,

oligomers, some particles growth, and coarsening silica network fusion



Protein scaffolds direct silica deposition —regardless of protein identity?!

Cryo-TEM tomography of beta cells
preserved in situ in pancreatic islet

tissue isolated from mice
March et al. PNAS 2004; 101: 5565-5570

Schematic of a typical animal cell

Organelles: (1) nucleolus (2) nucleus (3)
ribosome (4) vesicle (5) rough endoplasmic
reticulum (ER) (6) Golgi apparatus (7)
Cytoskeleton (8) smooth ER (9) mitochondria
(10) vacuole (11) cytoplasm (12) lysosome
(13) centrioles



a 2-49% fixative Silicic acid, pH 3

10min 40 °C, 16 hrs ‘ 550°C, 3hrs g

—_— —_— —
cultured cells fixed cells cell/silica




SBR: interior, exterior, solution processing *High throughput
Monodisperse

A

AP, tiwsiicity @

cultured cells cell silica

silicification dehydration

s cells in solution  cell/silica particles

*Generalizable
*Widely varying
surface morphology

N,, 900C

4 hrs
—_—

0 kev 20

scale bars =1 um



Features of silica cell replicas (Si-cells) AFM of AsPC-1 silica

substrate ! 5 l/ / ’

llllll

silica templated by:

e, W ,

phospholipids,

carbohydrates i‘ g

cytoskeleton

10 15 20 00 05 1.0
pm pm

protein complexes *No detectable primary feature/particle (surface

roughness o = 1 nm, within error of tip radius)
«Stable silica solution (pH 3)

*Minor electrostatic interaction, thus H-bonding, etc. Hypothesis: silicic acid
*Deposition targeted to cellular structures diffuses throughout cell
*Resolution < 10 nm mMDDFT R replaces/displaces

S. Rempe_, _hydroggn-bonded
* a interfacial water at
» cellular/biomolecular
- ¥ '._ interfaces to be
o »— » concentrated and
\ catalyzed by proximal

-5 membrane associated
proteins, carbohydrates
(other components) to
form stable interfacial

*Mechanical stability upon drying, calcination silica network in self-
*No appreciable dimensional change limited process?

(+) silicic acid (-) silicic acid

Low MW silica precursors, self limiting replication of features, mechanically stable



Using cellular behaviors to tune material properties

cross-linked FceRI S

. IgE priming
—
+ antigen

Proc Natl Acad Sci U S A. 2012 23;109(43):17336-41.

Diane Lidke, Janet Oliver (UNM)



Mechanically encoded shapes of red blood cells

erythrocytes

Proc Natl Acad Sci U S A. 2012 23;109(43):17336-41.

outside | COEE (S
: / ' ‘ 1844 \ - inside
cup native Cre“atel i|l

1) cationic amphipaths 2) anionic amphipaths
:ow sla_:t high salt
ow p s high pH,
cholesterol depletion CIQN:Q Ho N ATP depletion,

KL \©\ cholesterol enrichment

N~ NO2

Chlorpromazine (pKa ~9) 2,4-Dinitrophenol (pKa ~4)



Translation of encoded shapes into composities: Si-RBCs

spherocyte

echinocyte

stomatocyte discocyte

generate shape

stomatocyte

o
- < .
discocyte o°

. Crey, echinocyte spherocyte
e,
'

Translate to Si-RBC

RBC Si-RBC replica

fix/silicify transform
— —l

4.5-5 mis of whole blood yields

1 gram of dry dispersed
particles (~101° particles/gram)

Kristin Meyer (UNM-undergrad)



Translation of encoded shapes into composities: Si-RBCs

spherocyte

echinocyte

stomatocyte discocyte

Salient features using simple models

Increasing interparticle cohesion €
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drying simulations
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Using biological response to tune mesoporosity

N, sorption of calcined Si-RBCs

Porous particles following calcination (550 C, 4hrs) A B
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Features of Si-RBCs and follow-on work

Shape-preserving conversion to other materials

Silanization for use across solvents 2Mg(g) *+ SiO, — 2MgO(s) + Si(s)

| Si-RBC
(etOH)
"g—:
=
5 _ 700 °C

Stabilization of enzymatic activity
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Shape-preserving transformation of tissues/organisms into inorganic and conductive specimens

SEM imaging and sectioning w/o

; conductive coating
fixation, 3 <
silicification (~1 wk) 550 °C, 6-12 hrs o A N

tissue composite silica replica

A

composite replica

replica

interior

Jason Townson, chx embryo model
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