

1 Ion Beam Analysis of Targets Used in Controlatron Neutron Generators*

2 James C. Banks⁽¹⁾, Lisa A. Walla⁽¹⁾, David S. Walsh⁽¹⁾, and Barney L. Doyle⁽¹⁾

3 ⁽¹⁾Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185

4 Abstract

5 Controlatron neutron generators are used in neutron detection systems at Sandia National
6 Laboratories. To provide for increased tube lifetime for the moderate neutron flux output of these
7 Controlatron generators, metal hydride (ZrT_2) target fabrication processes have been developed.
8 Also, to provide for manufacturing quality control of these targets, ion beam analysis techniques
9 are used to determine film composition. The load ratios of ZrT_2 Controlatron neutron generator
10 targets have been successfully measured by simultaneously acquiring RBS and ERD data using a
11 He^{++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained
12 from RBS measurements agreed within $\pm 2\%$ with Dektak profilometer measurements. The
13 target fabrication process and ion beam analysis techniques will be presented.

14

15 *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
16 Company, for the United States Department of Energy's National Nuclear Security
17 Administration under Contract DE-AC04-94AL85000.

18 PACS codes: 81.05.-t, 81.15.-z

19 Keywords: deposition, hydrides, backscattering spectrometry, elastic recoil detection

20

21 James C. Banks
22 Sandia National Laboratories
23 P.O. Box 5800 MS-1056
24 Albuquerque, NM 87185-1056
25 Phone: 505-844-8824

1 Email: jcbanks@sandia.gov
2

1 **Introduction**

2 Pulsed neutron generators are used in several elemental analysis applications using
3 prompt inelastic scattering ($n, n'\gamma$) and radiative capture (n, γ) reaction techniques. These
4 applications range from bulk materials analysis to well logging and the assay of transuranic
5 materials in hazardous waste [1]. Neutron generators can also be used for testing neutron
6 detection systems. The required neutron flux used in these applications can range from $\sim 10^6$ to
7 10^{10} neutrons/pulse into 4π steradians. Therefore, these generators rely on the $T(d, n)^4\text{He}$ inelastic
8 reaction to create the desired high neutron flux. To provide reasonable generator lifetimes, high
9 quality targets and sources must be used.

10 Controlatron neutron generators are used in neutron detection systems at Sandia National
11 Laboratories. These tubes use a Penning ion source to create an ion beam consisting of mostly
12 D_2^+ , with small amounts of D^+ and D_3^+ . This beam is pulsed on for ~ 10 μsec and upon hitting the
13 tritiated target creates a neutron flux of $\sim 10^6$ neutrons into 4π steradians as measured by a lead
14 probe neutron detector. An overview of Pb probe detector technology is found in [2]. A metal
15 hydride (ZrT_2) target fabrication process has been developed to provide for increased tube
16 lifetime, typically $\geq 10,000$ shots at this neutron flux output. Also, to provide for manufacturing
17 quality control of these targets, non-destructive ion beam analysis (IBA) techniques are used to
18 determine film composition. While Sandia manufactures the targets used in the Controlatron
19 neutron generator, the rest of the tube is manufactured and assembled by Thermo Scientific [3].

20 **Experimental Method and Results**

21 The Controlatron target substrate is cut from a molybdenum sheet using a molybdenum
22 wire electrical discharge machining (EDM) process. The target has a diameter of 25.4mm, is
23 0.254mm thick, and has four equidistant protruding tabs on the circumference for mounting. In

1 preparation for thin film evaporation, the substrate is degreased, etched using a nitric/sulfuric
2 acid solution, and then hydrogen fired at 800°C. This process causes a surface roughening that
3 provides for better film adhesion. Once cleaned, the Mo substrates are handled in Class 100 or
4 Class 1000 clean rooms. The zirconium film is evaporated onto the target substrate in an ultra
5 high vacuum system equipped with an electron beam deposition gun. Quartz witness coupons are
6 also mounted in the evaporation chamber and are later used for confirming film thickness (using
7 a Veeco Dektak Model 3ST profilometer). The substrates are positioned onto a dome shaped
8 fixture which is rotated during deposition. The substrates and the vacuum system are baked out
9 at temperatures up to 550°C. Once the pressure is stabilized to 5×10^{-7} Torr or less, the
10 zirconium film is evaporated onto the substrates at 425 – 475°C at deposition rates of up to 100Å
11 per second. The final film is transparent on the substrate and has a thickness of ~1.5 microns.

12 The zirconium film is reacted with tritium in another ultra high vacuum chamber located
13 within a glovebox. The Controlatron targets are loaded into the chamber and heated at elevated
14 temperatures to break up the zirconium oxide surface layer, a process called film activation.
15 After the film is activated, tritium gas is introduced into the process chamber and allowed to
16 react with the zirconium film to form a di-tritide (ZrT_2). The process tritium used is stored in a
17 depleted uranium storage bed. The exact temperature during this process step is considered
18 proprietary. However, one can see the range of temperatures available to load the film to form a
19 di-tritide from the phase diagram [4] shown in Fig. 1. Finally, the gas is pumped away and the
20 chamber allowed to cool to ambient temperature before removing them from the chamber.
21 Again, the ZrT_2 film is transparent and so it is not possible to visually verify if the zirconium film
22 reacted well with the tritium gas.

1 A 6 MV EN tandem Van de Graaff-Pelletron accelerator is used to non-destructively
 2 measure the composition of the ZrT₂ film using a 10.0 MeV He⁺⁺ beam with the target tilted at a
 3 70° angle. Both an RBS and ERD spectrum are acquired simultaneously using a multi-parameter
 4 multichannel analyzer (FAST ComTec MPA-3) to obtain the areal densities of the Zr and
 5 tritium. A few percent residual hydrogen and deuterium are also incorporated in the film during
 6 the loading process. The experimental geometry has been previously discussed in [5]. The beam
 7 energy was calibrated using resonances as described in ref. 5 and has an energy spread of ±1
 8 keV. The backscattering detector used for RBS was an Ortec (BB-016-050-400), having a ~16
 9 keV energy resolution and 400μm depletion depth. The backscattering angle θ and forward
 10 scattering angle φ were respectively, 165° and 30°, with an estimated deviation of ±0.2°. The
 11 detector solid angle Ω was 6.888 msr for RBS and 1.287 msr for ERD, as measured using a
 12 NIST traceable ²³⁸Pu α source that had a certified activity of ±1.3%. Before an analysis run the
 13 number of incident ions collected into a Faraday cup and the backscattered yield from a rotating
 14 Au/Al paddle that chopped the beam at 1.25 Hz upstream from the sample was measured and
 15 used to calibrate the counts per μ C. The beam was defined by two sets of tantalum slits into a
 16 rectangle 1.0 mm H x 0.36 mm W, with the projected beam dimensions onto a film at the 70° tilt
 17 angle being ~1.0 mm². The total number of incident ions on a sample for subsequent runs could
 18 then be measured using the relationship $Q = (Q_{cal}/2e)(Y/Y_{cal})$, where Q_{cal} is the integrated
 19 charge collected into the Faraday cup during the calibration run, e is the fundamental electronic
 20 charge, Y_{cal} is the Au yield from the paddle during the calibration run, and Y is the Au yield
 21 from a data acquisition run. The uncertainty in Q is ±2.0%.

22 The analysis program SIMNRA [6] was used to determine the Zr areal density. A typical
 23 RBS spectrum is shown in Fig. 2. A ~10nA beam current and a chamber vacuum of ~2 x 10⁻⁸

1 Torr are typical operating conditions. Since the target substrate was purposely roughened to
2 enhance film adhesion, the film has the same roughness. Because the target is also tilted to 70°,
3 plural scattering (multiple large angle scattering of the beam because of surface roughness)
4 becomes a problem [7]. Although a fit to the spectrum and an areal density may be obtained
5 using the roughness simulation available in SIMNRA, see Fig. 3, the areal density is inaccurate
6 because the shape of the spectrum is distorted due to plural scattering. However, it was
7 determined from normal RBS spectra simulation and placing the Zr and Mo peak intersection at
8 the half height of the slope between the two, as shown in Fig. 3, that the RBS thickness was the
9 same as that obtained (within ~2%) from Dektak thickness measurements of quartz witness
10 coupons inserted into the film deposition chamber. The RBS thickness was determined by using
11 a mass density for Zr hydride of 5.47 g/cm³.

12 The areal densities of the three isotopes of hydrogen (hydrogen, deuterium, and tritium or
13 H, D, and T) were obtained using ERD. A particle telescope is used to separate the ERD spectra
14 of the three isotopes. A 109 μm thick aluminized Mylar foil is placed in front of a curved
15 aperture, and is used to range out the He⁺⁺ ion beam forward scattered off the target, but allow
16 recoiled H, D, and T through. The curved aperture allows for better energy resolution. A thin
17 (65.2 μm) silicon surface barrier detector (Ortec TD-040-300-75-S) with an active region of 300
18 mm² is behind the aperture, immediately followed by a thick silicon surface barrier detector
19 (Ortec BU-018-300-300), which also has a 300 mm² active region. These four components
20 complete the particle telescope. H, D, and T recoiled from the target with enough energy to pass
21 through both the Mylar foil and the thin detector create a signal ΔE which is used to start a
22 timing window with the signal E created when the particle stops in the thick detector. The
23 signals ΔE and E , as shown Fig. 4, are processed in the multi-parameter multichannel analyzer

1 to quantify the amount of each hydrogen isotope in the target. These signals can be projected
 2 onto the energy axis, see Fig. 4 inset, and integrated to provide the isotope yield Y . The areal
 3 density can then be calculated from the equation, $\eta = Y \cdot \cos \theta / Q \Omega \sigma(E, \varphi)$, using Sandia
 4 measured cross sections σ at beam energy E , taking into account the analysis beam mean
 5 energy loss in the film as discussed in [5]. Other terms of the equation were previously
 6 discussed.

7 **Conclusions**

8 The load ratios of ZrT_2 Controlatron neutron generator targets have been successfully
 9 measured by simultaneously acquiring RBS and ERD data using a He^{++} beam energy of 10 MeV.
 10 Several targets were measured and the film thicknesses obtained from RBS measurements agreed
 11 within $\pm 2\%$ with Dektak profilometer measurements. From previous work [5] involving load
 12 ratio measurements of $\text{Er}(\text{HDT})_2$ targets it was determined that the overall measurement error
 13 was $8.3\%, 3\sigma$. As we have excellent agreement between RBS and profilometry measurements of
 14 thickness, the same error has been assigned to the measurement of the Controlatron targets. IBA
 15 measurements have confirmed di-tritide loading of the robust Zr target films fabricated by
 16 Sandia and the targets are now incorporated into Controlatron neutron tubes for use in neutron
 17 detection systems.

18 **Acknowledgments**

19 The authors would like to thank Daniel Buller for operation of the EN tandem accelerator
 20 Also, thanks to James Lucero and Juan Romero for their efforts in growing and hydriding the Zr
 21 films used for this work. Sandia National Laboratories is a multiprogram laboratory operated by
 22 Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's
 23 National Nuclear Security Administration under contract DE-AC04-94AL85000.

1 **References**

2 [1] Thermo Fischer Scientific Inc., Thermo Scientific Div., Colorado Springs, Colorado.

3 Available WWW:

4 http://www.thermo.com/com/cda/products/product_application_details/1,,11286,00.html5 [2] Alan J. Nelson, Carlos L. Ruiz, Gary W. Cooper, James K. Franklin, Lee Ziegler, Sandia
6 National Laboratories, SAND Report, SAND2004-1163.

7 [3] Thermo Fischer Scientific Inc., Thermo Scientific Div., Colorado Springs, Colorado.

8 Available WWW:

9 http://www.thermo.com/com/cda/resources/resources_detail/1,2166,11801,00.html10 [4] W.M. Mueller, J.P Blackledge, and G.G. Libowitz, in: Metal Hydrides, Academic Press, New
11 York, 1968, p. 247.12 [5] J.F. Browning, J.C. Banks, W.R. Wampler, and B.L. Doyle, Nucl. Instr. Meth. B 219–220
13 (2004) 317–322.14 [6] M. Mayer, SIMNRA User's Guide 6.04, Max-Planck-Institut für Plasmaphysik, Garching,
15 Germany, 2008.

16 [7] M. Mayer, Nucl. Instr. Meth. B194 (2002) 177

17

1 **Figure Captions**

2

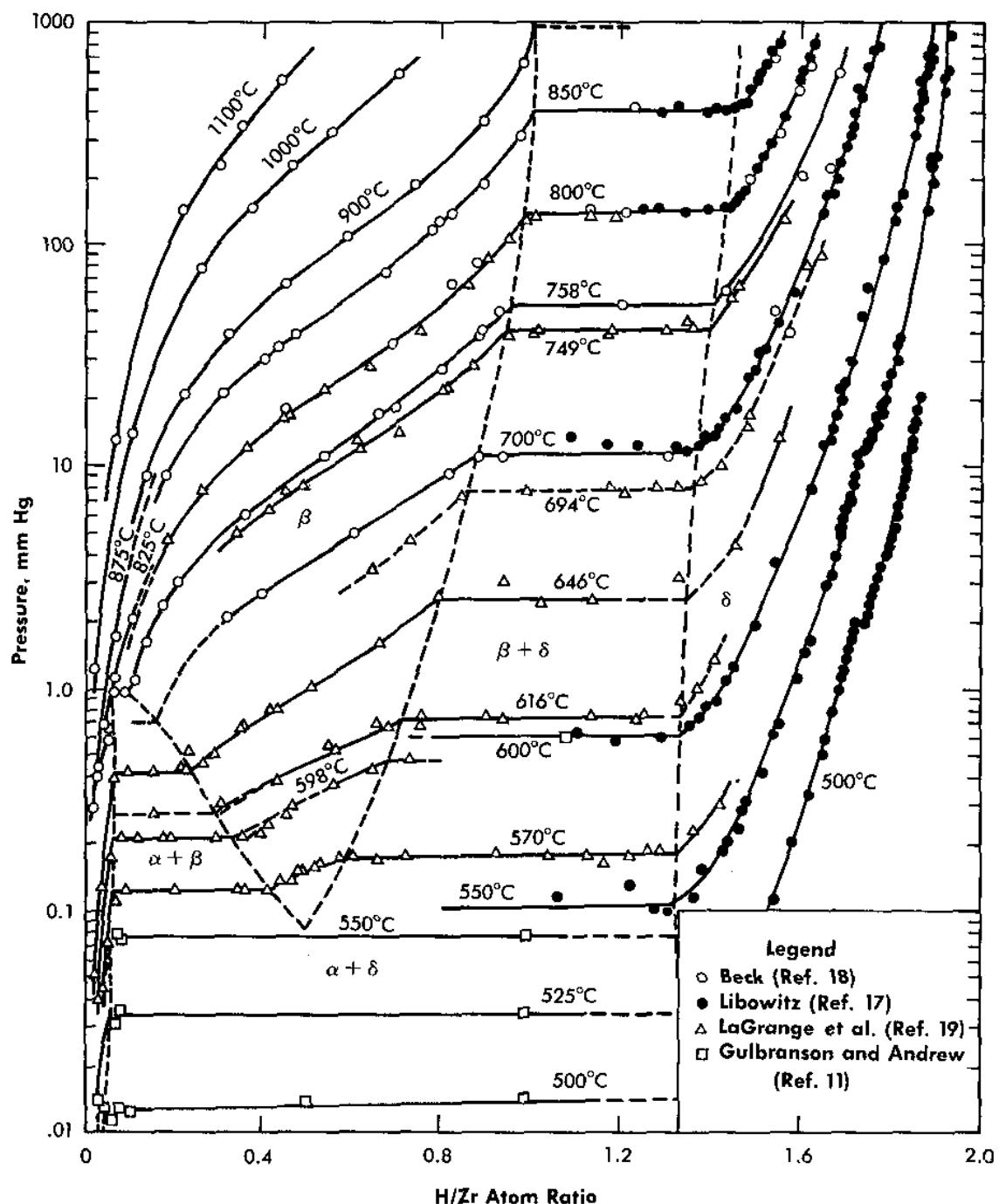
3 **Figure 1.** Phase diagram [4] showing H/Zr atomic ratio, pressure, and temperature
4 regimes for hydriding Zr films.

5

6 **Figure 2.** Typical RBS spectrum for Controlatron target ZrT₂ films using a 10 MeV He⁺⁺ beam
7 energy and target tilt angle of 70°. An enhanced cross section for O, ratio-to-Rutherford of 250
8 at this energy, shows a thin surface oxide on the film.

9

10 **Figure 3.** The analysis of a typical RBS spectrum using SIMNRA software [6] is shown.
11 Although the simulation using roughness parameters to fit the experimental data shows good
12 agreement, comparison of the RBS thickness with Dektak profilometry measurement shows a
13 ~15% discrepancy. Plural scattering that distorts the experimental profile because of the
14 substrate and film roughness coupled with a target tilt angle of 70° is the likely cause. Simulation
15 without
16 roughness parameters while lining up the intersection of the Zr and Mo peaks at the half height
17 of
18 the step height between the two shows thickness agreement of ±2%.


19

20 **Figure 4.** Multiparameter ERD data acquired using a particle detector with a multiparameter
21 multichannel analyzer allows for the separation of the hydrogen isotopes in the hydrided
22 Controlatron targets. Regions of interest can be drawn around each isotope and the yield data
23 projected onto the energy axis, such as is shown in the inset for tritium.

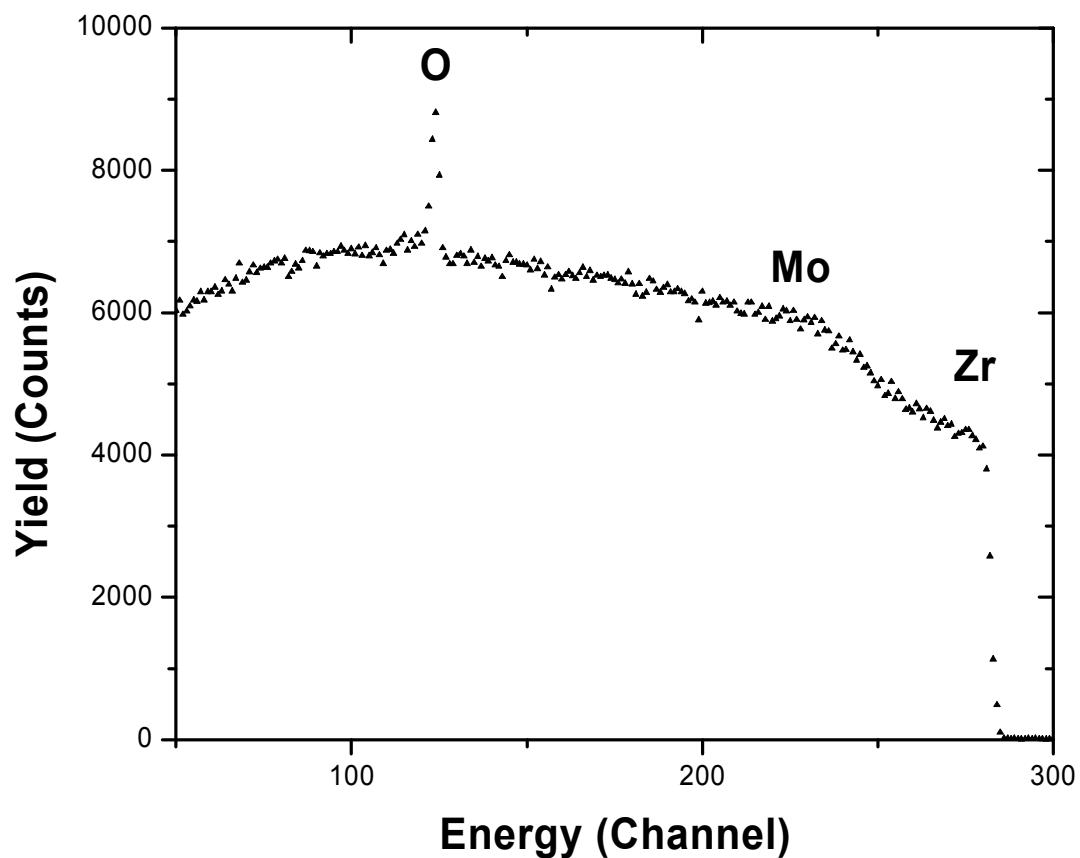
24

25

1

2

3


4

5

6

Fig. 1

1

2

3

4

5

6

Fig. 2

1

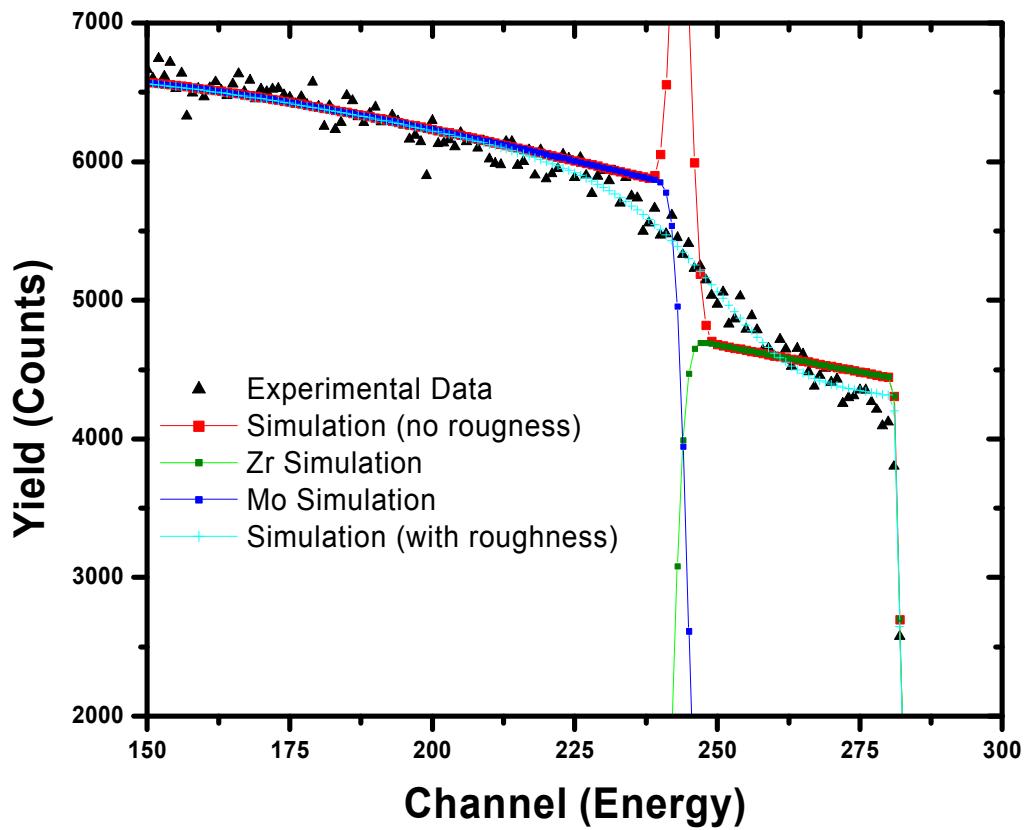

2
3
4

Fig. 3

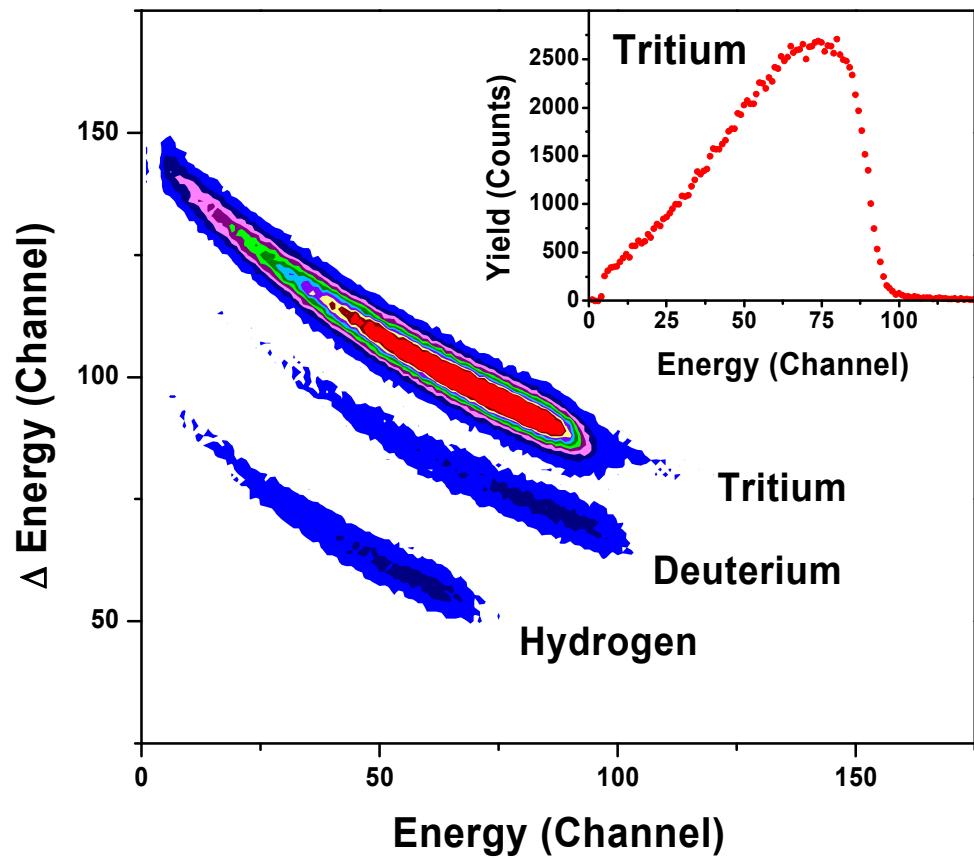

1
23
4
5

Fig. 4