SAND2014- 3284C

Domain Decomposition Preconditioners for
Communication-Avoiding Krylov Methods on

Distributed GPUs

Erik G. Boman, Michael A. Heroux, Mark Hoemmen, and Sivasankaran Rajamanickam
{egboman, maherou, mhoemme, srajama}@sandia.gov
Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

Stanimire Tomov and Ichitaro Yamazaki
{tomov, iyamazak} @eecs.utk.edu
University of Tennessee, Knoxville, Tennessee, U.S.A.

Abstract—Krylov subspace projection methods are the most
widely used iterative methods for solving large-scale linear
systems of equations. Researchers have demonstrated that
communication-avoiding (CA) techniques can improve Krylov
methods’ performance on modern computers, where communica-
tion is becoming increasingly expensive compared to arithmetic
operations. In this paper, we extend these studies by two major
contributions. First, we present our implementation of a CA
variant of the Generalized Minimum Residual (GMRES) method,
called CA-GMRES, for solving nonsymmetric linear systems
of equations on a hybrid CPU/GPU cluster. Our performance
results on up to 120 GPUs show that CA-GMRES can give a
speedup of 2.5x over standard GMRES on a hybrid cluster with
twelve Intel Xeon CPUs and three Nvidia Fermi GPUs on each
node. We then outline a domain decomposition framework to
introduce a family of preconditioners that are suitable for CA
Krylov methods. Our preconditioners do not incur any additional
communication and allow the easy reuse of existing algorithms
and software for the subdomain solves. Experimental results on
the hybrid CPU/GPU cluster demonstrate that CA-GMRES with
preconditioning can reduce the total solution time by a factor
of 7.4x from CA-GMRES without preconditioning, and by a
factor of 1.7x from GMRES with preconditioning. These results
confirm the potential of our framework to develop a practical
and effective preconditioned CA Krylov method.

I. INTRODUCTION

On modern computers, communication is becoming in-
creasingly expensive compared to arithmetic operations. This
holds both in terms of throughput and energy consumption.
“Communication” includes data movement or synchronization
between parallel execution units, as well as data movement
between levels of the local memory hierarchy. To address
this hardware trend, researchers have been studying techniques
to avoid communication in Krylov subspace projection meth-
ods, a popular class of iterative methods for solving large-
scale sparse linear systems of equations. Effectiveness of
such communication-avoiding (CA) techniques to improve the
performance of Krylov methods has been demonstrated on
shared-memory multicore CPUs [9]], on distributed-memory
CPUs [18]], and on multiple graphics processing units (GPUs)
on a single compute node [16]. In this paper, we extend these

studies and show the performance of a CA variant of the
Generalized Minimum Residual (GMRES) method [12] for
solving a nonsymmetric linear system of equations on a hybrid
CPU/GPU cluster. Our performance results on up to 120 GPUs
demonstrate speedups of up to 2.5x.

The CA Krylov methods were originally proposed as s-step
methods over thirty years ago [15], but they have not been
widely adopted in practice. One reason for this is that though
in practice, Krylov methods depend on preconditioning to
accelerate their convergence rate, no effective preconditioners
have been shown to work seamlessly with a CA method. This
is because the existing CA preconditioning techniques revoke
one of the most attractive features of Krylov methods, namely
that they require no knowledge of the internal representation of
the coefficient matrix A or of any preconditioners. In fact, most
of the existing implementations of the Krylov methods only
require two independent “black-box” routines, one for sparse-
matrix vector product (SpMV) and the other for precondition-
ing (Preco). This black-box assumption makes it easy to use
any exisiting algorithm or software for Preco in the Krylov
methods. The CA methods introduce a new computational
kernel, matrix powers kernel (MPK), that replaces SpMV and
generates a set of Krylov subspace basis vectors all at once
[8]. Then, all the existing techniques for preconditioning a CA
method require close integration of Preco with SpMV within
MPK, violating this handy black-box assumption and making
it difficult to develop an effective preconditioner.

More importantly, these existing preconditioners of the first
category are still closely integrated with MPK. Hence, these
techniques often require significant changes in how MPK
interacts with the input vectors, and are designed for specific
types of preconditioners (e.g., approximate inverse or ILU(0)).
Hence, it may be difficult to use an exisiting preconditioning
software as a black-box routine. The second class of CA
preconditioners requires radical changes to the representation
of both the sparse matrix A and its preconditioner, such
that off-diagonal blocks of both are stored using a low rank
representation. To the best of our knowledge, there is no imple-



mentation or empirical evaluation of such CA preconditioners.
Furthermore, most users of Krylov solvers do not wish to make
such radical changes to their data structures.

To fill this crucial gap, in this paper, we propose a
framework for effective CA preconditioning based on domain
decomposition. Our preconditioner may be considered as a
variant of an additive Schwarz preconditioner, modified to
ensure consistent interfaces between the subdomains without
additional communication beyond what MPK needs. However,
more importantly, since we rely on domain decomposition, our
preconditioner is not tightly coupled with SpMV, and it can
use any existing solver or preconditioner software package as
the local solver on each subdomain. Beside adding the local
solver to apply the preconditioner, our preconditioner does
not require any changes to MPK and does not increase its
communication volume. Hence, our CA preconditioner does
not force any change to the sparse matrix’s data structure or
constrain the sparsity pattern of the subdomain solver. It thus
defines a new third category of CA preconditioning techniques.
To study the proposed framework’s performance, we combine
this with CA-GMRES on a hybrid CPU/GPU cluster. Though
this is merely our initial implementation, our experimental
results suggest speedups of 7.4x or 1.7x on up to 30 GPUs
in comparison to CA-GMRES without preconditioning or
GMRES with preconditioning, respectively, demonstrating the
potential of our framework.

In addition to demonstrating the potential of our frame-
work, our current studies clearly illustrate the importance and
the challenge of developing such preconditioning techniques.
Moreover, in this paper, we focus on CA-GMRES because
we know from past experience [16] how to implement it
efficiently and in a numerically stable way. However, CA
variants of short-recurrence iterations like CG and BiCGSTAB
spend much less time in vector operations than CA-GMRES,
and thus, our work on an effective CA preconditioner may
benefit CA versions of other Krylov methods even more than
CA-GMRES.

The rest of the paper is organized as follows. In Section
we first present our implementation of CA-GMRES and its
performance on distributed GPUs. We then, in Section m de-
scribe our CA preconditioning framework, outline our sample
implementation, and give numerical and performance results
on distributed GPUs. Section [V] shows final remarks and future
work. Throughout this paper, we denote the i-th row and the
j-th column of a matrix A by a; . and a. ;, respectively, while
Aj.j is the submatrix consisting of the j-th through the k-th
columns of A, inclusive, and A(i, j) is the submatrix consisting
of the rows and columns of A that are given by the row and
column index sets i and j, respectively. We use nnz(A) and
|A] to denote the number of nonzeros in the matrix A and the
matrix dimension, respectively. All of our experiments were
conducted on the Keeneland systerrﬂ at the Georgia Institute
of Technology. Each of its compute nodes consists of two six-
core Intel Xeon CPUs and three NVIDIA M2090 GPUs, with
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24GB of main CPU memory per node and 6GB of memory per
GPU. We built our code using the GNU gcc 4.4.6 compiler
and CUDA nvcc 5.0 compiler with the optimization flag —03,
and linked with Intel’s Math Kernel Library (MKL) version
2011_spl1.8.273 and OpenMPI 1.6.1. The test matrices used
for our experiments are listed in Figure [9]

II. RELATED WORK

Most existing CA preconditioning techniques fall into one
of two categories [8]. The first category naturally fits how
CA methods compute sparse matrix-vector products. These
include preconditioners such as sparse approximate inverses
with the same sparsity structure as the matrix A, or block
Jacobi and polynomial preconditioners [4], [14], [15]. In
block Jacobi preconditioning, each processor (or GPU) solves
its local problem. For a conventional Krylov method, this
block Jacobi without overlap does not require any additional
communication. Unfortunately, even this is difficult to inte-
grate into a CA method since after Preco, each local SpMV
requires the preconditioned input vector elements from its
neighbors, introducing extra communication. Depending on
the sparsity structure of the matrix, a CA method may require
significantly greater communication in order to use the block
Jacobi preconditioner. See [6, Chapter 7] for an illustration for
a tridiagonal matrix that would result from a finite difference
discretization of Poisson’s equation with Dirichlet boundary
conditions on a finite 1D domain. Previous authors proposed
block Jacobi, apparently without realizing its implementations
for a preconditioned MPK. This was a surprising result that
stirred us to develop the preconditioner framework presented
in this paper.

A recently proposed CA preconditioning technique based
on an incomplete LU factorization, CA-ILU(0) [7], can be
considered as an advanced member of this category. Unfor-
tunately, for some types of problems, these preconditioners
of this first category may be only moderately effective in
improving the convergence rate or in exploiting parallelism,
or may introduce a significant overhead in computation or
communication, depending on the sparsity structure of A. For
example, the effectiveness of polynomial preconditioning, like
that proposed in [[L1], to reduce the iteration count tends to
decrease with the degree of the polynomial, while its compu-
tational cost increases. Though CA-ILU(0) uses special global
nested dissection ordering to limit the amount of required
communication, the authors’ experiments focus on structured
grids, while leaving the extension to unstructured meshes as
future work.

However, a potentially more critical aspect of these pre-
conditioners in the first category is that they are still closely
integrated with MPK. Hence, these preconditioners often re-
quire significant changes in how MPK interacts with the input
vectors, and are designed for specific types of preconditioners
(e.g., approximate inverse or ILU(0)). Hence, it may be
difficult to use an exisiting preconditioning software as a
black-box routine. The second class of CA preconditioners
requires radical changes to the representation of both the
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repeat (restart-loop)

1. Generate Krylov Basis on GPUs: ~ O(m - nnz(|A| 4+ |M|) + m2n) flops.
a1 =q.1/l|q1]l2 (withX = 0 and q..; = b, initially)
for j =1,2,...,m do
Preconditioner (Preco) Application:
z. ;= =M1 q.,

Sparse Mamx Vector (SpMV) Product:
q:,j4+1 = Az, N
Orthonormahzatlon (Orth):
Q41 = (A 41 — Quighig )/ hita,,
where hl;j,j = Ql:jq;)j+1 and
P15 = lla:j+1 — Qujhigjlla.
end for

2. Solve Projected Subsystem on CPUs: ~ O(m?2) flops.
solve the least-squares problem g = ming 1Ht — QT b2
to update solution x = x + 21 mg and

restart with q. 1 = b — Ax
until solution convergence

Fig. 1. Pseudocode of GMRES(A, M, b, m). m is the restart length.

sparse matrix A and its preconditioner, such that off-diagonal
blocks of both are stored using a low rank representation.
To the best of our knowledge, there is no implementation or
empirical evaluation of such CA preconditioners. Furthermore,
most users of Krylov solvers do not wish to make such radical
changes to their data structures.

III. CA-GMRES ON DISTRIBUTED GPUSs
A. CA-GMRES Algorithm

The generalized minimum residual (GMRES) method [12]
is a Krylov subspace projection method for iteratively com-
puting an approximate solution to a nonsymmetric linear
system of equations. It computes a solution with the minimum
residual norm in the generated projection subspace. At each
iteration, the approximate solution converges with monoton-
ically nonincreasing residual norm. To this end, GMRES’
j-th iteration first generates a new basis vector by applying
the preconditioner (Preco) to the previously orthonormalized
basis vector q. ;, followed by the sparse-matrix vector prod-
uct (SpMV) with the resulting vector (i.e., z.; := M~ 'q. ;
and q. ;11 := Az ;). Then, the new orthonormal basis
vector q. ;11 is computed by orthonormalizing (Orth) the
resulting vector q. ;41 against the previously orthonormalized
basis vectors q..1,9: 2, ..,q: ;-

To reduce both the computational and storage requirements
of computing a large projection subspace, the iteration is
restarted after computing a fixed number m + 1 of basis
vectors. Before restart, the approximate solution X is updated
by solving a least-squares problem g := argmin, ||c — Ht||,
where ¢ = QT,, 1(b — 4AX), H = Qf,,,1AZ1.1s, and
X := X + Z1.mg. The matrix H, obtained as a by-product
of the orthogonalization procedure, is in an upper Hessenberg
form. Hence, the least-squares problem can be efficiently
solved, requiring only about 3(m + 1)? flops. On the other
hand, for an n-by-n matrix A with nnz(A) nonzeros, and a
preconditioner M whose application requires nnz(M) flops,
SpMV, Preco, and Orth require a total of about 2m-nnz(|A|),
2m - nnz(|M]|), and 2m3n flops over the m iterations, re-

repeat (restart-loop)

1. Generate Krylov Basis on GPUs ~ O(m - nnz(|A| + |M;]) +m 20 flops.
q.1 = ql/Hq 1]l2 (with X=0and q:,1 = b, initially)
for]—l +s,...,mdo
1.1. Matrix Powers Kernel (MPK):

fork=5+1,j+2,...,j+ sdo
Z. ) 1= 1\4’1q;,k (Preco)
A k41 = Az (SpMV)

end for
1.2. Block Orthonormalization (BOrth):
orthogonalize Q1 1.j4 s against Q1.;
1.3. Tall-Skinny QR (TSQR) factorization:
orthonormalizing @ +1:j4 s against each other
end for

2. Solve Projected Subsystem on CPUs: ~ O (m?2) flops.
solve the least-squares problem g = ming ||Ht — QTb||2
to update solution ;(\ = ;(\ + X1.mg and
restart with q. 1 = b — Ax
until solution convergence

Fig. 2. Pseudocode of CA-GMRES(A, M, b, s, m). s is the MPK basis
length and m is the restart length.

spectively (i.e., n,nnz(A),nnz(M) > m). Figure [1| shows
pseudocode for restarted GMRES.

Both SpMV and Orth require communication. This includes
point-to-point messages or neighborhood collectives for SpMV,
and global all-reduces in Orth, as well as data movement
between levels of the local memory hierarchy (for reading the
sparse matrix and for reading and writing vectors, assuming
that they are not small enough to fit in cache). Communication-
Avoiding GMRES (CA-GMRES) aims to reduce this com-
munication by redesigning the algorithm to replace SpMV
and Orth with three new kernels — MPK, BOrth, and TSQR
— that generate and orthogonalize a set of s basis vectors
all at once. In theory, CA-GMRES communicates no more
than a single GMRES iteration (plus a lower-order term),
but accomplishes the work of s iterations. In Section [[V] we
propose a preconditioning technique that can be integrated into
MPK without incurring any additional communication phases.
Figure [2] shows pseudocode for restarted CA-GMRES.

B. Cholesky QR Orthogonalization Kernel

In our previous study [[16], we investigated the performance
of several orthogonalization procedures for CA-GMRES on
multiple GPUs on a single compute node. In that study, in
most of the cases, CA-GMRES obtained the best performance
using the classical Gram-Schmidt (CGS) procedure [1l] and
the Cholesky QR (CholQR) factorization [13]] for BOrth and
TSQOR, respectively. Hence, in this paper, we focus on CGS-
based BOrth and CholQR-based TSQR for the distributed
GPUs as well. To maintain their orthogonality, in our experi-
ments, we always orthogonalize the basis vectors twice.

Our CA-GMRES implementation on the distributed GPUs
extends that of our previous implementation on the multiple
GPUs of one node [16]], where a single MPI process can
manage multiple GPUs on the node in order to combine
or avoid the MPI communication to the GPUs on the same
node. Since the computational cost of CA-GMRES is typically
dominated by the first step of generating the basis vectors, we
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Fig. 4. Tllustration of Extending and Sorting a Local Matrix for MPK.

use distributed GPUs to accelerate this step. To this end, we
distribute the matrix A over the GPUs in a 1D block row
format, using a matrix reordering or graph partitioning algo-
rithm (see Section [[V-B). The basis vectors qi,qo, ..., Qs+1
are then distributed in the same format. In our CholQR im-
plementation, each GPU first computes the block dot products
of its local vectors (i.e., B dizLQng 4 1), using the
optimized GPU kernels developed in [16], [17], and asyn-
chronously copies the result to its MPI process. Second, the
MPI process accumulates the results of its local GPUs, and
computes the Gram matrix via a global MPI all-reduce (i.e.,
B=3 d=1,...,n, B@). Third, each MPI process redundantly
computes the Cholesky factorization of the Gram matrix on
the CPUs (i.e., RRT := B), and broadcasts the Cholesky
factor R to its local GPUs. Finally, each GPU orthogonalizes
the local part of the basis vectors through a triangular solve
(i.e., Q(ltfls)ﬂ = Q(llzis)HR’l). Figure (3| illustrates this orthog-
onalization process. CGS is implemented in a similar fashion.

C. Matrix Powers Kernel

Our implementation reorders the rows of the local matrix
A on the d-th GPU in descending order of their edge
distances from the subdomain boundary in the adjacency
graph of A. We then expand the local matrix to include the
nonlocal entries that are ¢ edges away from the local matrix
for ¢ = 1,2,...,s. More specifically, let §(*—) be the set
of the local vertices whose shortest path from a nonlocal
vertex is of length ¢, while §(*%) is the set of the nonlocal
vertices whose shortest path from a local vertex is of length ¢
(see Figure [4] for an illustration). We refer to 6%~ and
d(d, ?) as the ¢-level underlap and overlap, respectively, of the
d-th subdomain. Then, the d-th GPU owns its extended local
submatrix A(@*) = A(i(4*) 1), where i(®*) = J,., 6" and

(d)

Setup: exchange elements of q. " to form q.
// GPU-to-CPU communication, using CUDA
for each local d-th GPU do

compress elements of q< ) needed by other GPUs into wid)

(d,s)

asynch-send of w(d 1o [hli MPI process
end for
for each local d-th GPU do
wait and expand w(@ into a full vector w on CPU
end for
// CPU-to-CPU communication, using MPI
for each non-local d-th GPU do
if any of local elements is needed by d-th GPU then
compress elements of w required by d-th GPU into w(d)
asynch-send of w(® to the MPI process owning d-th GPU
end if
if any local elements of d-th GPU is needed by local GPUs then
asynch-receive from the MPI owning d-th GPU into z(4)
end if
end for
for each non-local d-th GPU do
wait and expand z(%) into a full vector z on CPU
end for
// CPU-to-GPU communication, using CUDA
for each local d-th GPU do
compress elements of z required by d-th GPU into z(®)
asynch-send z(%) to d-th GPU

(d)

B into q(d 8)

§(d,0) 1
(d s)

copy the local vector q,

expand z(@ into a full vector q.
end for
Matrix Powers: generate q:(dz), q:(d), ey q(ci)+1
for k=1,2,...,sdo ’ i
l:=s—k+1
ford=1,2,.

Preco: compute z

,ng do
(d Z) (R(d Z))T(M(d))—l(R(d,Z)) (d £)

(dé 1) = (R(d:4— 1))TA(dZ)(R(dZ)) (dé’)

SpMV': compute q.
end for
end for

Notation used for MPK:

§(ds) : nonlocal vertices that are s edges away

§(ds1:s) : s-level overlap, i.e., Ue 1.2 6@“)

i(ds) : s-level row index set, i.e., Ue 5(‘”)

Ald:s) : s-level extended local submatrix, i.e., A(45) = A(i(4:) )
Ald) : local matrix/vector on d-th GPU

Aldss) : s-level diagonal block, i.e., A(@5) = A(i(d:s) j(d:9))
R(d:s) : restriction from global domain to s-level local subdomain

Fig. 5. Pseudocode of Matrix Powers Kernel, MPK(s, q.,1), where s is the
number of basis vectors that MPK generates.

the row index set i(**) is sorted such that those row indexes in
8(%0) with a smaller £ come first. For example, in Figure we
store the block rows of the local submatrix, that are colored
in black, red, green, blue, and then orange in that order.
When applying MPK, each GPU first exchanges all the
required vector elements to compute s matrix powers with
its neighboring GPUs. Then, for k = 1,2,...,s, each GPU
computes the k-th matrix power by independently invoking
Preco and SpMV with the k-th extended local matrix A(%0),
where ¢ = s—k+1, without further inter-GPU communication
(see Step 1.1 in Figure 2)). Before the iteration to compute the
matrix powers, the required vector elements must be commu-



nicated among GPUs distributed over different MPI processes.
To this end, each GPU first packs its local vector elements that
are needed by the neighboring GPUs into a buffer, which is
then asynchronously copied to the CPU. Once the MPI process
receives the message from its GPU, it expands it into a full-
length vector. After expanding the messages from all the local
GPUs, the MPI process packs the vector elements required by
another GPU into a single message, and asynchronously sends
it to the corresponding MPI process. Finally, when the MPI
process receives a message from another process, it expands
the messages into a full-length vector, and after expanding all
the messages, it packs and copies the required elements to
its GPUs, which then expand the packed elements into their
full-length vectors (see Figure |5| for the pseudocode)E]

Our implementation of CA-GMRES can use different values
of the step size s for MPK, and for the orthogonalization
kernels BOrth and TSQR [17]. This often improves the per-
formance of CA-GMRES, because with a larger value of s,
MPK adds computational and storage overheads, and may
potentially increase communication volume. As a result, the
optimal value of s for MPK may be smaller than the optimal
s for BOrth or TSQR. (Mohiyuddin et al. [9] observed this
already for the special case that MPK’s step size is 1.)
In addition, as we will discuss in Section the quality
of our CA preconditioner can degrade with a larger value
of s. It thus becomes critical to use a relatively small s
for Preco, especially with a large number of subdomains,
or equivalently on a large number of GPUs. Hence, our
implementation of CA-GMRES(s, §, m) can take three input
parameters, where s and $ are the step sizes used for MPK
and for BOrth and TSQR, respectively, and m is the restart
length. The case s = 1 means that CA-GMRES does not need
a specialized MPK implementation; it merely uses matrix-
vector multiplies and preconditioner applications, and relies
on CA-GMRES’ orthogonalization kernels for performance
improvements over GMRES. This is a reasonable strategy
for long-recurrence Krylov solvers like GMRES, but CA
variants of short-recurrence methods like CG will likely need
an optimized MPK, since they spend much less time in inner
products.

D. Performance Studies

Figure [6] compares the parallel strong scaling performance
of GMRES and CA-GMRES by showing their total solution
time speedups over the time required by GMRES on one GPU
for the G3_Circuit matrix. The matrix A is distributed
among the GPUs such that each GPU has about an equal
number of rows after the reverse Cuthill-McKee (RCM) or-
dering is applied [5] (see Section for more detailed
experimental setups, except the greater stopping criteria of
10~® is used here). CA-GMRES obtained the average and
maximum speedups of 2.06 and 2.53 over GMRES on the
same number of GPUs, respectively. The speedup leveled off

2Since we typically have more CPU cores than GPUs on a node, Pthreads
are used to process the messages from multiple GPUs in parallel. The GPUs
on the same node communicate without using MPI.

—O6— CA-GMRES(5,15,30), 1GPU/MPI ||
CA-GMRES(5,15,30), 3GPUs/MPI|{

—E— GMRES(30)
T T T

. . . . T :
1 12 24 36 48 60 72 84 96 108 120
Number of GPUs

Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on Distributed
GPUs (over GMRES on one GPU), for the G3_Circuit matrix.

Number of GPUs Matrix) [ 6 [ 12 [ 24 [ 48 |

GMRES(30)

Number of Restarts 39 35 130 79
Time (s) 3.51 | 3.13 | 10.60 | 10.54
CA-GMRES(1, 30)

Number of Restarts 39 35 131 79
Times (s) 2.10 | 1.59 7.55 7.77
Speedup 1.60 | 1.97 1.40 1.36

Fig. 7. Parallel Weak Scaling Performance Studies for the brick matrices,
starting with n = 1M on 6 GPUs.

around 60 GPUs because the local submatrix became too
small for the GPU to obtain any strong scaling speedup. We
expect that on a larger number of compute nodes, the MPI
communication becomes more dominant, and the speedups
obtained by avoiding the communication will increase [18].
The figure also shows the performance of CA-GMRES that
launches one MPI process on each node and lets each process
manage the three local GPUs on the node. At least with our
implementation and experimental setups, the overhead of each
MPI to manage multiple GPUs (e.g., sequentially launching
GPU kernels on multiple GPUs) outweighed the benefit of
avoiding the intra-node MPI communication, for which many
MPI implementations are optimized. Hence, for the rest of the
paper, unless otherwise specified, we use one MPI process to
manage a single GPU.

Figure [/| shows the parallel weak scaling performance of
GMRES and CA-GMRES, where the matrix dimension is
increased linearly with the number of GPUs, staring from
1,035,351 on 6 GPUs. To accomodate the large CPU memory
usage during setup, we lauched one MPI per node, which
manage three GPUs on the node, on 48 GPUs. Again, CA-
GMRES outperformed GMRES for this weak scaling studies.

IV. CA DOMAIN DECOMPOSITION PRECONDITIONERS
A. CA-Preconditioning Framework

As discussed in Section it is difficult to introduce
preconditioning in CA Krylov methods. Instead of forming
the basis vectors for the Krylov subspace Ky(A4,q.1) =

span{d;,1, Ad.1,- - A} = span{a1,q2, -0 Q)
we must generate the basis vectors for the preconditioned
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Fig. 8. Matrix Partitioning for the CA Preconditioner for two subdomains.
The underlap and the overlap relative to subdomain 0 are shown.

subspace Kyx(M~*A,q.1) or Ki(AM~1 q.1) (left or right
preconditioning, respectively). The challenge is that to com-
pute the k-th matrix power, each processor (or GPU) needs to
know both the local vector elements at i(*:?) and those at the /-
level overlap §(%0) where ¢ = s—k+1 (fork =1,2,..., ).
Therefore, additional communication is needed if the action of
M~ to generate these vector elements of z. ; at i(%9) requires
any element of the input vector q. ; aside from those at the
row index set i(%%), where i(®*) = i(d:0) | J §(@1:0),

A simple preconditioner that works for CA methods is a
diagonal preconditioner. For this, the d-th processor (or GPU)
only needs to know the diagonals of both the local submatrix
A and the s-level overlap 6(%1%), This requires only small
computational and storage overheads, but may only reduce the
iteration count moderately. Real applications often prefer other
types of preconditioners that have higher overheads but are
more effective in reducing the iteration count. These include
preconditioners based on domain decomposition or multigrid.
We focus on domain decomposition preconditioners since they
are local in nature and are well suited for parallel computing.

We now propose a communication avoiding domain decom-
position preconditioner. As explained in Section [[I, even block
Jacobi preconditioner is difficult to integrate into a CA method
since after each processor (or GPU) applies Preco by solving
its local problem with its local submatrix A@  each local
SpMYV requires the preconditioned input vector elements from
its neighbors, introducing extra communication. To avoid this
additional communication, we “shrink” the diagonal blocks
to make them disjoint from the s-level overlaps. To this
end, let us assume there are m, non-overlapping subsets
(subdomains or GPUs) of the row index set of A. Recall
from our notation in Section [II-C] that in the view of the d-th
subdomain the local diagonal block is A(%). The distance-
s neighbors of the vertices in the graph of A is the s-level
overlap 6(%*) while the set of local vertices distance-s away
from a non-local vertex is the s-level underlap 6(%—*). To
simplify our notation, when it is clear from the context, we use
it=5=1 and §(“1:%2) to represent i(>—*—1) and §(?*1:%2) where
jld,—s—1) — Ueg—s—1 5(d:0) and §(d-Lr:l2) — Uélgégég 6(d:0)
Then, the square local matrix A(5) for the d-th subdomain

has the following block structure:
A(i(*sfl),i(*sfl))
(A((s(—.e:—l)$i(—.<—1))

The obal view of A(@3) for two subdomains is shown in

A@(sD (=D
A=Y ===y gD sy )
A((s(l:s))(s(—s:—l)) A(&(l:s)’(s(l:s))

Figure [8| By definition A(%%) = A(i(®) i), Given |[A] =n
and |A =s)| = ng4, we define the standard rectangular n-by-ng
extension matrix (R(%9)T with zeros and ones, which extends
by zero a vector of values associated with vertices A(*9)_ The
corresponding s-step variant (R(d’s))T is defined in the same
fashion. Correspondingly, R(%*) is the restriction matrix that
restricts a vector from the global domain to the s-level local
subdomain. With that notation, the restricted additive Schwarz
preconditioner [3|] with overlap s becomes:

Myl = D (RO (A) 7 (RE),
d=1
By varying the amount of overlap, we obtain a sequence of s
preconditioners applied at s iterations; for k = 1,2,...,s, we
define
(M®)71 = 37 (REO)T)(AWD) = (RE),
d=1

where / = s — k + 1. In this definition, the preconditioner
changes at each iteration, shrinking both its underlap and over-
lap to match with the extended local submatrix of MPK. While
the restriction operator changes accordingly, the extension
operator uses the same non-overlapping extension operator
allowing unique updates from the sub-domains. This is similar
to the restricted additive Schwartz preconditioner. However,
the s-step preconditioner shrinks the subdomain based on
the iteration. It is easy to see that in the special case of
s = 0, the s-step preconditioner reduces to the block Jacobi
preconditioner.

In order to use the above framework as a stationary precon-
ditioner for CA-GMRES, we need to provide a consistent view
of the preconditioner both across subdomains (for correctness)
and across iterations (for being stationary). In our implemen-
tation, we do this by considering only the diagonal blocks
of A(%%) and using diagonal preconditioning for the two
diagonal blocks A(8(=*~1) §(===1)) and A(6§(1:*), §(1*)) on
the underlap and overlap, respectively. We also use a constant
underlap so that the preconditioner is stationary. This underlap

preconditioner, for s iterations with k = 1,2, ..., s, is defined
as
g
(Mg =D (REN)T) (AL (RED),
d=1

where / = s — k+ 1 and

- ((—s=1) j(=s—1)

@0 _ ( Al i )
4 ( diag(A(6=%9,86==9)) )~
The restriction operator still shrinks the overlap to work effec-
tively with the CA-GMRES without incurring any additional
communication cost.



[ Name [ Source [ n__ nnz/n |
G3_Circuit UF Collection 1,585,478 4.8
PDE_IM(a) | Trilinos 1,030, 301 26.5
PDE_10M(cx) Trilinos 10, 218, 313 26.8
brick_n Trilinos ~n ~ 25

Fig. 9. Test Matrices.
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Fig. 10. Condition Number of Gram Matrix, G3_Circuit matrix, 6 GPUs.

In summary, our underlap preconditioner is a special case
of the s-step domain decomposition preconditioner outlined
above. Since we use a diagonal approximation in the underlap
and overlap regions, an equivalent formulation of the local
preconditioner ///Ui(f corresponding to Alds) s

'\ Es) ( AGs=D j(=s=D)y

UN diag(A(a(d,—lz—s)7a(d,—l:—s))) ) 9

where any traditional local subdomain preconditioner can be
used for an inexact solution with A(i(=*=1 i(=s=1) includ-
ing incomplete factorizations or a fixed number of iterations
with a stationary method such as Jacobi or Gauss-Seidel.
This formula defines the action of the preconditioner on each
local subdomain; in addition, each processor must redundantly
compute the action of the preconditioner on the overlap in a
shrinking fashion based on the iteration number. Mathemat-
ically, the preconditioner is fixed and does not change from
iteration to iteration.

B. Sample Implementation

In this section, we describe our implementation of the under-
lap preconditioner described in Section and present the
setups for our experiments. As our first setup, to distribute the
matrix A among the GPUs, we tested two matrix reordering
algorithms: reverse Cuthill-McKee (RCM) [5] from HSIE and
k-way graph partitioning (KWY) from METIﬂ With RCM,
after reordering, we distribute the matrix so that each GPU has
about an equal number of rows. Then, the computed solution is
considered to have converged when the /5-norm of the initial
residual is reduced by at least twelve orders of magnitude.

3http://www.hsl.rl.ac.uk/catalogue/mc60.xml
4http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

As the local solver, we investigated the stationary iterative
methods (i.e., Jacobi or Gauss-Seidel iterations), the level or
drop-tolerance based incomplete LU factorization, ILU(k) or
ILU(7), respectively, of ITSOIﬂ and the sparse approximate
inverse (SAI) of ParaSailsﬂ Each MPI process independently
computes the local preconditioners on the CPU and copies
them to the GPU. Then, at each iteration, the MPI process
applies the preconditioners using either the sparse-matrix
vector multiply or the sparse triangular solves of CuSparse
in the Compressed Sparse Row (CSR) matrix storage format.
The sparse matrix vector multiply with the coefficient matrix
is performed using our own GPU kernel in the ELLPACKT
format [16].

C. Convergence Studies with a Fixed GPU Count

Figure [9] shows the properties of the test matrices used for
our experiments. The G3_Circuit matrix comes from a
circuit simulation problem. Such matrices are difficult to pre-
condition; doing so effectively is current research. The “PDE”
problem comes from a scaling example in the TrilinosCou-
plings example of the Trilinos software library. It arises
from discretizing Poisson’s equation with Dirichlet boundary
conditions on a cube €2, using a regular hexahedral mesh. The
PDE is div(MVu) = f in Q, u = g on 0%, where M is a
3 by 3 material tensor, f a given source term, and g a given
boundary term. Discretizing results in a linear system Ax = b.
The material tensor M is always symmetric, and thus so is A.

We can control the iteration count for solving Az = b by
1 0 «

changing M. Weset M = | 0 1 0 |.Whena =0, the
a 0 1

problem takes few iterations. As « approaches 1, the problem
takes more. When o > 1, the matrix A is no longer positive
definite. We present results for different values of «.

The Brick matrices come from the discretization of the same
PDE on a 3-D brick-shaped mesh, in which the number of
elements in two dimensions are fixed. The third dimension
has four different types of material blocks, two of which have
the element sizes graded.

To enhance CA-GMRES’ numerical stability, before the
iteration starts, we equilibrate A and b [8]]. That is, we first
scale its rows, and then its columns, by their co-norms. In
addition, to improve stability when generating matrix powers,
we use a Newton basis q. y+1 = (AM ™' — 0,1)q. ., where
the shifts 6 are the eigenvalues of the Hessenberg matrix
H from the first restart in a Leja ordering [2]. Figure [I0]
shows the condition number of the Gram matrices generated
during CholQR for the G3_Circuit matrix. These condition
numbers are the square of the condition numbers of the basis
vectors generated by MPK (see Section [II-B). The figure
shows that equilibration, using the Newton basis, and precon-
ditioning all contribute to improve these condition numbers.
While in our experiments, we used the same basis step size s
and orthogonalization parameters for testing CA-GMRES with

Shttp://www-users.cs.umn.edu/~saad/software/ITSOL/index.html
Shttp://computation.linl.gov/casc/parasails/parasails.html
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(a) PDE_1M (0.0) matrix, with restart = 20.
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(b) G3_Circuit matrix, with restart = 30.

Fig. 11.  Solution Convergence, using Different Domain Decomposition
Preconditioners with Local ILU(0)’s on 6 GPUs.

and without preconditioning, we could potentially use a larger
s or omit reorthogonalization when preconditioning. This may
significantly improve performance.

Figure [TT]compares the convergence behavior of the relative
residual norm, ||b — AX||2/||bl|2, using different precondi-
tioners, where the local solver is the level-based ILU(0). For
instance, for the PDE matrix in Figure [11(a), as expected, a
larger overlap reduced the number of iterations required for
the solution convergence, while a larger underlap increased the
iteration counts. However, the iteration count was significantly
reduced using either an overlap or underlap preconditioner.
In addition, the convergence of CA-GMRES matches that of
GMRES. For the G3_Circuit matrix, Figure shows
similar results, but for this more ill-conditioned system, the
reduction in the iteration count was much greater.

Figure shows the solution convergence, when different
local solvers were used in combination with our underlapping
preconditioner. For instance, we investigated the Jacobi itera-
tion as our local solver. This is because on some architectures
including the GPU, the sparse triangular solution required for
the ILU-based preconditioner often obtains much lower perfor-
mance than SpMV required for MPK or for the Jacobi iteration
(see Section[[V-D)). Unfortunately, even for this relatively well-
conditioned system, in order to match the solution convergence
obtained using ILU(0), a large number of Jacobi iterations was

0 —No local solve
——ILU(0)
- -~ SAI(0)

- = Jacobi(20)
- - - Jacobi(30)
R Jacobi(40)

~| - - Gauss-Seidel(10)[]
- - — Gauss-Seidel(20)
—— Gauss-Seidel(30)

Relative Residual Norm

5 10 15 20 25 30 35 40 45
Number of Restarts

(a) CA-GMRES(1, 20), for the PDE_1M (0.0) matrix.

0 —No local solve
0,

- -~ SAI(0)
Jacobi(30)

- - Gauss-Seidel(10)
- - - Gauss-Seidel(20)
—— Gauss-Seidel(30) |

Relative Residual Norm

5 10 15 20 25 30 35 40 45
Number of Restarts

(b) CA-GMRES(2, 20), for the PDE_1M (0. 0) matrix.

Fig. 12. Solution Convergence, using Different Local Solvers for an
Underlapping Preconditioner on 6 GPUs.

required when s = 1, and it did not converge when s = 2.
Even though a fewer Gauss-Seidel iterations were required,
the iteration count was still large, especially considering that a
forward-substitution is needed at each Gauss-Seidel iteration.
Only the sparse approximate inverse (SAI) was competitive
with ILU(0) on this small number of GPUs. However, SAI
may not be effective on a larger number of GPUs, or for an
ill-conditioned system such as the G3_Circuit matrix (see
Section TV-D).

D. Parallel Scaling Studies

We first examine the performance of our underlapping pre-
conditioner for the G3_Circuit matrix. This is a relatively
ill-conditioned system and a sparse approximate inverse is not
an effective preconditioner. Hence, we used ILU(0) as our
local solver. The performance of the sparse triangular solver
of cuSparse depends strongly on the sparsity pattern of the
triangular factor [10]. For our experiments, we first used a
k-way graph partitioning to distribute the matrix among the
GPUs, and each local submatrix is then reordered using a
nested dissection algorithm. We have observed that the perfor-
mance of the triangular solver can be significantly improved
using the nested dissection ordering (e.g., a speedup of 1.56).
Figure [I3(a)] shows the breakdown of the average time spent
in one restart loop. Even with the nested dissection ordering,
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Fig. 13. Parallel Strong Scaling of Average Restart Time on Distributed
GPUs for the G3_Circuit matrix.

though Preco and MPK perform the same number of floating-
point operations, Preco required significantly longer time (e.g.,
by a factor of 4.67, where MPK includes the setup time),
since the triangular solution is inherently serial. As a result,
Figure [I3(b)] shows that the time per iteration of CA-GMRES
was significantly longer when the preconditioner was used
(e.g., by a factor of 3.41). However, as Figure[T4(a)] shows, the
underlapping preconditioner significantly reduced the iteration
count, and as Figure @ shows, the total solution time was
also greatly reduced using the preconditioner (e.g., by a factor
of 2.95). Figure [T5] shows the detailed performance results for
this G3_Circuit matrix.

Compared to the G3_Circuit matrix, our PDE matrices
are relatively well-conditioned, and SAI(0) is often effective
as the local solver. Figure shows the average breakdown
of the restart loop time. The time to apply the SAI(0) precon-
ditioner was about the same as that of SpMV with the local
submatrix and was significantly shorter than that of the sparse
triangular solve required by ILU(0) (see Figure [[3(a)). As a
result, compared with Figure for the G3_Circuit ma-
trix, Figure shows greater speedups obtained using the
underlap preconditioner for the PDE matrices. Figure [L6]shows
the detailed performance profiles with the PDE matrices, where
for the PDE_10M matrices, we launched one MPI per node,
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Fig. 14. Parallel Strong Scaling Performance on Distributed GPUs of GM-
RES, CA-GMRES, and CA-GMRES using an Underlapping Preconditioner
with Local ILU(0)’s, for the G3_Circuit matrix.

which managed three GPUs on the node. The figure also shows
that CA-GMRES with underlap preconditioner improves the
performance of GMRES with the same preconditioner. We
expect that this improvement will increase on a computer
where the communication between the parallel processes or
threads is more dominant.

We emphasize that the distribution of the matrix A among
the GPUs not only affects the performance of CA-GMRES
(e.g., storage, computation, and communication overheads
associated with the s-step overlap), but it also determines
the quality of the preconditioner (e.g., the size of the s-
step underlap). For the results of the PDE matrices presented
here, the matrix A was distributed among the GPUs based
on the k-way graph partitioning algorithm. In contrast, when
the matrix was distributed using the RCM ordering, the sizes
of both the overlap and underlap increased quickly with the
increase in the number of subdomains. As a result, even on
a small number of GPUs (e.g., ny = 21), some underlaps
extended all the way inside the local subdomains, and the
local preconditioners became the diagonal scaling. Hence, on
a larger number of subdomains, not only did the computational
and communication overheads of CA-GMRES increase, but
also the number of iterations increased quickly. This led to
the quick reduction in the speedups gained using the underlap
preconditioner on a larger number of GPUs.



Number of GPUs 1 3 6 9 12 15 18 21 24 27 30

GMRES(30) 326.2 (813) 167.8 (1212) 73.0 (1001) 53.1 (1033) 47.5 (1159) 31.0 (889) 18.6 (601) 19.0 (680) 21.7 (840) 17.4 (713) 15.4 (669)
CA-GMRES(6, 30) 347.2 (1026) 116.4 (995) 142.0 (2257) 44.0 (1001) 25.6 (712) 29.2 (970) 23.1 (860) 24.5 (1027) 18.5 (823) 24.7 (1154) 19.3 (939)
CA-GMRES(8, 30) 201.8 (691) 88.5 (884) 38.7 (722) 422 (1131) 24.5 (795) 20.1 (774) 13.8 (602) 19.3 (947) 15.9 (824) 12.2 (665) 13.6 (773)
CA-GMRES(10, 30) 183.1 (760) 95.9 (1155) 45.1 (1011) 34.3 (1094) 16.7 (649) 22.0 (1007) 12.5 (640) 15.7 (918) 11.9 (739) 9.7 (627) 11.5 (776)
CA-GMRES(1, 1, 30) ILU(O) 316.4 (158) 126.4 (183) 69.5 (187) 43.9 (169) 46.0 (212) 34.5 (194) 26.2 (167) 22.8 (159) 18.1 (136) 20.6 (160) 29.6 (233)
CA-GMRES(1, 8, 30) ILU(0) 104.9 (162) 39.6 (175) 24.8 (201) 15.3 (167) 15.3 (197) 11.0 (166) 7.8 (139) 8.2 (150) 7.5 (151) 9.1 (187) 10.6 (211)
CA-GMERS(1, 10, 30) ILU(0) 85.3 (143) 39.3 (187) 17.6 (154) 14.8 (173) 18.0 (249) 13.3 (217) 10.4 (200) 8.9 (174) 7.2 (156) 8.6 (190) 10.6 (225)

Fig. 15.
and a Local Nested Dissection Ordering, for the G3_Circuit matrix.

Total Solution Time in Seconds (Number of Restarts), using an Underlapping Preconditioner with Local ILU(0)’s, and a Global k-way Partition

Number of GPUs 1 3 9 15 21 27 1 3 9 15 21 27
Underlap/Local Domain ~ min 0.00 0.04 0.07 0.06 0.08 0.09
max 0.00 005 0.10 0.15 021 021
GMRES(20) 141 @) 322 137 @) 104 @) 098 @) 092 (@) 20113 (2558) 8467 (2449) 3644 (2726) 2283 (2492) 1952 (2676)  164.4 (2566)
GMRES(20)+SAI0), s = 1 652 (17) 184 (16)  082(18)  067(0)  0.63(23)  055(22) 685.8 (463) 130.5 (292) 66.3 (400) 39.5 (353) 280 (318) 213 (278)
CA-GMRES(2, 10, 20) 81T (D) 229D 100 @D 081 @) 061 @D 059 4D 17799 (2558)  496.1 (2449) 2266 (2726) 1492 (2492) 1265 (2676)  108.8 (2566)
CA-GMRES(1, 10, 20)+SAI(0) 572 (17) 156 (16)  0.68(18)  055(20)  051(23) 043 (22) 493.1 (463) 974 (312) 55.1 (462) 21.1 259) 240 (377) 203 (359)
(a) PDE_1M(0.0) (Teft, m = 20) and PDE_1IM(1.0275) (right, m = 60) matrices.
[ Number of GPUs | 3 9 15 21 27 I 3 9 15 21 27 ]

GMRES(40) 8107 (44) 2001 (44) 1928 (44) 1572 (%) 1282 (44) 12562 (68) 4458 (68)  28.19 (68)  22.26 (68)  18.24 (68)

GMRES(40)+SAI(0), s = 1 4927(19) 1707319  1L11(20) 869 21) 7.28 (22) 8207(32)  2925(33)  1537(28)  1440(35) 1145 (35)

CA-GMRES(2, 10, 40) 5573 (44) 2068 (44) 1385 (44) 1092 (44) 1046 (44) 8616 (68) 3074 (68) 1054 (68) 1549 (68)  14.10 (68)

CA-GMRES(1, 10, 40)+SAI0) | 39.30 (19) 1339 19) 898 (20) 7.09 (21) 583 (22) 6466 (32)  2254(33)  12.10(28)  11.07(35) 8.9 (35)

(b) PDE_10M(0.0) (Teft) and PDE_10M (1.0) (right) matrices.

Fig. 16.
Partitioning, for the PDE matrices.
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Fig. 17. Parallel Strong Scaling Performance on Distributed GPUs of GM-
RES, CA-GMRES, and CA-GMRES using an Underlapping Preconditioner
with Local SAI(0)’s, for the PDE_1M(1.0275) matrix.

Total Solution Time in Seconds (Number of Restarts), using an Underlapping Preconditioner with Local SAI(0)’s and a Global k-way Graph

V. CONCLUSION

This paper presents the performance of CA-GMRES on a
GPU cluster. CA-GMRES shows speedups of 2.5x over stan-
dard GMRES on up to 120 GPUs. We also proposed a frame-
work based on domain decomposition to precondition CA
Krylov methods. Though we use simple ILU(0) and SAI(0)
preconditioners to solve on each GPU’s domain, the number
of GMRES iterations was greatly reduced. Our performance
results on a GPU cluster showed the proposed framework’s
potential for effectively preconditioning CA Krylov methods.
We continue to explore ways to improve our framework’s
performance. For instance, since the same step size is used
for MPK and Preco, there is a trade off when using a larger
step size, between reducing communication and increasing the
iteration count. To address this issue, we are investigating other
techniques to precondition the underlap or overlap regions, and
a more flexible way of preconditioning the CA methods.
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