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ABSTRACT 
 
 We have utilized cohesive zone models in Sandia’s quasistatics finite-element 
code, Adagio, to model mode II failure along bonded interfaces.  End-notched 
flexure (ENF) experiments were conducted using bimaterial composite specimens.  
Finite-element simulations were performed that agreed well with the experimental 
results.  The simulations included the effects of thermal mismatch by modeling the 
cool-down from the cure temperature to room temperature before loading is 
applied. 
 Adagio and the DAKOTA software toolkit were used to perform a sensitivity 
analysis study of the ENF simulation parameters.  The material test specimen was 
characterized using 37 uncertain geometric and material property parameters, each 
having a range of +/-5% its nominal value. DAKOTA’s Latin Hypercube Sampling 
method was used to generate an ensemble of 800 Adagio simulations, from which 
maximum load and compliance responses of the test specimen were computed. 
Linear and quadratic model fits were performed for each of the response functions.  
The sensitivity of each parameter was determined based on a statistical test for a 
null hypothesis, to check whether or not the coefficient of the corresponding term in 
the model fit, normalized by its standard deviation, is sufficiently close to zero.  
 Follow-on uncertainty quantification studies using Adagio and DAKOTA will 
be performed in the future.  Temperature and rate effects are also being studied, and 
experiments with mode I and mixed-mode failure will be conducted.   
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INTRODUCTION 
 
 Composite materials are prominent in many applications, such as aircraft, fuel 
tanks, and wind turbine blades.  One of the types of failure that can be found in 
composite structures is delamination between plies under normal and/or shear 
stresses.  For this reason, the determination of the critical energy release rate is 
crucial to analyze designs.  Typical methods of determining the critical energy 
release rate are through experiments, such as the double-cantilever beam (DCB) for 
mode I, end-notched flexure (ENF) for mode II, and mixed-mode flexure (MMF) 
for mixed mode. 
 Mode-II delamination has been modeled by a number of authors.  Most use 
symmetric, single-material ENF geometries (see e.g. de Moura [1], Iannucci [2], 
and  Mi et al. [3]).  Liu et al. [4] used a bimaterial ENF specimen, and compared 
ADCB simulations to experimental results, but no comparison between experiment 
and analysis was made for the ENF geometry. 

In this paper, ENF experiments are performed on bimaterial composite 
specimens that were cured at an elevated temperature.  It is found that the residual 
stresses in the specimens after curing play a key role in determining the failure load. 
Finite-element simulations are presented that model delamination at the interface 
between two composite materials using the cohesive zone model of Tvergaard and 
Hutchinson [5].  In the first section, experiments are described that are used to 
determine the bulk properties of the composite materials.  Next, mode-II 
experimental results for the ENF geometry are given, as well as the simulation 
responses.  Sensitivity analysis is then performed to see which parameters have the 
greatest impact on two response functions. 
  
 
EXPERIMENTS   
 
Bulk Testing 
 

The orthotropic material properties for the 3k, woven E-glass (Hexcel 7781, 
8-harness satin weave with a UF3362 TCR resin system) and 1k graphite (Toray T-
300, 5-harness satin weave with a UF3360 TCR resin system) composite layers 
were determined using a combination of experimental results, micromechanics, and 
engineering judgment.  For each composite material, tensile specimens were 
manufactured with three different orientations:  0°, 45°, and 90° off the rolling axis 
(see Figure 1).  Each specimen consisted of five plies.  All specimens were 
fabricated with Teflon-coated peel-ply and cured at 350 °F for one hour at 45 psi 
(see Figure 2).  Additional panels were fabricated to obtain the fiber volume 
fraction.  The resulting fiber volume fractions were 60% for graphite and 66% for 
E-glass, as measured using Archimedes’ method with a stack of four specimens 
(0.75 in by 0.75 in) in ethanol to obtain proper wetting. 

The 0° and 90° specimens were used to determine Young’s moduli and 
Poisson’s ratios (see ASTM D3039-76 in [7]), and the 45° specimens were used to 
calculate the in-plane shear moduli (see ASTM D3518 in [7]).  An example of the 
specimen response is shown in Figure 3.  For each material and material orientation, 



specimens were loaded and unloaded elastically multiple times at room temperature.  
The axial and transverse strains were measured with a strain gage (type CEA-06-
250UT-350) mounted in the center of the gauge section (see Figure 1).  The 
resulting property sets are shown in Table 1, where the notation 11 refers to the 0° 
direction, 22 is the 90° direction, and 33 is the out-of-plane direction.  The 
measurements of the moduli were taken at the beginning of the third loading cycle.  
For each material and material orientation, three specimens were tested, and each 
was tested three times, for a total of nine measurements taken for each material 
property.  Standard deviations for the measured moduli were less than 1% of the 
mean values.  

The values of some of the bulk properties were estimated instead of 
experimentally determined due to the time and cost constraints.  The purpose of the 
sensitivity analysis performed later in this paper was in part to see if these 
parameters have a significant impact on the results, and if so, then to perform 
additional experiments to determine the values more accurately. 
 
 

 
 

 
 

 
 

Figure 1.  Composite tensile specimen design. 
 
 

 
 

Figure 2.  Fabrication of composite specimens. 
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Figure 3.  Example of load vs. strain response for the bulk testing. 
 
         

TABLE 1.  MATERIAL PROPERTIES 
 

 Graphite E-glass Justification 
Young’s modulus 11 (GPa) 64 28 Measured value 
Young’s modulus 22 (GPa) 55 27 Measured value 
Young’s modulus 33 (GPa) 9.7 11 Micromechanics 
Poisson’s ratio 12 0.081 0.14 Measured value 
Poisson’s ratio 23 0.30 0.27 Micromechanics 
Poisson’s ratio 31 0.30 0.27 Micromechanics 
Shear modulus 12 (GPa) 4.6 7.7 Measured value 
Shear modulus 23 (GPa) 4.6 7.7 Estimate 
Shear modulus 31 (GPa) 4.6 7.7 Estimate 
CTE 11 (°C-1) 1.e-6 8.e-6 Estimate 
CTE 22 (°C-1) 1.e-6 8.e-6 Estimate 
CTE 33 (°C-1) 3.e-5 3.e-5 Estimate 

 
 
ENF Experiments  

 
Mode II experiments were conducted employing the end-notched flexure (ENF) 

specimen design shown in Figure 4.  Bimaterial beams are cut from a sheet 
composed of a graphite layer 0.074 ± 0.003 in thick and a glass layer 0.180 ± 0.003 
in thick.  The layers were oriented such that 0° off the rolling axis corresponded to 
the direction along the length of the ENF specimens.  The sheet was cured at 350 °F 



in the same manner as the tensile specimens.  A thin Teflon film (0.002 in thick) 
was inserted between the two materials before curing so that the as-cut beams 
would have a precrack that extends from the left end of the beam to the location 
marked ao in Figure 4.  The bottom two pins are held fixed while the top pin is 
displaced downward at a rate of 0.001 in/s until the crack propagates and the 
applied load drops (see Figure 5).   

The experiments were performed for two orientations:  with the thin graphite 
layer on bottom (see Figure 4), and with the thin layer on top (not depicted).  The 
dimensions for the specimen in Figure 4 are L1 = 1.101 ± 0.001 in, L2 = 1.953 ± 
0.001 in, L3 = 2.077 ± 0.001 in, ao = 0.90 ± 0.02 in, and width = 1.001 ± 0.003 in.  
The specimen with the reversed orientation had the following measurements:  L1 = 
1.006 ± 0.001 in, L2 = 1.959 ± 0.001 in, L3 = 2.075 ± 0.001 in, ao = 0.99 ± 0.02 in, 
and width = 1.006 ± 0.003 in.  The resolution on the force and displacement 
measurements were ± 0.3 lb and ± 0.0005 in, respectively. 

 
 

 
 

Figure 4.  End-notched flexure specimen. 
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Figure 5.  End-notched flexure results. 
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Figure 6.  End-notched flexure results. 
 
 

 
 

Figure 7.  Traction-separation law for the cohesive zone model. 
 
 
ENF SIMULATIONS  

 
The meshes used for the simulations consisted of 14798 elements.  The steel 

rollers were modeled with linear elasticity, whereas the composite beams were 
modeled using the linear elastic, orthotropic model described in [8] with the 
orthotropic material properties given in Table 1.  The beams are attached by 
cohesive surface elements. Frictionless contact was used at the interface for the 
precracked region (Teflon film), as well as at the interfaces between the rollers and 
the beams.  The cohesive surface elements obey the traction-separation law of 
Tvergaard and Hutchinson (see [5]), as shown in Figure 7.  The critical energy-
release rate is the area under the curve in Figure 7, where maxσ  is the peak traction, 
δ  is the separation, and cδ  is the critical separation, or characteristic length scale.  
Here, we assume the characteristic length scale is the same in both normal and 
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tangential directions.  The parameters used in the simulations were as follows:  

maxσ = 31.6 MPa, 1 2 0 5.λ λ= = , and cδ  = 0.0506 mm, for a critical energy-release 
rate of 800 J/m2.  The deformed mesh is shown in Figure 8 at the end of the 
simulation (after the crack has propagated to the middle of the specimen).  The 
simulations included the effects of thermal mismatch by modeling the cool-down 
from the cure temperature (350 °F) to room temperature (70 °F) before loading is 
applied.  The cohesive zone in the simulations extended across three elements for 
the coarsest mesh, giving a zone size of roughly 0.36 in. 

The simulations matched the experimental results very well for both 
orientations (see Figures 5 and 6).  The difference between the peak loads from the 
simulations and the experimental results for the two geometries were 1% and 4%, 
respectively.  The difference in the load-displacement curves for the two 
orientations is due to the residual stress state that results from the specimen 
fabrication.  The thin layer has a lower coefficient of thermal expansion (CTE) than 
the thick layer, so as the asymmetric beam is cooled to room temperature from the 
curing temperature, it curves slightly and puts the interface into shear.  In the 
orientation depicted in Figure 4, the residual shear stresses from the CTE mismatch 
partially counteract against the stresses produced by loading, resulting in a higher 
failure load (Figure 5) as opposed to the case where the thin graphite layer is on top, 
such that the residual stresses enhance the shearing stresses introduced by the 3-
point bending of the beam (Figure 6).  This was verified by running the simulations 
for the two orientations without modeling the cool-down from the cure temperature, 
and the resulting load-displacement curves were nearly identical. 

The crack propagation appears to be unstable for the ENF geometry with the 
dimensions used here.  We neglected inertial effects by using a quasistatics code.  
This may account for the fact that the simulations underpredict the load drop that 
occurs as the crack propagates (see Figures 5 and 6).  In the simulations, the 
specimens were loaded beyond the experimental displacements until further crack 
propagation was observed, and the corresponding load drops brought the load level 
down to that obtained in the experiments. 

It should also be noted that the critical energy-release rate for the interface may 
differ from the value used here, since the Teflon film has a finite thickness and thus 
the precrack is not a sharp crack.  Further experiments are being conducted on 
specimens for which the crack has already been extended away from the film before 
being used for end-notched flexure tests.  When the corresponding simulations are 
performed, the effects of friction at the extended crack interface will need to be 
included. 

 
 

 

 
 

Figure 8.  End-notched flexure specimen. 
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Figure 9.  Sensitivity to mesh size. 
 
 

To assess the mesh dependence of the simulations, we ran the ENF simulation 
with three different meshes, consisting of 14798, 113870, and 877406 elements (see 
Figure 9).  The results did not differ significantly for any of the meshes. 
 
 
SENSITIVITY ANALYSIS   
 

For the end-notched flexure geometry in Figure 4, we have used Sandia’s 
Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to 
run a sensitivity study with 37 geometric and material property parameters (see 
Table 2).  Each parameter was given a range of +/- 5% of its nominal value.  Latin 
Hypercube Sampling (LHS) methodology, which guarantees reasonably good 
coverage of the parameter space, was used to choose 800 sets of the 37 parameters.  
For each set of parameters, a finite-element simulation was performed and two 
response functions were calculated:  f1, which is the peak load in Newtons, and f2, 
which is the initial specimen stiffness in N/m.  The results from a smaller ensemble 
of simulations, for which only 42 parameter sets were chosen by the LHS method, 
are shown in Figure 10.   

Both linear and quadratic model fits to each of two response objectives were 
obtained, and the sensitivity of each term was determined based on a statistical test 
for whether or not the coefficient of each term in the model fit is zero.  Based on the 
800 LHS runs, a least-squares fit was computed according to first a linear model, 

 

 fm = a0 + an xnn=1

N

� , (1) 

 
where the x’s are the N = 37 parameters, the a’s (as well as the b’s and c’s below) 
are the model coefficients and m = 1 or 2 according to the particular response, and 



then a quadratic model (using polynomials centered about the mean values x  for 
the quadratic terms), 
 
 ( )( )0 1 1 1 ,

N N i
m n n k l k k l ln l k

f b b x c x x x x
= = =

= + + − −� � � , (2) 

 
where the latter has (N2 + 3N + 1)/2 = 741 model coefficients. The coefficients are 
uniquely determined from a least-squares fit of the 800-run sample.  The number of 
runs was chosen to modestly exceed the number of coefficients in a full quadratic 
model so that a possibly small number of outlying points would have relatively little 
influence on the least-squares fit to the data.  The linear model yields a first 
estimate of the relative sensitivity of a response to each parameter, ignoring the 
effects of any parameter interactions, while the quadratic model gives an important 
indication of which parameter-interaction effects are potentially significant.  The 
results from the linear fits are shown in Figure 11.  For each plot, the y-axis 
represents the calculated value for the response function from the finite-element 
simulation, and the x-axis represents the predicted value based on the linear fit. 

Sensitivity of a given response to each term is determined from the result of a 
test statistic that tests the (null) hypothesis that each coefficient, normalized by its 
statistical standard deviation, is zero. This test statistic is governed by a Student’s t-
distribution with N – 1 degrees of freedom (cf. [9], [10]). The t-distribution is a 
symmetric two-tailed probability distribution that is similar to, but generally 
broader and flatter than, a normal probability distribution and approaches a normal 
distribution in the large degrees-of-freedom limit (i.e., large sample size). If the 
value of the test statistic lies in either tail of the distribution, the null hypothesis 
fails, which means that the corresponding term in the model is likely to be 
significant and that the model displays a sensitivity to the parameter or parameter 
combination represented by that term. We remark that a zero coefficient in the 
model simply implies that the precise value of the corresponding parameter is 
unimportant; its nominal value is reflected in the model intercepts a0 or b0. 

 
 

End Notched Flexure
(under displacement control)

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0
0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

Time (s)

Lo
ad

/2
 (

N
)

Experiment

 
 

Figure 10.  Ensemble from DAKOTA LHS study. 



 

     
 

 
 

Figure 11.  Linear fits for the two response functions from the LHS study. 
 
 
Table 2 indicates the sensitivity results, obtained using the JMP® statistical 

software package, for the linear model for each of the two response functions (peak 
load and compliance) considered here. The columns “Prob > |t|” refer to how much 
of the t-distribution lies beyond the absolute value of the test statistic; i.e., a small 
value means that the value of the test statistic lies in one of the tails and that the 
corresponding term is therefore likely to be significant. A value less than 0.05 (less 
than 5% probability left in the tails) is usually regarded as sufficiently small for the 
t-test to fail. Values greater than 0.2 or so might be regarded as successful (i.e., the 
model is probably not sensitive to the value of the parameter associated with this 
term), whereas values between 0.05 and 0.2 might be an indication of moderate 
sensitivity.  
 
 



TABLE 2.  SENSITIVITY T-TEST RESULTS 
 

Term f1 prob > |t| f2 prob > |t| 
Intercept (a0) < .0001 < .0001 
cure_temp < .0001 0.5614 
room_temp 0.1303 0.5031 
CTE11_G  0.7966 0.6617 
CTE22_G 0.4533 0.2176 
CTE33_G 0.4152 0.2815 
CTE11_E < .0001 0.8442 
CTE22_E 0.5667 0.7836 
CTE33_E 0.0227 0.6741 
YM11_G 0.0271 < .0001 
YM22_G 0.8066 0.1070 
YM33_G 0.0609 0.1685 
PR12_G 0.8319 0.6878 
PR23_G 0.7373 0.9830 
PR31_G 0.3573 0.5217 
SM12_G 0.2397 0.3210 
SM23_G 0.4708 0.4713 
SM31_G 0.3566 0.5254 
YM11_E < .0001 < .0001 
YM22_E 0.7010 0.0776 
YM33_E 0.8447 0.6400 
PR12_E 0.9361 0.1873 
PR23_E 0.0742 0.6131 
PR31_E 0.0363 0.8099 
SM12_E 0.0755 0.4638 
SM23_E 0.4665 0.3808 
SM31_E 0.7330 0.4767 
lambda1 0.3498 0.0004 
peak_traction < .0001 < .0001 
crit_energy_rel_rate < .0001 < .0001 
Length 0.0979 0.1878 
Width 0.0000 0.0000 
Thickness_G < .0001 < .0001 
Thickness_E < .0001 < .0001 
Precrack 0.0000 < .0001 
L1 0.0000 < .0001 
L2 < .0001 < .0001 
L3 < .0001 < .0001 

 
 

The results in Table 2 suggest, at least within the parameter range tested, that 
there are a number of sensitive and insensitive parameters with respect to both 
response functions, while in some instances, the type of response function 



determines whether or not the value of a parameter is significant. For example, the 
last seven (geometric) parameters are clearly important for both response measures, 
but the precise length is of somewhat less importance.  Some parameters, such as 
CTEaa_1, CTEbb_1, CTEcc_1, SMab_1, SMbc_1 and SMca_1, appear to have 
relatively small influence on both responses.  

Some of the sensitivity results make intuitive sense; for example, the cure 
temperature affects the residual stresses and thus the failure load, but has little if 
any effect on the specimen stiffness.  We also would expect the Young’s moduli in 
the 11 direction to have a larger impact on the stiffness than the other orthotropic 
moduli, which is seen to be true. On the other hand, the stiffness response function 
should ideally not be sensitive to the cohesive parameters, although similar 
behavior has been noted by others (see de Moura [1] and Blackman et al. [11]).  
This finding may mean that the initial stiffness of the traction-separation law needs 
to be increased.  Unfortunately, this leads to numerical issues for the finite element 
solver.   

One benefit to the sensitivity analysis is that it helps determine what further 
experiments may be necessary.  The estimated shear moduli (see Table 1) do not 
appear to influence the responses significantly, so it may not be worth the cost to 
determine more accurate values.  Conversely, a couple of the coefficients of thermal 
expansion have significant sensitivities, so it may be desirable to perform additional 
experiments to accurately determine their values.   

There are too many interaction terms in the quadratic fit to present here, but the 
results from the quadratic fit will be used to determine the most significant 
parameter-interaction effects.  The results from the sensitivity analysis will also be 
used to reduce the number of parameters used in uncertainty analysis. 

 
 
CONCLUSIONS 
  
 Cohesive surface elements were utilized to model mode II failure for the end-
notched flexure geometry.  Experiments were conducted to determine the bulk 
properties, and end-notched flexure experiments were performed using bimaterial 
composite specimens.  The finite-element simulations agreed well with the 
experimental results.   
 A sensitivity analysis study was performed for 37 uncertain geometric and 
material property parameters, each given a range of +/-5% its nominal value. 
DAKOTA’s Latin Hypercube Sampling method was used to generate an ensemble 
of 800 Adagio simulations, from which maximum load and compliance responses 
of the test specimen were computed. Linear and quadratic model fits were 
performed for each of the response functions.  The sensitivity of each parameter 
was determined based on a statistical test for a null hypothesis. 
 Follow-on uncertainty quantification studies using Adagio and DAKOTA will 
be performed in the future.  Temperature and rate effects are also being studied, and 
experiments with mode I and mixed-mode failure will be conducted.   
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