
Domain Decomposition Preconditioners for
Communication-Avoiding Krylov Methods on

a Hybrid CPU/GPU Cluster
Erik G. Boman, Michael A. Heroux, Mark Hoemmen, and Sivasankaran Rajamanickam

{egboman, maherou, mhoemme, srajama}@sandia.gov
Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

Stanimire Tomov and Ichitaro Yamazaki
{tomov, iyamazak}@eecs.utk.edu

University of Tennessee, Knoxville, Tennessee, U.S.A.

Abstract—Krylov subspace projection methods are the most
widely used iterative methods for solving large-scale linear
systems of equations. Researchers have demonstrated that
communication-avoiding (CA) techniques can improve Krylov
methods’ performance on modern computers, where communica-
tion is becoming increasingly expensive compared to arithmetic
operations. In this paper, we extend these studies by two major
contributions. First, we present our implementation of a CA
variant of the Generalized Minimum Residual (GMRES) method,
called CA-GMRES, for solving nonsymmetric linear systems of
equations on a hybrid CPU/GPU cluster. Our performance results
on up to 120 GPUs show that CA-GMRES can give a speedup
of 2.5x in total solution time over standard GMRES on a hybrid
cluster with twelve Intel Xeon CPUs and three Nvidia Fermi
GPUs on each node. We then outline a domain decomposition
framework to introduce a family of preconditioners that are
suitable for CA Krylov methods. Our preconditioners do not
incur any additional communication and allow the easy reuse of
existing algorithms and software for the subdomain solves. Ex-
perimental results on the hybrid CPU/GPU cluster demonstrate
that CA-GMRES with preconditioning can achieve a speedup of
of 7.4x over CA-GMRES without preconditioning, and speedup
of 1.7x over GMRES with preconditioning in total solution time.
These results confirm the potential of our framework to develop
a practical and effective preconditioned CA Krylov method.

I. INTRODUCTION

On modern computers, communication is becoming in-
creasingly expensive compared to arithmetic operations. This
holds both in terms of throughput and energy consumption.
“Communication” includes data movement or synchronization
between parallel execution units, as well as data movement
between levels of the local memory hierarchy. To address
this hardware trend, researchers have been studying techniques
to avoid communication in Krylov subspace projection meth-
ods, a popular class of iterative methods for solving large-
scale sparse linear systems of equations. Effectiveness of
such communication-avoiding (CA) techniques to improve the
performance of Krylov methods has been demonstrated on
shared-memory multicore CPUs [9], on distributed-memory
CPUs [18], and on multiple graphics processing units (GPUs)
on a single compute node [16]. In this paper, we extend

these studies and show the performance of a CA variant of
the Generalized Minimum Residual (GMRES) method [12]
for solving a nonsymmetric linear system of equations on a
hybrid CPU/GPU cluster. Our performance results on up to
120 GPUs demonstrate speedups of up to 2.5x.

The CA Krylov methods were originally proposed as s-step
methods over thirty years ago [15], but they have not been
widely adopted in practice. One reason for this is that though
in practice, Krylov methods depend on preconditioning to
accelerate their convergence rate, no effective preconditioners
have been shown to work seamlessly with a CA method.
This is partially because the existing CA preconditioning
techniques revoke one of the most attractive features of
Krylov methods, namely that they require no knowledge of the
internal representation of the coefficient matrix A or of any
preconditioners. In fact, most of the existing implementations
of the Krylov methods only require two independent “black-
box” routines, one for sparse-matrix vector product (SpMV)
and the other for preconditioning (Preco). This black-box
feature makes it easy to use any exisiting algorithm or software
for Preco in the Krylov methods, and also to test a new
preconditioning technique. The CA Krylov methods introduce
a new computational kernel, matrix powers kernel (MPK),
that replaces SpMV and generates a set of Krylov subspace
basis vectors all at once [8]. Then, all the existing techniques
for preconditioning a CA method require close integration of
Preco with SpMV within MPK, violating this handy black-box
feature and making it difficult to test and develop an effective
preconditioner.

To fill this crucial gap, in this paper, we propose a domain
decomposition framework to develop an effective CA precon-
ditioning technique. Our preconditioner may be considered as
a variant of an additive Schwarz preconditioner, modified to
ensure consistent interfaces between the subdomains without
additional communication beyond what MPK already needs.
However, more importantly, since we rely on domain decom-
position, our preconditioner is not tightly coupled with SpMV.
Hence, beside adding the local solver to apply the precon-

SAND2014-3407C

ditioner, our preconditioner does not require any changes to
MPK, and it can use any existing solver or preconditioner soft-
ware package as the local solver on each subdomain. In other
words, our CA preconditioner does not force any change to the
sparse matrix’s data structure or constrain the sparsity pattern
of the subdomain solver. It thus defines a new third category
of CA preconditioning techniques. To study the proposed
framework’s performance, we combine this with CA-GMRES
on a hybrid CPU/GPU cluster. Though this is merely our
initial implementation, our experimental results on up to 30
GPUs show that CA-GMRES with preconditioning can obtain
speedups of 7.4x over CA-GMRES without preconditioning,
and speedups of 1.7x over GMRES with preconditioning.

In addition to demonstrating the potential of our framework,
our current studies illustrate the importance and the challenge
of developing such preconditioning techniques. Moreover, in
this paper, we focus on CA-GMRES because we know from
past experience [16] how to implement it efficiently and in
a numerically stable way. However, CA variants of short-
recurrence iterations like CG and BiCGSTAB spend much less
time in vector operations than CA-GMRES, and thus, our work
on an effective CA preconditioner may benefit CA versions of
other Krylov methods even more than CA-GMRES.

The rest of the paper is organized as follows. After survey-
ing related work in Section II, we first present, in Section III,
our implementation of CA-GMRES and its performance on
a hybrid CPU/GPU cluster. Then, in Section IV, we describe
our CA preconditioning framework, outline our initial imple-
mentation, and give numerical and performance results on a
hybrid cluster. Section V shows final remarks and future work.
Throughout this paper, we denote the i-th row and the j-th
column of a matrix A by ai,: and a:,j , respectively, while
Aj:k is the submatrix consisting of the j-th through the k-th
columns of A, inclusive, and A(i, j) is the submatrix consisting
of the rows and columns of A that are given by the row
and column index sets i and j, respectively. We use nnz(A)
and |A| to denote the number of nonzeros in the matrix A
and the matrix dimension, respectively. All the experiments
were conducted on the Keeneland system1 at the Georgia
Institute of Technology. Each of its compute nodes consists
of two six-core Intel Xeon CPUs and three NVIDIA M2090
GPUs, with 24GB of main CPU memory per node and 6GB of
memory per GPU. We used the GNU gcc 4.4.6 compiler and
CUDA nvcc 5.0 compiler with the optimization flag -O3,
and linked with Intel’s Math Kernel Library (MKL) version
2011 sp1.8.273 and OpenMPI 1.6.1. The test matrices used
for our experiments are listed in Figure 9.

II. RELATED WORK

Most existing CA preconditioning techniques fall into one
of two categories [8]. The first category naturally fits how
CA methods compute sparse matrix-vector products. These
include preconditioners like sparse approximate inverses with
the same sparsity structure as the matrix A, or block Jacobi

1http://keeneland.gatech.edu/KDS

and polynomial preconditioners [4], [14], [15]. For insatnce, in
block Jacobi preconditioning, each processor (or GPU) inde-
pendently solves its local problem. For a conventional Krylov
method, this block Jacobi without overlap does not require any
additional communication. However, even this is difficult to
integrate into a CA method since after Preco, each local SpMV
requires from its neighbors the preconditioned input vector el-
ements on its interface, introducing extra communication. De-
pending on the sparsity structure of the matrix, a CA method
may require significantly greater communication in order to
use block Jacobi preconditioner. See [6, Chapter 7] for an
illustration of this increasing communication requirement for
a tridiagonal matrix that would result from a finite difference
discretization of Poisson’s equation with Dirichlet boundary
conditions on a finite 1D domain. Previous authors proposed
block Jacobi preconditioner, apparently without realizing the
challenge of implementating it for a CA method. This was a
surprising result that stirred us to develop the preconditioner
framework presented in this paper.

A recently proposed CA preconditioning technique based
on an incomplete LU factorization, CA-ILU(0) [7], can be
considered as an advanced member of this first category.
Unfortunately, for some types of problems, these precondi-
tioners of this category may be only moderately effective in
improving the convergence rate or in exploiting parallelism,
or may introduce a significant overhead in computation or
communication, depending on the sparsity structure of A. For
example, the effectiveness of polynomial preconditioning, like
that proposed in [11], to reduce the iteration count tends to
decrease with the degree of the polynomial, while its compu-
tational cost increases. Though CA-ILU(0) uses special global
nested dissection ordering to limit the amount of required
communication, the authors’ experiments focus on structured
grids, while leaving the extension to unstructured meshes as
future work.

Another critical aspect of these preconditioners in the first
category is that they are still closely integrated with MPK.
Hence, these preconditioners often require significant changes
in how MPK interacts with the input vectors, and are de-
signed for specific types of preconditioners (e.g., approximate
inverse or ILU(0)). On contrary, in this paper, we provide a
framework that decouples Preco from SpMV and allows us
to use an exisiting preconditioning software as a black-box
routine for preconditioning CA methods. Finally, the second
class of exisiting CA preconditioners requires radical changes
to the representation of both the sparse matrix A and its
preconditioner, such that their off-diagonal blocks are stored
using a low rank representation. To the best of our knowledge,
there is no implementation or empirical evaluation of such CA
preconditioners. Furthermore, most users of Krylov solvers do
not wish to make such radical changes to their data structures.

III. CA-GMRES ON A HYBRID CPU/GPU CLUSTER

A. CA-GMRES Algorithm

The Generalized Minimum Residual (GMRES) method [12]
is a Krylov subspace method for solving a nonsymmetric

http://keeneland.gatech.edu/KDS

GMRES(A, M , b, m):
repeat (restart-loop)

1. Generate Krylov Basis on GPUs: ∼ O(m · nnz(|A| + |M|) + m2n) flops.

q:,1 = q:,1/‖q:,1‖2 (with x̂ = 0 and q:,1 = b, initially)
for j = 1, 2, . . . ,m do

Preconditioner (Preco) Application:
z:,j := M−1q:,j

Sparse Matrix-Vector (SpMV) Product:
q:,j+1 := Az:,j

Orthonormalization (Orth):
q:,j+1 := (q:,j+1 −Q1:jh1:j,j)/hj+1,j ,
where h1:j,j = QT

1:jq:,j+1 and
hj+1,j = ‖q:,j+1 −Q1:jh1:j,j‖2.

end for

2. Solve Projected Subsystem on CPUs: ∼ O(m2) flops.

solve the least-squares problem g = mint ‖Ht−QT b‖2
to update solution x̂ = x̂ + Z1:mg and
restart with q:,1 = b− Ax̂

until solution convergence

Fig. 1. Pseudocode of GMRES on CPU/GPU. m is the restart length.

linear system. Its solution minimizes the residual norm over
the generated projection subspace at each iteration. GMRES’
j-th iteration first generates a new basis vector by applying
the preconditioner (Preco) to the previously orthonormalized
basis vector q:,j , followed by the sparse-matrix vector prod-
uct (SpMV) with the resulting vector (i.e., z:,j := M−1q:,j

and q:,j+1 := Az:,j). Then, the new orthonormal basis
vector q:,j+1 is computed by orthonormalizing (Orth) the
resulting vector q:,j+1 against the previously orthonormalized
basis vectors q:,1,q:,2, . . . ,q:,j .

To reduce both the computational and storage require-
ments of computing a large projection subspace, users of-
ten restart GMRES after computing a fixed number m + 1
of basis vectors. Before restart, GMRES updates the ap-
proximate solution x̂ by solving a least-squares problem
g := arg mint ‖c−Ht‖, where c := QT1:m+1(b − Ax̂),
H := QT1:m+1AZ1:m, and x̂ := x̂ + Z1:mg. The matrix H ,
a by-product of the orthogonalization procedure, has upper
Hessenberg form. Hence, the least-squares problem can be ef-
ficiently solved, requiring only about 3(m+1)2 flops. For an n-
by-n matrix A with nnz(A) nonzeros, and a preconditioner M
whose application requires nnz(M) flops, SpMV, Preco, and
Orth require a total of about 2m · nnz(|A|), 2m · nnz(|M |),
and 2m3n flops over the m iterations, respectively (i.e.,
n, nnz(A), nnz(M) � m). Figure 1 shows pseudocode for
restarted GMRES.

Both SpMV and Orth require communication. This includes
point-to-point messages or neighborhood collectives for SpMV,
and global all-reduces in Orth, as well as data movement
between levels of the local memory hierarchy (for reading
the sparse matrix and for reading and writing vectors, as-
suming they do not fit in cache). Communication-Avoiding
GMRES (CA-GMRES) aims to reduce this communication
by redesigning the algorithm to replace SpMV and Orth with
three new kernels – MPK, BOrth, and TSQR – that generate
and orthogonalize a set of s basis vectors all at once. In theory,
CA-GMRES communicates no more than a single GMRES
iteration (plus a lower-order term), but does the work of s

CA-GMRES(A, M , b, s, m):
repeat (restart-loop)

1. Generate Krylov Basis on GPUs: ∼ O(m · nnz(|A| + |Mj |) + m2n) flops.

q:,1 = q1/‖q:,1‖2 (with x̂ = 0 and q:,1 = b, initially)
for j = 1, 1 + s, . . . ,m do
1.1. Matrix Powers Kernel (MPK):

for k = j + 1, j + 2, . . . , j + s do
z:,k := M−1q:,k (Preco)
q:,k+1 := Az:,k (SpMV)

end for
1.2. Block Orthonormalization (BOrth):

orthogonalize Qj+1:j+s against Q1:j
1.3. Tall-Skinny QR (TSQR) factorization:

orthonormalizing Qj+1:j+s against each other
end for

2. Solve Projected Subsystem on CPUs: ∼ O(m2) flops.

solve the least-squares problem g = mint ‖Ht−QT b‖2
to update solution x̂ = x̂ +X1:mg and
restart with q:,1 = b− Ax̂

until solution convergence

Fig. 2. Pseudocode of CA-GMRES on CPU/GPU. s is the MPK basis length
and m is the restart length.

iterations. In Section IV, we propose a preconditioning tech-
nique that can be integrated into MPK without incurring any
additional communication phases. Figure 2 shows pseudocode
for restarted CA-GMRES.

B. CA-GMRES Implementation

Our CA-GMRES implementation on a hybrid CPU/GPU
cluster extends our previous implementation on a multicore
CPU with multiple GPUs on one node [16]. Namely, to utilize
the multiple GPUs, we distribute the matrix A over the GPUs
in a 1D block row format, using a matrix reordering or graph
partitioning algorithm (see Section IV-B). The basis vectors
q1,q2, . . . ,qs+1 are then distributed in the same format. Since
CA-GMRES’ computational cost is typically dominated by the
first step of generating the basis vectors, we accelerate this
step with distributed GPUs, while the second step of solving
the least squares problem is redundantly performed by each
MPI process on CPU. On a hybrid CPU/GPU cluster with
multiple GPUs on each node, a single MPI process can manage
multiple GPUs on the node in order to combine or avoid the
MPI communication to the GPUs on the same node.

C. Orthogonalization Kernels

In our previous study [16], we investigated the performance
of several orthogonalization procedures for multiple GPUs
on a single compute node. In that study, in most cases,
CA-GMRES obtained the best performance using classical
Gram-Schmidt (CGS) [1] and Cholesky QR (CholQR) [13] for
BOrth and TSQR, respectively. Hence, in this paper, we use
CGS-based BOrth and CholQR-based TSQR for distributed
GPUs as well.

In CholQR, each GPU first computes the block dot products
of its local vectors (i.e., B(d) := Q

(d)T
1:s+1Q

(d)
1:s+1), using the

optimized GPU kernels developed in [16], [17], and asyn-
chronously copies the result to its MPI process. Second, the
MPI process accumulates the results of its local GPUs, and
computes the Gram matrix via a global MPI all-reduce (i.e.,

Q
~100,000

:=

B
T

R R

Step 1: Block dot−products Step 2: Cholesky factorization Step 3: Triangular solve

R
−1

Q Q

:=~10 :=

B

~100,000~10

Q
T

Fig. 3. Illustration of CholeskyQR Orthogonalization Process.

δ
(d,2)

δ
(d,1)

δ
(d,–1)

δ
(d,−2)

(a) Adjacency Graph of Local Submatrix. (b) Local Submatrix.

Fig. 4. Illustration of Extending and Sorting a Local Matrix for MPK.

B =
∑
d=1,...,ng

B(d)). Third, each MPI process redundantly
computes the Cholesky factorization of the Gram matrix on
the CPUs (i.e., RRT := B), and broadcasts the Cholesky
factor R to its local GPUs. Finally, each GPU orthogonalizes
the local part of the basis vectors through a triangular solve
(i.e., Q(d)

1:s+1 := Q
(d)
1:s+1R

−1). Figure 3 illustrates this process.
We implement CGS similarly.

D. Matrix Powers Kernel

Our implementation reorders the rows of the local sub-
matrix Ā(d) on the d-th GPU in descending order of their
edge distances from the subdomain boundary in the adjacency
graph of A. We then expand the local submatrix to include
the nonlocal entries that are ` edges away from the local
matrix for ` = 1, 2, . . . , s. More specifically, let δ(d,−`) be the
set of the local vertices whose shortest path from a nonlocal
vertex is of length `, while δ(d,`) is the set of the nonlocal
vertices whose shortest path from a local vertex is of length `
(see Figure 4 for an illustration). We refer to δ(d,−`) and
δ(d, `) as the `-level underlap and overlap, respectively, of the
d-th subdomain. Then, the d-th GPU owns its extended local
submatrix Ā(d,s) = A(i(d,s), :), where i(d,s) =

⋃
`≤s δ(d,`) and

the row index set i(d,s) is sorted such that those row indexes in
δ(d,`) with a smaller ` come first. For example, in Figure 4, we
store the block rows of the local submatrix, that are colored
in black, red, green, blue, and then orange in that order.

When applying MPK, each GPU first exchanges all the
required vector elements to compute s matrix powers with
its neighboring GPUs. Then, for k = 1, 2, . . . , s, each GPU
computes the k-th matrix power by independently invoking
Preco and SpMV with the k-th extended local matrix Ā(d,`),
where ` = s−k+1, without further inter-GPU communication
(see Step 1.1 in Figure 2). Before the iteration to compute the
matrix powers, the required vector elements must be commu-

Setup: exchange elements of q
(d)
:,1 to form q

(d,s)
:,1

// GPU-to-CPU communication, using CUDA
for each local d-th GPU do

compress elements of q
(d)
:,1 needed by other GPUs into w(d)

asynch-send of w(d) to this MPI process
end for
for each local d-th GPU do

wait and expand w(d) into a full vector w on CPU
end for
// CPU-to-CPU communication, using MPI
for each non-local d-th GPU do

if any of local elements is needed by d-th GPU then
compress elements of w required by d-th GPU into w(d)

asynch-send of w(d) to the MPI process owning d-th GPU
end if
if any local elements of d-th GPU is needed by local GPUs then

asynch-receive from the MPI owning d-th GPU into z(d)

end if
end for
for each non-local d-th GPU do

wait and expand z(d) into a full vector z on CPU
end for
// CPU-to-GPU communication, using CUDA
for each local d-th GPU do

compress elements of z required by d-th GPU into z(d)

asynch-send z(d) to d-th GPU
copy the local vector q

(d)
:,1 into q

(d,s)

i(d,0),1

expand z(d) into a full vector q
(d,s)
:,1

end for

Matrix Powers: generate q
(d)
:,2 ,q

(d)
:,3 , . . . ,q

(d)
:,s+1

for k = 1, 2, . . . , s do
` := s− k + 1
for d = 1, 2, . . . , ng do

Preco: compute z
(d,`)
:,k

:= (R(d,`))T (M(d))−1(R(d,`))q
(d,`)
:,k

SpMV: compute q
(d,`−1)
:,k+1

:= (R(d,`−1))T Ā(d,`)(R(d,`))z
(d,`)
:,k

end for
end for
———————————————————————————————–
Notation used for MPK:
δ(d,s) : nonlocal vertices that are s edges away
δ(d,1:s) : s-level overlap, i.e.,

⋃
`=1,2,...,s

δ(d,`)

i(d,s) : s-level row index set, i.e.,
⋃

`≤s
δ(d,`)

Ā(d,s) : s-level extended local submatrix, i.e., Ā(d,s) = A(i(d,s), :)

Ā(d), : local submatrix on d-th GPU, i.e., Ā(d,0)

A(d,s) : s-level diagonal block, i.e., A(d,s) = A(i(d,s), i(d,s))

R(d,s) : restriction from global domain to s-level local subdomain

Fig. 5. Pseudocode of Matrix Powers Kernel, MPK(s, q:,1), where s is the
number of basis vectors that MPK generates.

nicated among GPUs distributed over different MPI processes.
To this end, each GPU first packs its local vector elements that
are needed by the neighboring GPUs into a buffer, which is
then asynchronously copied to the CPU. Once the MPI process
receives the message from its GPU, it expands it into a full-
length vector. After expanding the messages from all the local
GPUs, the MPI process packs the vector elements required by
another GPU into a single message, and asynchronously sends
it to the corresponding MPI process. Finally, when the MPI
process receives a message from another process, it expands
the messages into a full-length vector, and after expanding all
the messages, it packs and copies the required elements to
its GPUs, which then expand the packed elements into their

1 12 24 36 48 60 72 84 96 108 120
0

4

8

12

16

20

24

28

32

36

40

44

48

52

Number of GPUs

S
p
e
e
d
u
p

CA−GMRES(5,15,30), 1GPU/MPI

CA−GMRES(5,15,30), 3GPUs/MPI

GMRES(30)

Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on Distributed
GPUs (over GMRES on one GPU), for the G3_Circuit matrix.

full-length vectors (see Figure 5 for the pseudocode).2

Our implementation of CA-GMRES can use different values
of the step size s for MPK, and for the orthogonalization
kernels BOrth and TSQR [17]. This often improves the per-
formance of CA-GMRES, because with a larger value of s,
MPK adds computational and storage overheads, and may
potentially increase communication volume. As a result, the
optimal value of s for MPK may be smaller than the optimal s
for BOrth or TSQR. This has been also observed in [9],
where in some cases, MPK’s optimal step size was one. In
addition, as we will discuss in Section IV, the quality of our
CA preconditioner can degrade with a larger value of s. It
thus becomes critical to use a relatively small s for Preco,
especially with a large number of subdomains, or equivalently
on a large number of GPUs. Hence, our implementation of
CA-GMRES(s, ŝ,m) can take three input parameters, where
s and ŝ are the step sizes used for MPK and for BOrth
and TSQR, respectively, and m is the restart length. The
special case of s = 1 means that CA-GMRES does not
need a specialized MPK implementation; it merely uses the
standard matrix-vector multiply and preconditioner applica-
tion, and relies on CA-GMRES’ orthogonalization kernels for
performance improvements over GMRES. This is a reasonable
strategy for long-recurrence Krylov solvers like GMRES, but
CA variants of short-recurrence methods like CG will likely
need an optimized MPK, since they spend much less time in
inner products.

E. Performance Studies

Figure 6 compares the parallel strong scaling performance
of GMRES and CA-GMRES by showing their total solution
time speedups over the time required by GMRES on one GPU
for the G3_Circuit matrix. The matrix A is distributed
among the GPUs such that each GPU has about an equal
number of rows after the reverse Cuthill-McKee (RCM) or-
dering is applied [5] (see Section IV-C for more detailed
experimental setups, except the greater stopping criteria of

2Since we typically have more CPU cores than GPUs on a node, Pthreads
are used to process the messages from multiple GPUs in parallel. The GPUs
on the same node communicate without using MPI.

Method No. of GPUs 6 12 24 48
GMRES(30) No. of Restarts 39 35 130 79

Time (s) 3.51 3.13 10.60 10.54
CA-GMRES(1, 30) No. of Restarts 39 35 131 79

Times (s) 2.10 1.59 7.55 7.77
Speedup 1.60 1.97 1.40 1.36

Fig. 7. Parallel Weak Scaling Performance Studies for the brick matrices,
starting with n = 1M on 6 GPUs to n = 8M on 48 GPUs using 3GPUs/MPI.

10−8 is used here). CA-GMRES obtained the average and
maximum speedups of 2.06 and 2.53 over GMRES on the
same number of GPUs, respectively. The speedup leveled off
around 60 GPUs because the local submatrix became too
small for the GPU to obtain any strong scaling speedup. We
expect that on a larger number of compute nodes, the MPI
communication becomes more dominant, and the speedups
obtained by avoiding the communication will increase [18].
The figure also shows the performance of CA-GMRES that
launches one MPI process on each node and lets each process
manage the three local GPUs on the node. At least in our
experiments, the overhead of each MPI to manage multiple
GPUs (e.g., sequentially launching GPU kernels on multiple
GPUs) outweighed the benefit of avoiding the intra-node MPI
communication, for which many MPI implementations are
optimized. Hence, for the rest of the paper, unless otherwise
specified, we use one MPI process to manage a single GPU.

Figure 7 shows the parallel weak scaling performance of
GMRES and CA-GMRES, where the matrix dimension is
increased linearly with the number of GPUs, staring from
1, 035, 351 on 6 GPUs. To accomodate the large CPU memory
usage during setup, we lauched one MPI per node, which
manage three GPUs on the node, on 48 GPUs. The brick
matrices come from the discretization of the Poisson’s equa-
tion with Dirichlet boundary conditions on a 3-D brick-shaped
mesh, in which the number of elements in two dimensions
are fixed. The third dimension has four different types of
material blocks, two of which have the element sizes graded.
Note that while problem size increases, the difficulty of the
problem varies depending on the dimension that was scaled
up. This results in the difference in the number of restarts as
we increase the problem size. Again, CA-GMRES provided
better weak scaling than GMRES on this hybrid CPU/GPU
cluster.

IV. CA DOMAIN DECOMPOSITION PRECONDITIONERS

A. CA-Preconditioning Framework

As discussed in Section I, it is difficult to introduce
preconditioning in CA Krylov methods. Instead of forming
the basis vectors for the Krylov subspace Kk(A,q:,1) =
span{q:,1, Aq:,1, . . . , A

kq:,1} = span{q:,1,q:,2, . . . ,q:,k+1},
we must generate the basis vectors for the preconditioned sub-
space Kk(M−1A,q:,1) or Kk(AM−1,q:,1) (left or right pre-
conditioning, respectively). The challenge is that to compute
the local product with the k-th matrix power, each processor
(or GPU) needs to know not only its local elements of the input
vector at i(d,0) but also those at the `-level overlap δ(d,1:`),
where ` = s−k+1 (for k = 1, 2, . . . , s). Therefore, additional

Interior of
subdomain 0

Interior of
subdomain 1

s level underlap,
relative to
subdomain 0

s level overlap,
relative to
subdomain 0

Fig. 8. Matrix Partitioning for the CA Preconditioner for two subdomains.
The underlap and the overlap relative to subdomain 0 are shown.

communication is needed, if when applying the preconditioner
(i.e., z:,k := M−1q:,k), the action of M−1 to generate these
vector elements of z:,k at i(d,`) requires any element of the
input vector q:,k aside from those at the row index set i(d,`),
where i(d,`) = i(d,0)

⋃
δ(d,1:`).

A simple preconditioner that works for CA methods is a
diagonal preconditioner. For this, the d-th processor (or GPU)
only needs to know the diagonals of the local submatrix and
the s-level overlap, i.e., diag(A(d,s)). This requires only small
computational and storage overheads, but may only reduce the
iteration count moderately. Real applications often prefer other
types of preconditioners that have higher overheads but are
more effective in reducing the iteration count. These include
preconditioners based on domain decomposition or multigrid.
We focus on domain decomposition preconditioners since they
are local in nature and are well suited for parallel computing.

We now describe our communication avoiding domain de-
composition preconditioners. As explained in Section II, it is
difficult to integrate into a CA method even a block Jacobi
preconditioner, where each processor (or GPU) independently
applies Preco by solving its local problem associated with
the local diagonal block A(d). This is because after the
preconditioner is applied, each local SpMV requires from
its neighbors the preconditioned input vector elements on
the overlaps, introducing extra communication. To avoid this
additional communication, we “shrink” the diagonal blocks
to make them disjoint from the s-level overlaps. To define
our preconditioners, recall our notations in Section III-D; in
the view of the d-th subdomain, the distance-s neighbors of
the vertices in the graph of A is the s-level overlap δ(d,s),
while the set of local vertices distance-s away from a non-
local vertex is the s-level underlap δ(d,−s). To simplify
our notation, when it is clear from the context, we use
i(−s−1) and δ(`1:`2) to represent i(d,−s−1) and δ(d,`1:`2), where
i(d,−s−1) =

⋃
`≤−s−1 δ(d,`) and δ(d,`1:`2) =

⋃
`1≤`≤`2 δ(d,`).

Then, the square s-level extended local submatrix A(d,s) has
the following block structure:

(
A(i(−s−1), i(−s−1)) A(i(−s−1), δ(−s:−1))
A(δ(−s:−1), i(−s−1)) A(δ(−s:−1), δ(−s:−1)) A(δ(−s:−1), δ(1:s))

A(δ(1:s), δ(−s:−1)) A(δ(1:s), δ(1:s))

)
.

The global view of A(d,s) for two subdomains is shown in
Figure 8. Given |A| = n and

∣∣A(d,0)
∣∣ = n(d,0), we define the

standard rectangular n-by-n(d,0) extension matrix (R(d,0))T

with zeros and ones, which extends by zero the local vector
associated with vertices of the local submatrix A(d,0) to form
a global vector. The corresponding s-step variant (R(d,s))T

is defined in the same fashion. Correspondingly, R(d,s) is
the restriction matrix that restricts a vector from the global
domain to the s-level local subdomain. With that notation,
the restricted additive Schwarz preconditioner [3] with s-level
overlap becomes:

M−1
RAS =

ng∑
d=1

((R(d,0))T)(A(d,s))−1(R(d,s)),

where ng is the number of the non-overlapping subsets of the
row index set of A (i.e., the number of subdomains or GPUs).
By varying the amount of overlap at each iteration, we obtain
a sequence of s different preconditioners that we refer to as
the s-step preconditioner; at the k-th iteration, we have

(M (k)
RAS)−1 =

ng∑
d=1

((R(d,0))T)(A(d,`))−1(R(d,`)),

where ` = s − k + 1 for k = 1, 2, . . . , s. This is similar
to the restricted additive Schwartz preconditioner. However,
the s-step preconditioner changes at each iteration, shrink-
ing both its underlap and overlap to match with the ex-
tended local submatrix of MPK. While the restriction operator
changes accordingly, the extension operator uses the same non-
overlapping extension operator allowing unique updates from
the sub-domains. It is easy to see that in the special case of
s = 0, the s-step preconditioner reduces to the block Jacobi
preconditioner.

In order to use the above framework as a stationary precon-
ditioner for CA-GMRES, we need to provide a consistent view
of the preconditioner both across subdomains (for correctness)
and across iterations (for being stationary). To be consistent
across subdomains, in our implementation, we consider only
the diagonal blocks of A(d,s) and use diagonal preconditioning
for the two diagonal blocks A(δ(−s:−1), δ(−s:−1)) on the
underlap and A(δ(1:s), δ(1:s)) on the overlap. Then, to be
consistent across iterations, we use a constant underlap s.
Hence, at the k-th iteration, our underlap preconditioner is
defined as

(M (k)
UN)−1 =

ng∑
d=1

((R(d,0))T)(Â(d,`))−1(R(d,`)),

where ` = s− k + 1 for k = 1, 2, . . . , s, and

Â(d,`) =
(

A(i(−s−1), i(−s−1))

diag(A(δ−s:`), δ(−s:`)))

)
.

The restriction operator still shrinks the overlap to work
effectively with CA-GMRES without incurring any additional
communication cost.

Name Source n nnz/n

G3 Circuit UF Collection 1, 585, 478 4.8
PDE 1M(α) Trilinos 1, 030, 301 26.5
PDE 10M(α) Trilinos 10, 218, 313 26.8
brick n Trilinos ∼ n ∼ 25

Fig. 9. Test Matrices.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
10

0
10

8
10

16
10

24
10

32
10

40
10

48
10

56
10

64
10

72

No Preconditioner

Step

C
o
n
d
it
io

n
 N

u
m

b
e
r

CA−GMRES(5,10,30), monomial

CA−GMRES(5,10,30), equil, monomial

CA−GMRES(5,10,30), equil, Newton

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
10

0
10

8
10

16
10

24
10

32
10

40
10

48
10

56
10

64
10

72

Underlapping Preconditioner

Step

C
o
n
d
it
io

n
 N

u
m

b
e
r

CA−GMRES(1,10,30), monomial

CA−GMRES(5,10,30), equil, monomial

CA−GMRES(5,10,30), equil, Newton

Fig. 10. Condition Number of Gram Matrix, G3_Circuit matrix, 6 GPUs.

In summary, our underlap preconditioner is a special case
of the s-step domain decomposition preconditioner outlined
above. Since we use diagonal preconditioners for both the
underlap and overlap regions, an equivalent formulation of the
local preconditioner M

(d,s)
UN corresponding to Â(d,s) is

M
(d,s)
UN =

(
A(i(−s−1), i(−s−1))

diag(A(δ(−s:−1), δ(−s:−1)))

)
.

One may use any traditional local subdomain preconditioner
for an inexact solution of A(i(−s−1), i(−s−1)), including in-
complete factorizations or a fixed number of iterations of a sta-
tionary method such as Jacobi or Gauss-Seidel. This formula
defines the preconditioner’s action on each local subdomain.
In addition, at the k-th iteration, each processor redundantly
computes the diagonal preconditioner’s action on the `-level
overlap δ(1:`) in a shrinking fashion. Mathematically, the
preconditioner is fixed; it does not change across iterations.

B. Experimental Setup

We tested two matrix reordering algorithms to distribute the
matrix A among the GPUs: reverse Cuthill-McKee (RCM) [5]
from HSL3, and k-way graph partitioning (KWY) from
METIS4. With RCM, after reordering, we distribute the matrix
so that each GPU has about an equal number of rows. As the
local solver for our underlapping preconditioner, we investi-
gated stationary iterative methods (Jacobi or Gauss-Seidel),
the level or drop-tolerance based incomplete LU factorization,
ILU(k) or ILU(τ), respectively, of ITSOL5, and the sparse
approximate inverse (SAI) of ParaSails6. Each MPI process

3http://www.hsl.rl.ac.uk/catalogue/mc60.xml
4http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
5http://www-users.cs.umn.edu/∼saad/software/ITSOL/index.html
6http://computation.llnl.gov/casc/parasails/parasails.html

5 10 15 20 25 30 35 40 45
10

−12

10
−9

10
−6

10
−3

10
0

Number of Restarts

R
e

la
ti
v
e

 R
e

s
id

u
a

l
N

o
rm

GMRES

GMRES+block Jacobi

GMRES+overlap (s=1)

GMRES+overlap (s=2)

GMERS+underlap (s=1)

GMRES+underlap (s=2)

CA−GMRES+underlap (s=1)

CA−GMRES+underlap (s=2)

(a) PDE_1M(0.0) matrix, with restart = 20.

10 20 30 40 50 60 70 80 90 100 110 120
10

−12

10
−9

10
−6

10
−3

10
0

Number of Restarts

R
e

la
ti
v
e

 R
e

s
id

u
a

l
N

o
rm

GMRES

GMRES+block Jacobi

GMRES+overlap (s=1)

GMRES+overlap (s=3)

GMERS+underlap (s=1)

GMRES+underlap (s=2)

CA−GMRES+underlap (s=1)

CA−GMRES+underlap (s=2)

(b) G3_Circuit matrix, with restart = 30.

Fig. 11. Solution Convergence, using Different Domain Decomposition
Preconditioners with Local ILU(0)’s on 6 GPUs.

independently computes its local preconditioner on the CPU
and copies it to the GPU. Then, at each iteration, the MPI
process applies the preconditioner (Preco) using cuSPARSE’s
sparse-matrix vector multiplies or sparse triangular solves in
the Compressed Sparse Row (CSR) matrix storage format.
It performs sparse matrix-vector multiplies (SpMV) with the
matrix A using our own GPU kernel in the ELLPACKT
format [16]. We consider the computed solution to have
converged when the residual `2-norm is reduced by at least
twelve orders of magnitude.

Figure 9 shows the properties of the test matrices used for
our experiments. The G3_Circuit matrix comes from a
circuit simulation problem. Such matrices are difficult to pre-
condition; doing so effectively is current research. The “PDE”
problem comes from a scaling example in the TrilinosCou-
plings package of the Trilinos library. It arises from discretiz-
ing Poisson’s equation with Dirichlet boundaries on a cube Ω,
using a regular hexahedral mesh. The PDE is div(T∇u) = f
in Ω, u = g on ∂Ω, where T is a 3-by-3 material tensor,
and f and g are given functions. Discretizing results in a
linear system Ax = b, which is symmetric as long as T is.

We set T =

 1 0 α
0 1 0
α 0 1

 and control the iteration count by

varying α. When α = 0, the problem takes few iterations.
As α approaches 1, the problem takes more. For α > 1, the

http://www.hsl.rl.ac.uk/catalogue/mc60.xml
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www-users.cs.umn.edu/~saad/software/ITSOL/index.html
http://computation.llnl.gov/casc/parasails/parasails.html

5 10 15 20 25 30 35 40 45
10

−12

10
−9

10
−6

10
−3

10
0

Number of Restarts

R
e

la
ti
v
e

 R
e

s
id

u
a

l
N

o
rm

No local solve

ILU(0)

SAI(0)

Jacobi(20)

Jacobi(30)

Jacobi(40)

Gauss−Seidel(10)

Gauss−Seidel(20)

Gauss−Seidel(30)

(a) CA-GMRES(1, 20), for the PDE_1M(0.0) matrix.

5 10 15 20 25 30 35 40 45
10

−12

10
−9

10
−6

10
−3

10
0

Number of Restarts

R
e

la
ti
v
e

 R
e

s
id

u
a

l
N

o
rm

No local solve

ILU(0)

SAI(0)

Jacobi(30)

Gauss−Seidel(10)

Gauss−Seidel(20)

Gauss−Seidel(30)

(b) CA-GMRES(2, 20), for the PDE_1M(0.0) matrix.

Fig. 12. Solution Convergence, using Different Local Solvers for an
Underlapping Preconditioner on 6 GPUs.

matrix A is no longer positive definite. We present results for
different values of α.

To enhance CA-GMRES’ numerical stability, before solv-
ing, we equilibrate A and b [8]. That is, we first scale its rows,
and then its columns, by their∞-norms. We also use a Newton
basis q:,k+1 = (AM−1−θkI)q:,k, where the shifts θk are the
eigenvalues of the first restart’s Hessenberg matrix H , in a Leja
order [2]. Figure 10 shows the condition number of the Gram
matrices generated during CholQR for the G3_Circuit ma-
trix. These condition numbers are the square of the condition
numbers of the basis vectors generated by MPK (see Section
III-C). The figure shows that equilibration, using the Newton
basis, and preconditioning all contribute to improve these
condition numbers. While in our experiments, we used the
same basis step size s and orthogonalization parameters for
testing CA-GMRES with and without preconditioning, we
could potentially use a larger s or omit reorthogonalization
when preconditioning. This may significantly increase the
benefit of preconditionig. To maintain orthogonality, in all of
our experiments, we always orthogonalize the basis vectors
twice.

C. Convergence Studies with a Fixed GPU Count

Figure 11 compares convergence with respect to the relative
residual norm ‖b−Ax̂‖2/‖b‖2, using different precondition-
ers on six GPUs, where the local solver is level-based ILU(0).

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

200

400

600

800

1000

1200

1400

1600

1800

Number of GPUs

N
u

m
b

e
r

o
f

R
e

s
ta

rt
s

GMRES(30)

CA−GMRES(4,8,30)

CA−GMRES(4,10,30)

CA−GMRES(1,1,30), precond

CA−GMRES(1,8,30), precond

CA−GMRES(1,10,30), precond

(a) Number of Restarts.

1 3 6 9 12 15 18 21 24 27 30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Number of GPUs

S
p

e
e

d
u

p
s

CA−GMRES(4,8,30)

GMRES(30)

CA−GMRES(1,8,30), precond

(b) Average Restart Time (over CA-GMRES on One GPU).

Fig. 13. Parallel Strong Scaling Performance on Distributed GPUs of CA-
GMRES using an Underlapping Preconditioner with Local ILU(0)’s, for the
G3_Circuit matrix.

For instance, for the PDE matrix in Figure 11(a), as expected,
a larger overlap reduced the number of iterations required for
the solution convergence, while a larger underlap increased it.
However, either an overlap or underlap preconditioner signif-
icantly reduced the iteration count. In addition, CA-GMRES’
convergence matches that of GMRES. For the G3_Circuit
matrix, Figure 11(b) shows similar results, but for this more
ill-conditioned system, the reduction in the iteration count was
much greater.

Figure 12 shows convergence, when we used different local
solvers in combination with our underlapping preconditioner
on six GPUs. For instance, we considered Jacobi iteration as
a local solver, because on both CPUs and (esp.) GPUs, the
sparse triangular solve that ILU requires is often much slower
than the SpMV that MPK or Jacobi uses (see Section IV-D).
Unfortunately, even for this relatively well-conditioned system,
in order to match ILU(0)’s convergence, the s = 1 case
required many Jacobi iterations, and it did not converge when
s = 2. Even though it needed fewer Gauss-Seidel iterations,
the iteration count was still large, especially considering that
each Gauss-Seidel iteration performs a (forward) triangular
solve. Only the sparse approximate inverse (SAI) was com-
petitive with ILU(0) on this small number of GPUs. However,
SAI may not be effective on a larger number of GPUs, or for
an ill-conditioned system such as the G3_Circuit matrix.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of GPUs

T
im

e
 (

s
)

Others

BOrth+TSQR

Preco, ILU(0)

MPK(+Setup)

(a) Breakdown of Average Restart Time, CA-GMRES(1, 8, 30).

1 3 6 9 12 15 18 21 24 27 30
0

0.5

1

1.5

2

2.5

3

Number of GPUs

S
p

e
e

d
u

p
s

CA−GMRES(1,8,30), precond

CA−GMRES(4,8,30)

GMRES

(b) Total Solution Time Speedup (over CA-GMRES).

Fig. 14. Parallel Strong Scaling Performance on Distributed GPUs of GM-
RES, CA-GMRES, and CA-GMRES using an Underlapping Preconditioner
with Local ILU(0)’s, for the G3_Circuit matrix.

D. Parallel Scaling Studies

We first examine the performance of our underlapping pre-
conditioner for the G3_Circuit matrix. This is a relatively
ill-conditioned system and a sparse approximate inverse is not
an effective preconditioner for this problem. Hence, we used
ILU(0) as our local solver. The performance of the sparse
triangular solver of cuSparse depends strongly on the sparsity
pattern of the triangular factor [10]. For our experiments,
we first used a k-way graph partitioning to distribute the
matrix among the GPUs, and each local submatrix is then
reordered using a nested dissection algorithm. We have ob-
served that the performance of the triangular solver can be
significantly improved using the nested dissection ordering
(e.g., a speedup of 1.56). Figure 14(a) shows the breakdown
of the average time spent in one restart loop. Even with the
nested dissection ordering, though Preco and MPK perform
about the same number of floating-point operations, Preco
required significantly longer time since the triangular solution
is inherently serial (e.g., by a factor of 4.67, where MPK
includes the setup time). As a result, Figure 13(b) shows
that the time per iteration of CA-GMRES was significantly
longer when the underlap preconditioner was used (e.g., by
a factor of 3.41) when compared with the time per iteration
of unpreconditioned CA-GMRES. However, as Figure 13(a)

1 3 6 9 12 15 18 21 24 27 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of GPUs

T
im

e
 (

s
)

Others

Ortho

Preco, SAI(0)

MPK(+Comm.)

(a) Breakdown of Average Restart Time, CA-GMRES(1, 10, 60).

1 3 6 9 12 15 18 21 24 27 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Number of GPUs

S
p

e
e

d
u

p
s

CA−GMRES(1,10,60), precond

CA−GMRES(2,10,60)

GMRES

(b) Total Solution Time Speedup (over CA-GMRES).

Fig. 15. Parallel Strong Scaling Performance on Distributed GPUs of GM-
RES, CA-GMRES, and CA-GMRES using an Underlapping Preconditioner
with Local SAI(0)’s, for the PDE_1M(1.0275) matrix.

shows, the preconditioner significantly reduced the iteration
count, and as Figure 14(b) shows, the total solution time was
also greatly reduced using the preconditioner (e.g., by a factor
of 2.95). Figure 16 shows the detailed performance results
including the time and iteration count for the G3_Circuit
matrix on up to 30 GPUs.

Compared to the G3_Circuit matrix, our PDE matrices
are relatively well-conditioned, and SAI(0) is often effective
as the local solver. Figure 15(a) shows the average breakdown
of the restart loop time for the PDE problem. The time
to apply the SAI(0) preconditioner was about the same as
that of SpMV with the local submatrix and was significantly
shorter than that of the sparse triangular solve required by
ILU(0) (see Figure 14(a)). This can be seen from the relatively
shorter preconditioner apply times. As a result, compared with
Figure 14(b) for the G3_Circuit matrix, Figure 15(b) shows
greater speedups obtained using the underlap preconditioner
for the PDE matrices (e.g., by a factor 7.4). Figure 17 shows
the detailed performance profiles with different PDE matrices
both in terms of the size and in terms of difficulty to solve,
on up to 27 GPUs. The PDE_1M(0.0) matrix is positive
definite, while the PDE_1M(1.0275) matrix is indefinite.
In order to accelerate the converge for this indefinite problem,
compared to m = 20 used for α = 0.0, a larger restart

Number of GPUs 1 3 6 9 12 15 18 21 24 27 30
GMRES(30) 326 (813) 168 (1212) 73 (1001) 53 (1033) 48 (1159) 31 (889) 19 (601) 19 (680) 22 (840) 17 (713) 15 (669)
CA-GMRES(6, 30) 347 (1026) 116 (995) 142 (2257) 44 (1001) 26 (712) 29 (970) 23 (860) 25 (1027) 19 (823) 25 (1154) 19 (939)
CA-GMRES(8, 30) 202 (691) 89 (884) 39 (722) 42 (1131) 25 (795) 20 (774) 14 (602) 19 (947) 16 (824) 12 (665) 14 (773)
CA-GMRES(10, 30) 183 (760) 96 (1155) 45 (1011) 34 (1094) 17 (649) 22 (1007) 13 (640) 16 (918) 12 (739) 10 (627) 12 (776)
CA-GMRES(1, 1, 30)+ILU(0) 316 (158) 126 (183) 70 (187) 44 (169) 46 (212) 35 (194) 26 (167) 23 (159) 18 (136) 21 (160) 30 (233)
CA-GMRES(1, 8, 30)+ILU(0) 105 (162) 40 (175) 25 (201) 15 (167) 15 (197) 11 (166) 8 (139) 8 (150) 8 (151) 9 (187) 11 (211)
CA-GMERS(1, 10, 30)+ILU(0) 85 (143) 39 (187) 18 (154) 15 (173) 18 (249) 13 (217) 10 (200) 9 (174) 7 (156) 9 (190) 11 (225)

Fig. 16. Total Solution Time in Seconds (Number of Restarts), using an Underlapping Preconditioner with Local ILU(0)’s, and a Global k-way Partition
and a Local Nested Dissection Ordering, for the G3_Circuit matrix. The seconds are rounded to the nearest integer.

Number of GPUs 1 3 9 15 21 27 1 3 9 15 21 27

GMRES(20) 11 (41) 3.22 (41) 1.37 (41) 1.04 (41) 0.98 (41) 0.92 (41) 2911 (2558) 847 (2449) 364 (2726) 228 (2492) 195 (2676) 164 (2566)
GMRES(20)+SAI(0), s = 1 7 (17) 1.84 (16) 0.82 (18) 0.67 (20) 0.63 (23) 0.55 (22) 686 (463) 130 (292) 66 (400) 40 (353) 28 (318) 21 (278)
CA-GMRES(2, 10, 20) 8 (41) 2.29 (41) 1.00 (41) 0.81 (41) 0.61 (41) 0.59 (41) 1780 (2558) 496 (2449) 227 (2726) 149 (2492) 127 (2676) 109 (2566)
CA-GMRES(1, 10, 20)+SAI(0) 6 (17) 1.56 (16) 0.68 (18) 0.55 (20) 0.51 (23) 0.43 (22) 493 (463) 97 (312) 55 (462) 21 (259) 24 (377) 20 (359)

(a) PDE_1M(0.0) (left, m = 20) and PDE_1M(1.0275) (right, m = 60) matrices.

Number of GPUs 3 9 15 21 27 3 9 15 21 27

GMRES(40) 81 (44) 29 (44) 19 (44) 16 (44) 13 (44) 126 (68) 45 (68) 28 (68) 22 (68) 18 (68)
GMRES(40)+SAI(0), s = 1 49 (19) 17 (19) 11 (20) 9 (21) 7 (22) 82 (32) 29 (33) 15 (28) 14 (35) 11 (35)
CA-GMRES(2, 10, 40) 55 (44) 21 (44) 14 (44) 11 (44) 10 (44) 86 (68) 31 (68) 20 (68) 15 (68) 14 (68)
CA-GMRES(1, 10, 40)+SAI(0) 39 (19) 13 (19) 9 (20) 7 (21) 6 (22) 65 (32) 23 (33) 12 (28) 11 (35) 9 (35)

(b) PDE_10M(0.0) (left) and PDE_10M(1.0) (right) matrices.

Fig. 17. Total Solution Time in Seconds (Number of Restarts), using an Underlapping Preconditioner with Local SAI(0)’s and a Global k-way Graph
Partitioning, for the PDE matrices. Seconds are rounded to the nearest integer for clarity where appropriate.

length of m = 60 was used when α = 1.0275. In order
to accomodate the large CPU memory required for set up
with the PDE_10M matrices, we launched one MPI per node,
which managed three GPUs on the node. The figure also shows
that CA-GMRES with underlap preconditioner improves the
performance over GMRES with the same preconditioner (e.g.,
by a factor of 1.7). We expect that this improvement will
increase on a computer where the communication between the
parallel processes or threads is more dominant and for larger
problem sizes.

We emphasize that the matrix A’s distribution over the
GPUs not only affects CA-GMRES’ performance (e.g., stor-
age, computation, and communication overheads associated
with s-step overlap), but it also determines the preconditioner’s
effectiveness (e.g., the size of the s-step underlap). For the
PDE matrices presented here, we distributed the matrix over
GPUs using k-way graph partitioning. In contrast, when we
used RCM ordering, both overlap and underlap sizes increased
quickly with the number of subdomains. As a result, even on
few (e.g., 21) GPUs, some underlaps extended all the way
inside the local subdomains, and the local preconditioners
became diagonal scaling. Hence, on a larger number of sub-
domains, not only did the computational and communication
overheads of CA-GMRES increase, but also the number of
iterations increased quickly. This led to a quick reduction in
speedups gained using the underlap preconditioner on a larger
number of GPUs.

V. CONCLUSION

This paper presents our implementation of CA-GMRES
on a hybrid CPU/GPU cluster and demonstrates speedups of
2.5x over standard GMRES on up to 120 GPUs. We also
proposed a novel framework based on domain decomposition
to precondition CA Krylov methods, which allowed us to

use existing software libraries for local preconditioning. Even
when our implementation of this framework used simple
ILU(0) and SAI(0) preconditioners to solve on each GPU’s
domain, the number of GMRES iterations was greatly reduced.
As a result our preconditioned CA-GMRES achieved a 7.4x
speedup in total solution time over CA-GMRES and a 1.7x
speedup in total solution time over preconditioned GMRES
on a GPU cluster. This showed the proposed framework’s
potential for effectively preconditioning CA Krylov methods.
We continue to explore ways to improve our framework’s
performance. For instance, since the same parameter s is used
for the basis size in MPK and the subdomain underlap in
Preco, there is a trade-off between reducing communication
and increasing the iteration count as s varies. To address this
issue, we are investigating other techniques to precondition
the underlap or overlap regions, and a more flexible way of
preconditioning the CA methods. We are also working to
improve the performance of our CA-GMRES on a hybrid
CPU/GPU cluster by exploiting both CPUs and GPUs, and
by adaptively adjusting parameters such as the step size.

ACKNOWLEDGMENTS

This research was supported in part by U.S. Department
of Energy (DOE) Grant #DE-SC0010042: “Extreme-scale
Algorithms & Solver Resilience (EASIR),” NSF Keeneland -
Georgia Institute of Technology (GIT) Subcontract #RA241-
G1 on NSF Prime Grant #OCI-0910735, and DOE MAGMA -
Office of Science Grant #DE-SC0004983, “Matrix Algebra for
GPU & Multicore Architectures (MAGMA) for Large Petas-
cale Systems.” Sandia National Laboratories is a multiprogram
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for
the DOE’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

REFERENCES

[1] N. Abdelmalek. Round off error analysis for Gram-Schmidt method and
solution of linear least squares problems. BIT Numerical Mathematics,
11:345–368, 1971.

[2] Z. Bai, D. Hu, and L. Reichel. A Newton basis GMRES implementation.
IMA Journal of Numerical Analysis, 14:563–581, 1994.

[3] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner
for general sparse linear systems. SIAM J. Sci. Comput., 21(2):792–797,
Sept. 1999.

[4] A. T. Chronopoulos and C. W. Gear. Implementation of preconditioned
s-step conjugate gradient methods on a multiprocessor system with
memory hierarchy. Parallel Comput., 11:37–53, 1989.

[5] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric
matrices. In 24th National Conference, pages 157–172, 1969.

[6] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding
communication in computing Krylov subspaces. Technical Report
UCB/EECS-2007-123, University of California Berkeley EECS Depart-
ment, October 2007.

[7] L. Grigori and S. Moufawad. Communication avoiding ILU0 precondi-
tioner. Technical Report RR-8266, INRIA, 2013.

[8] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD
thesis, EECS Department, University of California, Berkeley, 2010.

[9] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing
communication in sparse matrix solvers. In the proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis (SC), pages 36:1–36:12, 2009.

[10] M. Naumov. Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the GPU. Technical Report NVR-
2011-001, Nvidia, 2011.

[11] Y. Saad. Practical use of polynomial preconditionings for the conjugate
gradient method. SIAM J. Sci. Stat. Comput., 6:865–881, 1985.

[12] Y. Saad and M. Schultz. GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 7:856–869, 1986.

[13] A. Stathopoulos and K. Wu. A block orthogonalization procedure with
constant synchronization requirements. SIAM J. Sci. Comput., 23:2165–
2182, 2002.

[14] S. A. Toledo. Quantitative performance modeling of scientific com-
putations and creating locality in numerical algorithms. PhD thesis,
Massachusetts Institute of Technology, 1995.

[15] J. van Rosendale. Minimizing inner product data dependence in
conjugate gradient iteration. In Proc. IEEE Internat. Confer. Parallel
Processing, 1983.

[16] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra.
Improving the performance of CA-GMRES on multicores with multiple
GPUs. Technical Report UT-EECS-14-722, University of Tennessee,
Knoxville, 2014. To appear in the proceedings of the 2014 IEEE
International Parallel and Distributed Symposium (IPDPS).

[17] I. Yamazaki, S. Tomov, T. Dong, and J. Dongarra. Mixed-precision
orthogonalization scheme and adaptive step size for CA-GMRES on
GPUs, 2014. To appear in the proceedings of the 2014 International
Meeting on High-Performance Computing for Computational Science
(VECPAR).

[18] I. Yamazaki and K. Wu. A communication-avoiding thick-restart Lanc-
zos method on a distributed-memory system. In Workshop on Algorithms
and Programming Tools for next-generation high-performance scientific
and software (HPCC), 2011.

	Introduction
	Related work
	CA-GMRES on a hybrid CPU/GPU cluster
	CA-GMRES Algorithm
	CA-GMRES Implementation
	Orthogonalization Kernels
	Matrix Powers Kernel
	Performance Studies

	CA Domain Decomposition Preconditioners
	CA-Preconditioning Framework
	Experimental Setup
	Convergence Studies with a Fixed GPU Count
	Parallel Scaling Studies

	Conclusion
	References

