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b Outline

- Objective of the GNEP Transmutation Fuel Program

* What does a fuel rod do?

 How does it do it?

 How do current fuel performance code simulate fuel behavior?

- How can we apply recent developments in computational
sciences to design the next generation of fuel performance
codes?
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. GNEP fuels are much more challenging to
9 fabricate and operate
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, What is a nuclear fuel rod required to do?

* General fuels requirements
1. Generate heat at a ~constant rate

Transfer heat reliably and uniformly to the power generation systems
Not release fission products
Do it safely

Do all four for as long as possible

A A

e GNEP fuels requirements
1. TRU transmutation
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| Fuel Requirements

From performance perspective, only requirement is nuclei with
sufficient density to sustain steady-state chain reaction.

From materials perspective, there are few requirements:
*Density of fission nuclei
*Pellet maintains structural integrity
*Good thermal conductivity
*Retains fission products
*Not rupture clad

*Source: http://www.skb.se/default2 14877.aspx
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The 264 fuel Fuel Assembly (17 x 17 type) Fuel Rod
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Basic Nuclear Physics
Fission Event

nuclear fission

neutron

uranium nucleus

fast
neutrons
uranium nucleus

plus neutron

nucleus splitting

two daughter nuclei

June 10, 2008 NFSM, ANS Annual Meeting 8




® Basic Nuclear Physics
Fission energy and fragments
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A= 95 A=137
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233 Fission
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Basic Nuclear Physics

Some Consequences of Fission
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Courtesy L. Snead
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I Fast Reactor Fuel Options

0.5 cm

1 cm
Fast Reactor Fuel Type Metal Oxide Nitride Carbide
Fresh Fuel Properties U-20Pu-10Zr UO,-20PuO, UN-20PuN UC-20PuC
Heavy Metal Density, g/cm? 14.1 9.3 13.1 12.4
Melting Temperature, °K 1350 3000 3035* 2575
Thermal Conductivity, W/cm-°K 0.16 0.023 0.26 0.20
OP?::;';igf:::”'“e 1060 2360 1000 1030
at 40 kW/m, °K, and (T/T ) (0.8) (0.8) (0.3) 04)
Fuel-Cladding Solidus, °K 1000 1675 1400 1390
Thermal Expansion, 1/°K 17E-6 12E-6 10E-6 12E-6
Heat Capacity, J/g°K 0.17 0.34 0.26 0.26
i RUS, FR, JAP

Reactor Experience, Country US, UK US, UK IND

Us, JAP, RUS, FR,
Research & Testing, Country ROK, JAP, Us, iklg’ IND

CHI US, CHI

June 10, 2008
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y LWR Fuel: very little grain growth or other
“microstructural changes.

_ o0 —

LWR fuels = “‘“‘%x

*12 to 15 um grains,10 vol% porosity 5 20 AN

*Optimized for FP retention - \

*Most properties are well behaved e 1500 \

“Very rarely fail - L
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Fast Reactors Oxide Fuels Undergo
Microstructural Restructuring during Service
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Segragation, grain restructuring and pore
migration in U-Pu-Zr fuel.
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R Out-of-pile experiments showing columnar grain
y growth and axial pore formation in UO,

Hot Foce' .

: e
P ' — e
\\I’_—/—b_—‘—"
Ref: MacEwan and Lawon, JACerS, 1962 ‘ | e,
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Pu redistribution in FBR MOX is a function of
O/M ratio.

45VI!V]IIII‘IV'l_!['"T_'|"||1y]

Pu /wt%
Pu / wt.%

15"““—; 15— ' —
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radial position (from fuel center)/mm radial position (from fuel center )/ mm

Fig. 3. Radial Pu distribution of XD0992 obtained from PIE ~ Fig- 4. Radial Pu distribution of XD1071 obtained from PIE
(initial O/M = 1.99, initial Pu=27 wt%). (initial O/M =1.955, initial Pu= 30 wt%).

Ref: Ishii and Asaga, JNM, 2001
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In addition to columnar grain & axial pore
restructuring, there is rim-structure and FP

segregation in FBR MOX
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Heat capacity and thermal conductivity are
functions of starting composition and burn up

5
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Fig. 8. Comparison of data and correlations for heat capacity
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Fig. 13. Effect of radiation damage and burnup, B, on the
recommended Egs. (31) and (33) for the thermal conductivity of

stoichiometric 95% dense UO, and MOX fuels.
Ref: Carbajo, Yoder, Papov and Ivanov, JNM, 2001 ? 1
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We propose to use a
sceince-based materials
modeling approach at the
mesoscale.

The advantage is that it
allows engineering of fuels
at this scale.

continuum
scale -
389
588
525
o Pa
m -

Courtesy of E.A. Holm
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FRAPCON, A LWR Fuels Code

v  FRAPCON iteratively calculates as functions of time and fuel
rod specific power

— fuel and cladding temperature,
— rod internal gas pressure,

— fuel and cladding deformation,
— release of fission product gases,
— fuel swelling and densification,

— cladding thermal expansion and irradiation-induced growth, cladding
corrosion, and

— crud deposition

Bernal et al. NUREG/CR-6534, Vol. 2
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Although we describe & understand fuel
behavior at mesoscale, we model as continuum
at macroscale.

Input data
are specified

!

Initial conditions
are computed

Iteration on gap temperature difference

_YY

criterion < 1% AT

Fuel rod temperatures
are computed

A

Fuel and cladding
deformation are
computed

Gas release, void
volumes, and gas
pressure are computed

Iteration on gas pressure convergence criterion < | % AP

Figure 2.1 Simplified FRAPCON-3 Flow Chart
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v

New time step

Thermal models in FRAPCON

z

Ty(2) = T+ | [é?gé)e]dz

Coolant temperature

0

Clad surface
temperature

Ty (2) = Ty(2) + ATHzZ) + AT (2) + AT x(2)

Heat conduction in
Fuel pellet

(T.%)OT(R) o Ads = -
j!k(rx) T(%) » ds j L[S(x)dV

Ref NUREG/CR-6534, Vol. 2
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P Grain growth in a thermal gradient

Thermal gradient is simulated by changing the mobility of the grain
boundaries as a function of temperature.

-AE _
P=M(T)exp|-——| AE>0 M =M exp -

kBTs kBT
P=M(T) AE=O

In a thermal gradient, grain growth scales linearly with the mobility;
kinetics and grain size distributions are locally normal.
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® Grain growth & bubble migration in a thermal
gradient

L\

D
)‘\_/ 4

-Start with

random 3
distribution of } -
grains and P
pores. S

*Applied linear { o N
gradient assuming
surface diffusion as
bubble migration
mechanism.

*Grains &
pores
coarsened
more in the
high temp.
region with net
pore migration
to hot region.
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Basic phonon scattering model :

K(T) = % f S(w) (w)t(w)do,

S() is the specific heat, v(w) is the phonon velocity, T(a)) is the phonon relaxation time.
If more than one process is scattering phonons
1 1
@ 27 @ L8 Impuriti
T(w ~ T (w — = mpurities
. 4m’ P
I 9CQ .
= w*, Vacancies
T, 4nv
1 Voids / precipitates
— =7ar*Nv. precip
Work of L. Snead T"Oid
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E — — transition

Relative increase in thermal resistance
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f Conclusions

v We propose that the new generation of fuels performance and
fabrication codes be

— Science-based
— Materials models integrated at the microstructural mesoscale

— Provide chemical composition, microstructure and other physics-based
state variables as a function of irradiation history.

v Such a capability will fundamentally improve our ability to
design and license advanced fuels
— Fuels can be engineered at the microstructural scale

— The number of experiments for design and qualification will be greatly
reduced

— Better, more robust fuels can be engineered
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