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Outline

• Objective of the GNEP Transmutation Fuel Program
• What does a fuel rod do?
• How does it do it?
• How do current fuel performance code simulate fuel behavior?
• How can we apply recent developments in computational

sciences to design the next generation of fuel performance
codes?
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GNEP seeks to close the fuel cycle
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GNEP fuels are much more challenging to
fabricate and operate

Source: K. Pasamehmetuglo, INL

Fast
Recycle
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What is a nuclear fuel rod required to do?

• General fuels requirements
1. Generate heat at a ~constant rate
2. Transfer heat reliably and uniformly to the power generation systems
3. Not release fission products
4. Do it safely
5. Do all four for as long as possible

• GNEP fuels requirements
1. TRU transmutation
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Fuel Requirements

From performance perspective, only requirement is nuclei with
sufficient density to sustain steady-state chain reaction.

*Source: http://www.skb.se/default2____14877.aspx

From materials perspective, there are few requirements:
•Density of fission nuclei
•Pellet maintains structural integrity
•Good thermal conductivity
•Retains fission products
•Not rupture clad
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Source: www.nfi.co.jp/e/product/prod02.html

Light Water
Reactors
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Basic Nuclear Physics
Fission Event
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Basic Nuclear Physics
Fission energy and fragments

196 MeVTotal energy

11 MeVNeutrino energy

5 MeVγ-decay energy

5 MeVβ-decay energy

5 MeVPrompt γ-ray energy

5 MeVKinetic Energy,
fission neutron

~100 MeV
Kinetic Energy,
light fragment

~65 MeVKinetic Energy,
heavy fragment
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• Neutron irradiation damage
• Fission Fragment irradiation damage

heat generation
local melting

• Changing chemistry
O/M ratio
phase changes ?

~65 MeV

~100 MeV

~5 MeV

• Swelling
additional atoms
fission gas production

Basic Nuclear Physics
Some Consequences of Fission
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Complexity of the problem
    Courtesy L. Snead

As Fab

0 MWd/t
thermal shock

1 MWd/t

10 MWd/t

100 MWd/t

103

MWd/t
104

MWd/t

105

MWd/t

106

MWd/t

AS FABRICATED
Equiaxed Grains
Equilibrium Pores to 50 µm
Large Voids, ~ 200 µm
Small Cracks (radial)
Intrinsic Vacancy 
Intrinsic Impurity
Large Gas Gap

gas gap As Irradiated
Crack Evolution

Radiation Defects
    Vacancy/Interstitial
    Dislocations
    Small Clusters
    Voids (central void)

Columnar Grain Growth

Grain boundary 
     Carbide formation

Equiaxed Grain Growth

Metallic Inclusion

Solid Solution Impurity

Second Phase Formation

Evolving gas conduction
Based on Christensen
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Fast Reactor Fuel Options
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Fast Reactor Fuel Type
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Source: Robert N. Hill and R. A. Wigeland, ANL
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LWR Fuel:  very little grain growth or other
microstructural changes.

Fisher et al, JNM, 2002

Suzuki et al, NED, 2004

LWR fuels
•12 to 15 um grains,10 vol% porosity
•Optimized for FP retention
•Most properties are well behaved
•Very rarely fail
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Fast Reactors Oxide Fuels Undergo
Microstructural Restructuring during Service

Boyle et al.
JNM, 1969

Sens et al.
JNM, 1972
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Segragation, grain restructuring and pore
migration in U-Pu-Zr fuel.

Ref: Kim, Hofmann, Hayes & Sohn, JNM, 2004
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Out-of-pile experiments showing columnar grain
growth and axial pore formation in UO2

<111> orientation

Ref: MacEwan and Lawon, JACerS, 1962
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Pu redistribution in FBR MOX is a function of
O/M ratio.

Ref: Ishii and Asaga, JNM, 2001
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In addition to columnar grain & axial pore
restructuring, there is rim-structure and FP
segregation in FBR MOX

Ref: Maeda, Tanaka, Asaga, Furuya, JNM, 2005
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Heat capacity and thermal conductivity are
functions of starting composition and burn up

Ref: Carbajo, Yoder, Papov and Ivanov, JNM, 2001
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Although we describe &  understand fuel
behavior at mesoscale, we model as continuum
at macroscale.

microstructure

10-1 - 
103 µm

100 - 
106 s

atomic
scale
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continuum
scale processing,

response,
perform

ance

We propose to use a
sceince-based materials
modeling approach at the
mesoscale.

The advantage is that it
allows engineering of fuels
at this scale.

Courtesy of E.A. Holm
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FRAPCON, A LWR Fuels Code

ν FRAPCON iteratively calculates as functions of time and fuel
rod specific power
– fuel and cladding temperature,
– rod internal gas pressure,
– fuel and cladding deformation,
– release of fission product gases,
– fuel swelling and densification,
– cladding thermal expansion and irradiation-induced growth, cladding

corrosion, and
– crud deposition

Bernal et al. NUREG/CR-6534, Vol. 2
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Although we describe &  understand fuel
behavior at mesoscale, we model as continuum
at macroscale.

Coolant temperature

Clad surface
temperature

Heat conduction in
Fuel pellet

.

.

.

Ref NUREG/CR-6534, Vol. 2

Thermal models in FRAPCON
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Materials models have been developed to simulate a
wide range of microstructural evolution processes.

Crystal
Plasticity

Microstructure

Ceramic
Sintering

Abnormal
Grain Growth &

Recrystallization

745 °C

FEAExperiment

Shock Response
in Porous

Feroelectrics

Bi-layer Microstructure

w/o refiner
(Sulfamate)

w/ refiner
(Watts)

Electrodeposition
/ LIGA
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Grain growth in a thermal gradient
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Thermal gradient is simulated by changing the mobility of the grain
boundaries as a function of temperature.
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In a thermal gradient, grain growth scales linearly with the mobility;
kinetics and grain size distributions are locally normal.

ΔE>0

ΔE≤0
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Grain growth & bubble migration in a thermal
gradient

t = 49 MCS

t = 823 MCS

t = 2000 MCS

•Start with
random
distribution of
grains and
pores.

•Applied linear T
gradient assuming
surface diffusion as
bubble migration
mechanism.

•Grains &
pores
coarsened
more in the
high temp.
region with net
pore migration
to hot region.
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Thermal conduction

Basic phonon scattering model :
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Thermal conductivity for various fuel states
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Conclusions

ν We propose that the new generation of fuels performance and
fabrication codes be
– Science-based
– Materials models integrated at the microstructural mesoscale
– Provide chemical composition, microstructure and other physics-based

state variables as a function of irradiation history.
ν Such a capability will fundamentally improve our ability to

design and license advanced fuels
– Fuels can be engineered at the microstructural scale
– The number of experiments for design and qualification will be greatly

reduced
– Better, more robust fuels can be engineered


