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TMR Overview

« TMR design
— Each logic element is triplicated

— Majority voters filter out SETs,
data1 preventing upsets

— Clocks, resets, and voters are
triplicated to avoid common-mode
SET failures

— Full TMR designs are immune to
one SET, but not multiple SETs

data1 —DI Datapath Logic

data2

data2 —DI Datapath Logic

data3

data3 —DI Datapath Logic

« Large area overhead
— 3x to 6x on typical designs
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Voting and “Self-voting” Circuits

 Majority voter
— Votes on 3 inputs

— 2 of 3 inputs must change for
out output to change state

— SET glitch on any one input will
not propagate to output
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« Self-voter

— Votes on 2 inputs and current
output

— Both inputs must change for

A - output to change state
B p out A — SET glitch on any one input will
“ - Qut not propagate to output

— Numerous circuit implementations
+— exist, including “C-elements”,
“Transition-And-Gates”’, & “Guard-
Gates”

« SET inside both kinds of voters can
Voter feedback propagate to output, but will not cause
permanent SEU of voter
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Self-voting Dual-Modular-Redundancy
(DMR) Logic

e Goal:

— Use dual-modular-redundancy (DMR) to reduce the area
overhead of TMR deigns, without sacrificing SET immunity

— Mitigate SETs on data inputs, clock inputs, storage cells

 Solution:

— Self-voting circuits enable DMR logic to achieve the same
level of SET protection as TMR logic

— DMR designs improve area efficiency
33% for latch designs

* 10-24% for flip-flop designs
— Marginal performance impact for “modest” designs
« Maximum SET-width subtracts from maximum cycle time
 E.g., 1ns SET-width tolerance has 10% impact on 100MHz design
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Latch Datapaths

TLAT
clk1 . TMR
TLAT . .
datazn o 9—>data2 — Latch open. voters fllter SETs
— Latch closed: voters filter SEUs
clk2 . .
— Cycle time = voter + logic delay
TLAT
+
dataan o \_i% data3 setup

| |
clk3

data1 —> . data1 * DMR

ata Datapath Logic D Q Voter ata
_ — Latch open: self-voters store
k1 register value and filter SETs
— — Latch closed: self-voters filter

SEUs

data2 Datapath Logick—»{D @ Voter data2 ] )
— — Cycle time = SET width + voter +
ak2 logic delay + setup

PR P 33% less area than TMR Sk
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datat Datapath Logic

data2 Datapath Logic
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data3 Datapath Logic
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Flip-Flop Datapaths

39—5 datat
TMR

— 3 majority voters filter out SEUs in
>_, data2 redundant flops
— Cycle time = voter + logic delay +

clk3

setup
\_i% data3

- DMR
— 3 redundant flops required for DMR

datat —D' Datapath Log.fc:

data2

Datapath Logic
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scheme (due to possibility of SET
being latched on clock edge)

— Self-voter filters out SET on any one
redundant datapath and provides the

3rd redundant datapath value

— 2 majority voters filter out SEUs in
redundant flops

— Cycle time = SET width + 2evoter +
logic delay + setup

Area savings depends on -~
% datapath logic Fi ) Natona
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Benchmark DMR versus TMR
(Flip-Flops)

Area (normalized) Delay (normalized)
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AES DLX 12C AES DLX 12C

(SET width not included)

« OpenCore designs run through structured-ASIC physical synthesis
— Clock tree, reset trees, buffer insertion, full parasitics, etc.

« DMR flip-flop designs show 10-24% lower area

« DMR logic shows no up-front speed penalty (vs. TMR)
— Lower register fanout & less routing complexity
— Can help offset SET-width penalty in cycle time calculation
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DMR Logic

TLAT
datal—®D Q

clk1

TLAT
data2—®D Q

DMR-to-TMR Conversion Logic

TMR Logic

Datapath Logic

clk2

DMR Logic

datal

Datapath Logic

data2

TMR Logic

No areal/delay overhead to
convert between DMR and
TMR schemes

Conversion occurs at register
boundaries

DMR/TMR design strategy:

— Use TMR on critical paths
to meet timing

— Use DMR on paths with
large slack to reduce area
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Conclusion

« Self-voting DMR summary
SET/SEU protection equivalent to full TMR

» SET protection on data & clock inputs
» SEU protection on register storage cells

— Lower area overhead than TMR
» 33% reduction for latch designs
* 10-24% reduction for flip-flop designs
— Trivial to implement

* No special library cells
« Maximum SET-width tolerance is not “hard-coded” into circuit

- Radiation testing
Self-voting DMR architecture has not been SET tested, but

— Much related work has validated SET effectiveness of self-voters
(i.e., C-element/Transition-And-Gate/Guard-Gate) in other datapath
architectures

 E.g.,R.L. Shuler, et. al., “The effictiveness of TAG or guard-gates in SET suppression
using delay and dual-rail configurations”, IEEE Trans. Nucl. Sci., Dec. 2006.
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Questions
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Backups
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“Theoretical” DMR versus TMR
Performance (Flip-Flops)
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/O Circuits
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Background

« SET (single event transient)

— Energetic particles striking transistor devices
cause temporary voltage disturbances

— Logic upset (SEU) can occur in registers when
SET is latched on clock edge

 Rad-hard processes

— SET immune until medium LET levels

— Resistor feedback added for higher LET levels
« Commercial CMOS processes

— Bulk sensitive at low LET levels

— SOl less sensitive

— Triple-modular-redundancy (TMR) most popular
SET mitigation technique for logic circuits
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