

SAND2014-3836C

## *Overview of the QUEST Institute*

[www.quest-scidac.org](http://www.quest-scidac.org)

H. Najm

Sandia National Laboratories, Livermore, CA

SciDAC Institutes MidTerm Review Meeting  
5–6 May 2014  
Washington, DC

# Acknowledgement

|             |                                                                                      |
|-------------|--------------------------------------------------------------------------------------|
| <b>SNL</b>  | M. Eldred, B. Debusschere, J. Jakeman, K. Chowdhary, C. Safta, K. Sargsyan           |
| <b>USC</b>  | R. Ghanem                                                                            |
| <b>Duke</b> | O. Knio, O. Le Maître, J. Winokur                                                    |
| <b>UT</b>   | O. Ghattas, R. Moser, C. Simmons, A. Alexanderian T. Bui-Thanh, N. Petra, G. Stadler |
| <b>LANL</b> | D. Higdon, J. Gattiker                                                               |
| <b>MIT</b>  | Y. Marzouk, P. Conrad, T. Cui, A. Gorodetsky                                         |

This work was supported by:

- US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR), Scientific Discovery through Advanced Computing (SciDAC)

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

# Outline

- 1 Institute structure and overview
- 2 Impact on scientific discovery
- 3 Collaborative activities
- 4 Management of QUEST research and relationships
- 5 Closure

# QUEST SciDAC Institute

- QUEST is the SciDAC Institute focused on Uncertainty Quantification (UQ) in extreme scale computations
- Our team includes:
  - Sandia National Labs (SNL), both in CA and NM
  - University of Southern California (USC)
  - Los Alamos National Laboratory (LANL)
  - University of Texas at Austin (UT)
  - Duke University (DU)
  - Massachusetts Institute of Technology (MIT)



Sandia  
National  
Laboratories



USC University of  
Southern California



THE UNIVERSITY OF  
**TEXAS**  
AT AUSTIN



# QUEST Team

| Institution | Participants                                                                                 |
|-------------|----------------------------------------------------------------------------------------------|
| <b>SNL</b>  | <b>H. Najm</b> , M. Eldred, B. Debusschere, J. Jakeman, K. Chowdhary, C. Safta, K. Sargsyan  |
| <b>USC</b>  | <b>R. Ghanem</b>                                                                             |
| <b>Duke</b> | <b>O. Knio</b> , O. Le Maître, J. Winokur                                                    |
| <b>UT</b>   | <b>O. Ghattas</b> , R. Moser, C. Simmons, A. Alexanderian T. Bui-Thanh, N. Petra, G. Stadler |
| <b>LANL</b> | <b>D. Higdon</b> , J. Gattiker                                                               |
| <b>MIT</b>  | <b>Y. Marzouk</b> , P. Conrad, T. Cui, A. Gorodetsky                                         |

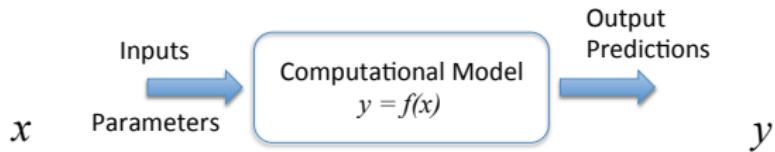
# Team Expertise and Capabilities

| Institution | Expertise                                                          | Tools          |
|-------------|--------------------------------------------------------------------|----------------|
| <b>SNL</b>  | Forward and inverse UQ methods, design under uncertainty           | DAKOTA<br>UQTK |
| <b>USC</b>  | Intrusive UQ methods<br>probabilistic modeling                     |                |
| <b>Duke</b> | Sparse adaptive forward UQ methods                                 |                |
| <b>UT</b>   | Large scale inverse problems<br>validation, inverse UQ             | QUESO          |
| <b>LANL</b> | Gaussian process modeling, inverse UQ                              | GPMSA          |
| <b>MIT</b>  | Calibration, adaptive sampling,<br>inverse UQ, experimental design | MUQ            |

# QUEST Goals

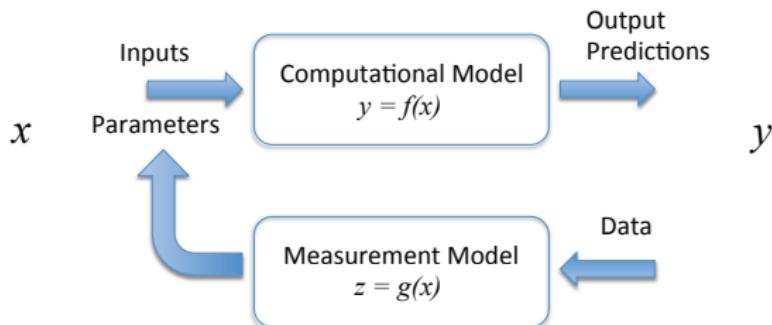
- ① Advance the state of the art in UQ theory, methods, and software, addressing UQ challenges with extreme scale computational problems
  - High-dimensionality
  - Nonlinearity
  - Sparse data
- ② Provide expertise, advice, and state of the art UQ algorithms and software tools to SciDAC projects
  - UQ software products
  - SciDAC partnerships
  - Outreach: UQ tutorials, summer school, web

# Why UQ? Why in SciDAC?


## Why Uncertainty Quantification (UQ) ?

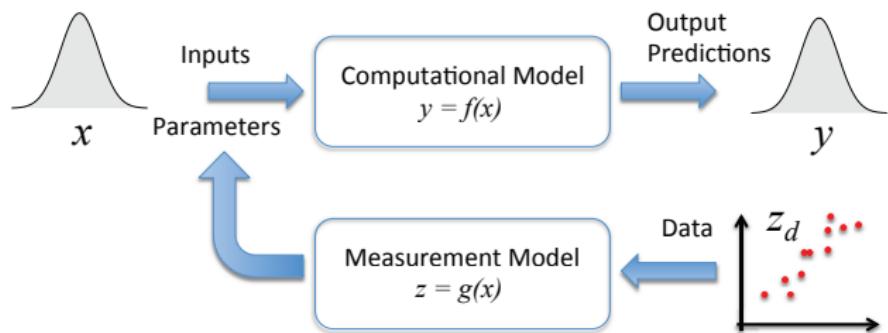
- Assessment of confidence in computational predictions
- Validation and comparison of scientific/engineering models
- Design optimization
- Use of computational predictions for decision-support
- Assimilation of observational data and model construction

## Why UQ in SciDAC ?


- Explore model response over range of parameter variation
- Enhanced understanding extracted from computations
- Particularly important given *cost* of SciDAC computations

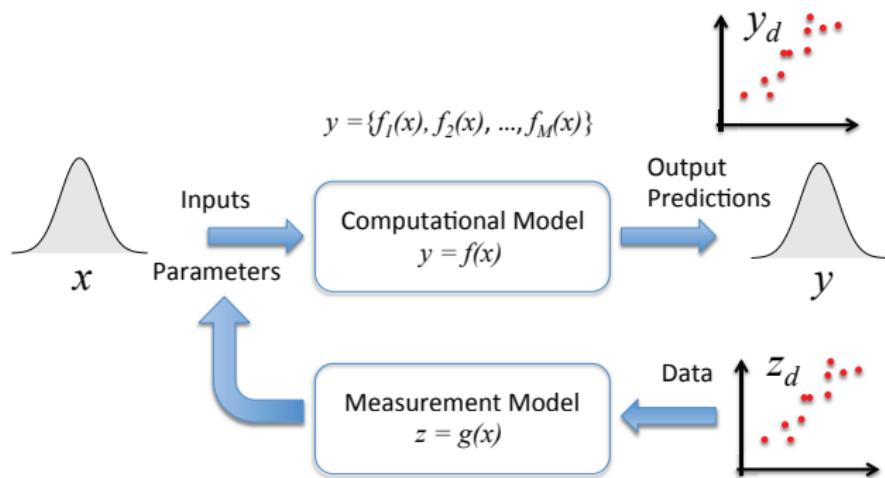
# Uncertainty Quantification and Computational Science




Forward problem

# Uncertainty Quantification and Computational Science




Inverse & Forward problems

# Uncertainty Quantification and Computational Science



Inverse & Forward UQ

# Uncertainty Quantification and Computational Science



**Inverse & Forward UQ**  
 Model validation & comparison, Hypothesis testing

# QUEST Scope

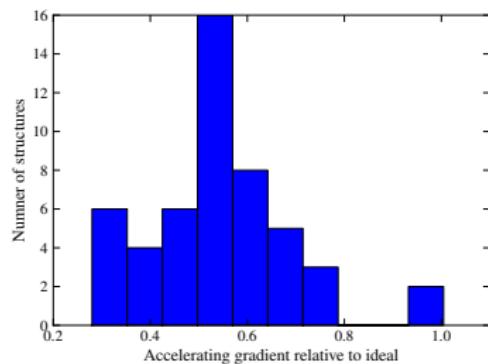
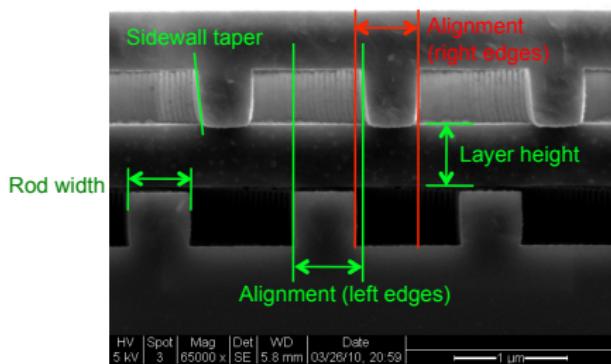
The scope of QUEST covers a range of UQ activities including:

- Characterization of the input space
- Local and global sensitivity analysis
- Adaptive stochastic dimensionality and order reduction
- Forward and Inverse UQ
- Fault tolerant UQ methods
- Model comparison and validation

# Key Elements of our UQ strategy

- Probabilistic framework
  - Uncertainty is represented using probability theory
- Parameter Estimation, Model Calibration
  - Experimental measurements
  - Regression, Bayesian Inference
- Forward propagation of uncertainty
  - Polynomial Chaos (PC) Stochastic Galerkin methods
    - Intrusive/non-intrusive
  - Stochastic Collocation methods
- Model comparison, selection, and validation
- Experimental design and uncertainty management

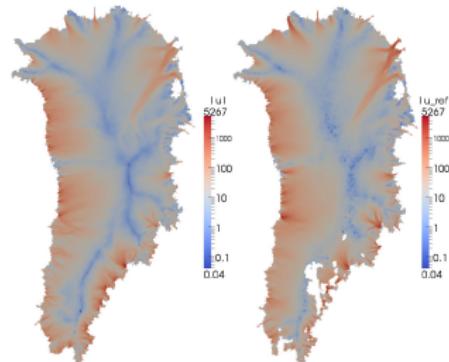
# QUEST UQ Software tools



- **DAKOTA**: Optimization and calibration; non-intrusive UQ; global sensitivity analysis; ~10K registered downloads.
- **QUESO**: Bayesian inference; multichain MCMC; model calibration and validation; decision under uncertainty.
- **GPMSA**: Bayesian inference; Gaussian process emulation; model calibration; model discrepancy analysis
- **UQTK**: Intrusive and non-intrusive forward PC UQ; custom sparse PCE; random fields.
- **MUQ**: Adaptive forward PC UQ; advanced MCMC and variational methods for inference; efficient surrogates.

# QUEST Partnerships

| DOE        | Project Title                                                                   | Lead PI             | QUEST                      |
|------------|---------------------------------------------------------------------------------|---------------------|----------------------------|
| <b>FES</b> | Center for Edge Plasma Physics Simulation (EPSI)                                | Chang<br>Princeton  | Moser<br>UT                |
| <b>FES</b> | Plasma Surface Interactions: Bridging from the Surface to the Micron Frontier   | Wirth<br>ORNL       | Higdon<br>LANL             |
| <b>BER</b> | Predicting Ice Sheet & Climate Evolution at Extreme Scales (PISCEES)            | Jones<br>LANL       | Eldred, Ghattas<br>SNL, UT |
| <b>BER</b> | Multiscale Methods for Accurate, Efficient & Scale-Aware Earth System Modeling  | Collins<br>LBNL     | Debusschere<br>SNL         |
| <b>BES</b> | Adaptive Sparse Quadrature Methods for Fast Evaluation of MP2 Integrals (FEMPI) | Hirata<br>UIUC      | Najm, Sargsyan<br>SNL      |
| <b>NP</b>  | Nuclear Computational Low Energy Initiative (NUCLEI)                            | Carlson<br>LANL     | Higdon<br>LANL             |
| <b>HEP</b> | Computation-Driven Discovery for the Dark Universe                              | Habib<br>ANL        | Higdon<br>LANL             |
| <b>HEP</b> | Community Project for Accelerator Science & Simulation (ComPASS)                | Spentzouris<br>FNAL | Prudencio<br>UT            |

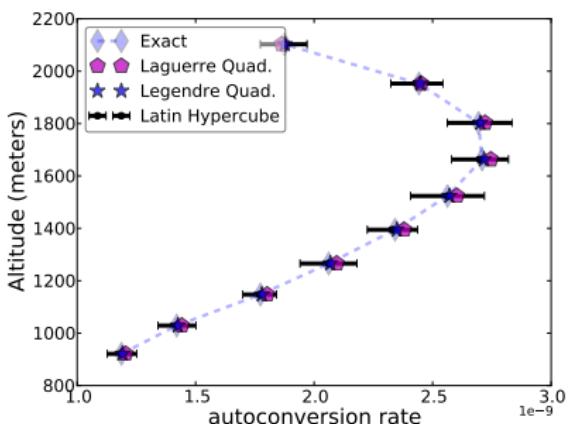
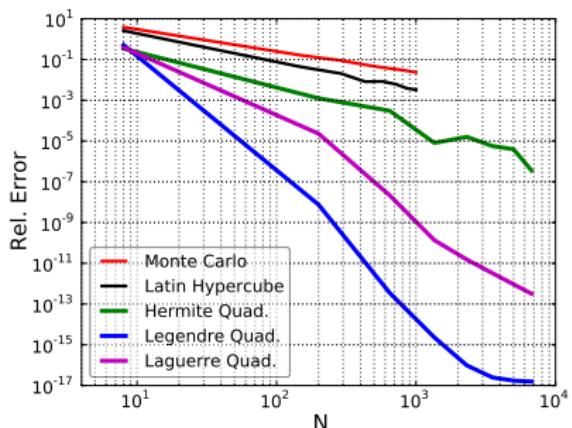
# Impact on Partnership Projects – ComPASS


- By applying UQ tools to the simulation of woodpile structures, we have been able to study the effect of lithographic fabrication errors on device performance
- Progress on fabrication of components for next-generation particle accelerators**



Chris Simmons, UT

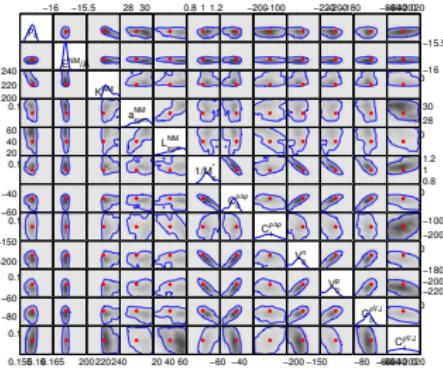
# Impact on Partnership Projects – PISCEES



- The interactions with QUEST team members have been, and will continue to be, crucial in defining a tractable and defensible UQ workflow, and in **providing scalable algorithms and software for this work**.
- The software linkage between the QUEST (Dakota, QUESO) and FASTMath (Trilinos) tool sets has **allowed us to overcome software challenges** and leverage their ongoing investments in exploiting both coarse-grained ensemble and fine-grained solver parallelism on leadership class architectures.



Mike Eldred, SNL

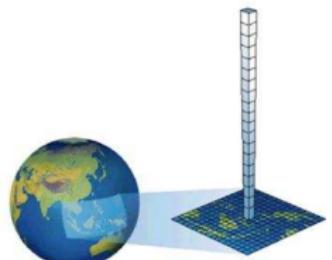
# Impact on Partnership Projects – Earth-System


- QUEST tools and expertise have enabled the use of quadrature approaches to **dramatically improve the efficiency and accuracy of integrating microphysics processes** over subgrid variability in atmospheric simulations.



Bert Debusschere, SNL

# Impact on Partnership Projects – NUCLEI


- Quantification of uncertainties in coupling constants in DFT code by combining an ensemble of DFT calculations and experimental measurements
- Predictions and uncertainties for newly measured mass at ANL**
- Assessment of impact of new ANL measurements on prediction and coupling constant uncertainties.



Dave Higdon, LANL

# Impact on Partnership Projects – ACES4BGC

- The advances in compressive sensing developed by QUEST have enabled ACES4BGC researchers to design and conduct perturbed parameter climate model ensembles over an extremely high number of UQ dimensions.
- Prior UQ methods limited the dimensionality of climate model ensembles to  $O(10)$  UQ parameters.
- QUEST's advances have enabled the push to climate systems with  $O(100)$  or more UQ parameters.



Single Column CAM  
Don Lucas, LLNL

# Impact on DOE research outside of SciDAC

## UQTk:

- BES – Chemical Sciences:
  - parameter estimation in hydrocarbon fuel ignition
  - UQ in large eddy simulations of turbulent combustion
- BER – climate research – Community Land Model (CLM)
  - Global sensitivity analysis, sparse surrogate construction

## MUQ:

- BES – Mechanical Behavior & Radiation Effects program
  - Model surrogates/emulators
  - Bayesian inference with complex phase-field models of separation and permeation.

# Impact on DOE research outside of SciDAC

## DAKOTA:

- NNSA/ASC – a broad range of weapon assessment activities within the tri-lab defense programs complex
- EERE A2E, ASCR UQ – wind turbine design
- NE/CASL – light water nuclear reactors
- BER/CSSEF – global climate modeling

## QUESO

- NE/CASL – Bayesian inference, parameter estimation
- PSAAP – reentry vehicle modeling

## GPMSA

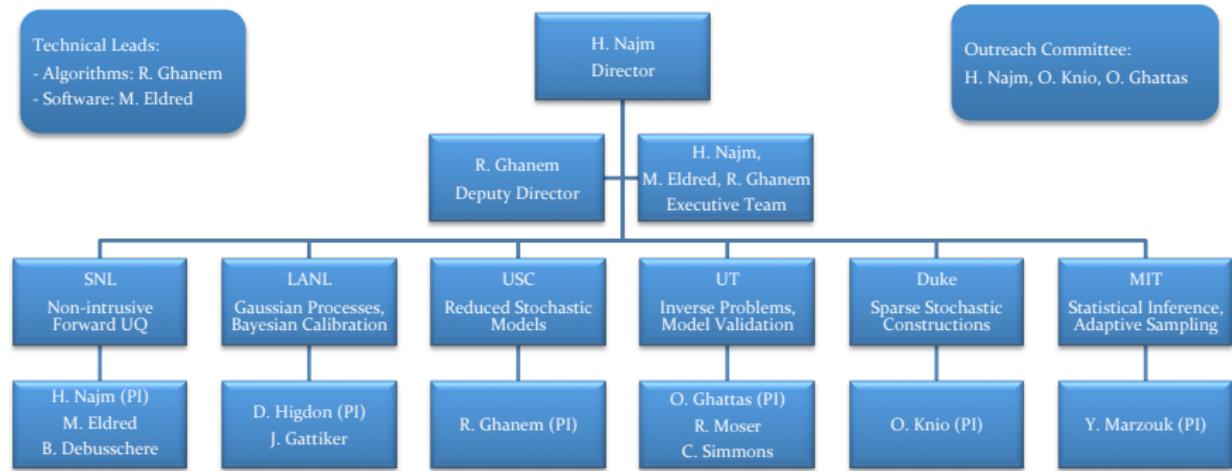
- NNSA/stockpile stewardship
- PSAAP – UMich Radiative shock models

# General Impact

- Active publication output in refereed journals – 45 papers
  - Int. J. UQ, Comput. Geosci., SIAM/ASA J. UQ, CMAME, Technometrics, Annals of Nuc. Eng., J. Glaciol. etc ...  
– [www.quest-scidac.org/publications](http://www.quest-scidac.org/publications)
- Transformational discussions with partnership PIs/staff
  - UQ new to computational scientists and SciDAC
  - Raised awareness of quality/provenance of model inputs
  - Revised attention to data sources, and new data, to better pin-down model inputs (PSI/Xolotl)
- Intensive outreach activities
  - QUEST website – tutorials, information
  - Tutorials in workshops/conferences, short courses
  - USC UQ summer school
  - Invited seminars and plenary lectures

# General Impact

- Leadership in the UQ field. QUEST members are:
  - Chairs and organizers of international technical conferences
  - Members of leadership teams of numerous large research collaborations
  - Members of international UQ research centers advisory boards
    - KAUST SRI-UQ, UK EQUIP, SAMSI, MUCM
- Tech transfer, working with industrial partners
  - Pratt & Whitney, Lockheed Martin, GE, Goodyear, Caterpillar
  - Use of UQ for speeding up design & manufacturing


# Synergies within QUEST

- MIT/DU: application of adaptive sparse quadrature for UQ in computations of Gulf of Mexico oceanic circulation
  - MIT: algorithms/software
  - DU: performance, benchmarking, large-scale code
- DU/SNL-CA: development of UQTk
  - SNL-CA: C++ libraries; DU: Matlab code
- USC/SNL-CA: model uncertainty, model error embedding
- SNL-CA/NM: benchmarking (Bayesian) compressive sensing methods – sparsity in high-dimensional models
- LANL/UT/SNL-NM: emulator-based Bayesian inference through the integration of GPMSA, QUESO, and DAKOTA

# Scope relative to other SciDAC Institutes

- Recognize and make use of synergies with:
- FASTMath: math and algorithms for UQ in computations
  - UQ workflow and Trilinos solvers for large-scale eigenvalues for random field modeling.
  - Integration of dimension-reduction algorithms in Albany
- FASTMath/SUPER: software for mgmt of concurrent code samples and associated I/O on parallel hardware
  - SUPER: Optimizing UQ workflows; simulation feedback for hard/soft fault tolerance and computational steering
- SDAV: analysis of experimental/computational data
  - Ensemble visualization; integration of UQ in ADIOS
  - Multimodel ensembles; model probability and predictions

# QUEST Org Chart



# Institute Mgmt

- Guiding set of 5-year milestones
- Key metrics of success:
  - Advancing robust UQ methods/software for extreme-scale applications
  - Addressing UQ challenges presented by partnerships
- Bi-weekly institute-wide telecon
  - Institutional PIs manage internal progress at each institution
- Annual workshop
  - Attendance by delegates from other institutes/partnerships
  - Communicate progress on institute/partnership work
  - Synchronize on collaborative activities

# Application Partnership Strategy

- Interactions with proposal teams starting at pre-proposal stage
- Partner-PIs have typically contacted the institute director
- Pairing partnership with a specific QUEST scientist POC employed a well-articulated set of principles
  - Technical match, physical proximity, cost/budget, workload balance
- Director, in consultation with one or more QUEST-PIs, makes the assignments
- We participated in 51 pre-proposals, 29 full proposals, and 7 funded partnerships
- Supplemental requests lead to funding enhancement and a new 8th partnership

# Interactions with the other Institutes

- Director-level bi-weekly telecons with DOE
- Mutual invitations to our/their annual workshops
- Existing and growing connections maintained via discussions at SciDAC PI mtg, as well as other scientific conferences of mutual interest

# Three Year Roadmap – FY14

- 1 Fault-tolerant UQ. Benchmark problems. Improve parallel scalability – hybrid MPI+threading, concurrency in iterator recursions, distributed scheduling [SNL]
- 2 Adaptive basis representations [USC]
- 3 HPC-aware surrogates in GPMSA; integrate in DAKOTA [LANL]
- 4 Adaptive capabilities in statistical inversion algorithms and software – multimodal distributions [UT]
- 5 Stochastic model analysis and reduction. Benchmarks for forward UQ in multiscale time-dependent systems [DU]
- 6 Develop and implement flexible Bayesian approaches for stochastic input characterization [MIT]

# Three Year Roadmap – FY15

- ① Effective resource utilization – improved parallel scalability, fault tolerance – UQ in large scale benchmark problems on high end DOE/SC computational platforms [SNL]
- ② Stochastic surrogates; PCEs w/random coefficients [USC]
- ③ Error models accounting for model discrepancy [LANL]
- ④ Apply statistical inversion and model assessment tools to benchmark large-scale stochastic inverse problems. [UT]
- ⑤ Demo combined optimal sampling and representation for large-scale space and time-dependent systems. [DU]
- ⑥ Dimensionality reduction algorithms in large-scale statistical inverse problems, leveraging reduced-order stochastic representations for forward UQ. [MIT]

# Three Year Roadmap – FY16

- 1 Eval our success measured by our effectiveness in serving SciDAC partners; Identify areas for improvement. [SNL]
- 2 Implement algorithms for data-driven basis enrichment and adaptation. [USC]
- 3 Integrate model discrepancy software into GPMSA. [LANL]
- 4 Scale up & robustify statistical inversion to exploit massive concurrencies provided by leading edge systems. [UT]
- 5 Demo sparse representation, stochastic reduction, and inference with extreme-scale model outputs. [DU]
- 6 Develop large-scale concurrent adaptive sampling strategies for inversion with computationally intensive forward models, fully implemented in MUQ. [MIT]

# Closure

Steady progress over the past 2.5 years

- Refining and robustifying QUEST algorithms and software to address UQ challenges in large-scale problems
  - high dimensionality
  - large range of scales
  - complex models and high computational cost
- Addressing UQ needs of SciDAC application partnerships

Roadmap going forward continues to push along these lines

# Presentation Plan

This talk covered: Institute Awareness & Management

Following talks:

- Architecture awareness – Eldred
- Application awareness – Higdon
- Science Pipeline – Knio
- Wrap up – Najm