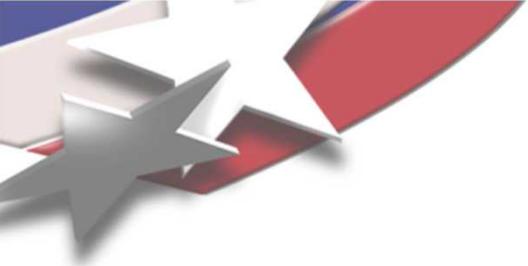


Metal Fires and Their Implications for Advanced Reactors

Steven P. Nowlen

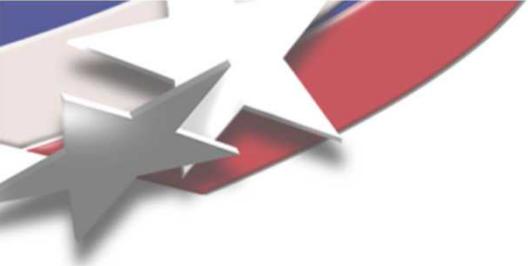
Risk and Reliability
Analysis Dept. 6761

Tara J. Olivier

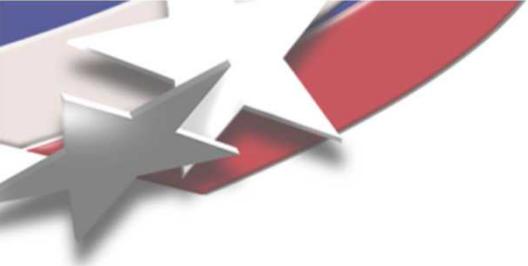

Risk and Reliability
Analysis Dept. 6761

Thomas Blanchat

Fire Science and
Technology Dept. 1532


John Hewson

Fire Science and
Technology Dept. 1532

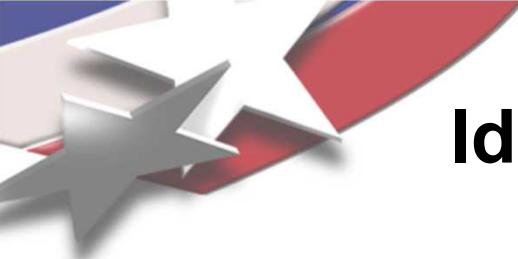

Overview

- **SNL Programmatic Motivation**
- **Making a Safety Case for Metal Fires**
- **Metal Fires Project**
 - Identify application requirements
 - Discovery experiments
 - Develop computational tools
 - Application Guidance and Pilot Safety Studies
- **Summary**

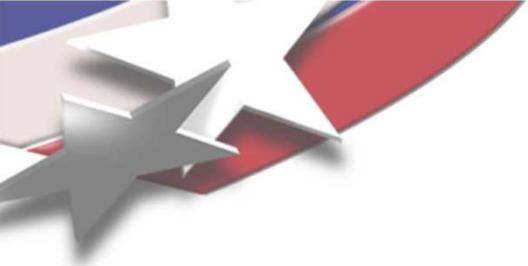
Programmatic Motivation: Metal Fires in Next Generation Nuclear Facilities

- Nuclear energy is undergoing revitalization in the U.S.
 - Significant commercial interest in building new capacity
 - New reactor designs being proposed and evaluated
 - GNEP - DOE Advanced Fuel Cycle Initiative - Proliferation resistant and transmutation technology
- Fast reactors:
 - Use of liquid sodium for neutronics and cooling
 - New fuel fabrication and fuel reprocessing facilities
- There are serious safety implications for these facilities
 - Accidents involving sodium leaks and metal fuels (UZr) resulting in fires

Making a Safety Case for Metal Fires


- **Significance of the fire hazard:**
 - Highly reactive and energetic materials
 - Critical components vulnerable to thermal damage
 - Nuclear materials can be dispersed through vaporization, boiling of other components and through particle entrainment
- **Hazard mitigation required during regular operation, transportation, maintenance**

Metal Fires Project: Technical Approach


- Identify application requirements:
 - The thermal environment/characteristics of metal fires
 - Means of mitigation
 - Study of past experience (lessons learned)
- Discovery Experiments:
 - Explore key physics issues
 - Data for code development and predictions
- Develop computation tools:
 - Understand the physics
 - Models for metal fire burning behavior (spray, pool)
- Application Guidance and Pilot Safety Studies:
 - Develop guidance for design and mitigation
 - Select two nuclear facilities (one reactor, one fuel cycle) as test bed for pilot safety studies

Identify Application Requirements

Previous Sodium Fire Accidents

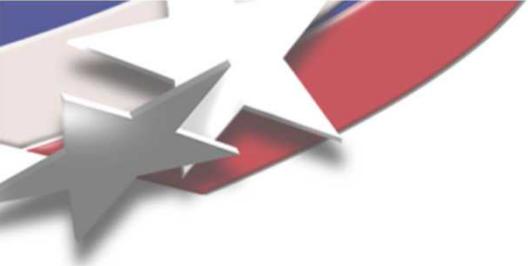
- MONJU, Japan 1995
 - Instrument port failure
 - Sodium leak and fire – ~0.05 kg/s (640 kg total)
 - Facility shut down for 12 years and counting
- Alermia Solar Power Plant, Spain 1986
 - Valve maintenance failure – 14 kg/s leak (14 tons total)
 - Spray and pool fire (12 m² hole burned in roof)
- ILONA Sodium Test Loop, Germany 1992
 - Pressure relief valve failure – 0.2 kg/s leak (4 tons total)
 - Sodium pool fire burns for 14 hours
- Russian study – categorizes 46 sodium leaks at two reactor facilities (1980's and 1990's)
 - Dominated by equipment problems/failures
 - Procedural errors also significant cause

Identify Application Requirements: Previous Sodium Research

- Heat release rates and flux from sodium fires are crucial to determine system response and consequence for hazard analyses
- Previous experiments cannot be used to advance analytical capabilities:
 - Experimental initial and boundary conditions are poorly defined
 - Historic experiments focused only on individual droplet and quiescent pool fire behavior
 - Focus was integral behavior and containment response due to sodium release
 - Lack of data on local heat flux and potential damage to safety equipment

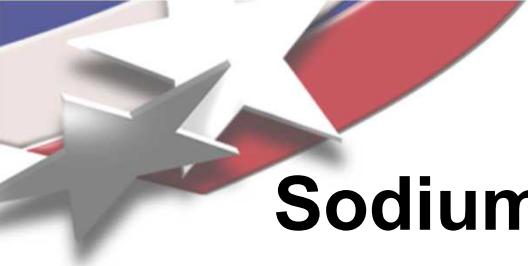
Identify Application Requirements: PIRT Results

- **Oxides aerosol, crust, or solution**
 - The amount of oxides that is removed from the crust
 - Consequences of the aerosolized oxides on electrical equipment
- **Oxygen transport through oxide crusts**
 - Important for predicting thermal damage to surfaces on which sodium pools form
- **Radiative heat transfer**
 - Consequence of thermal load on nearby equipment
- **Thermal coupling of sodium pools to surfaces**
 - Thermal insult to surfaces below sodium pools
 - Useful for characterizing pool oxidation rate



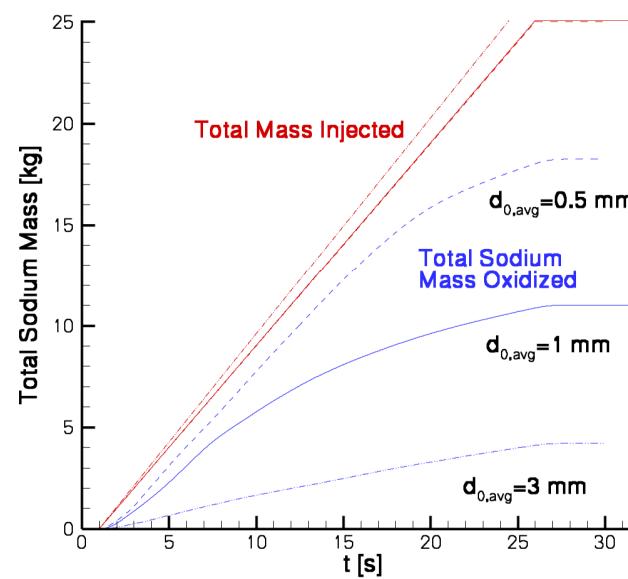
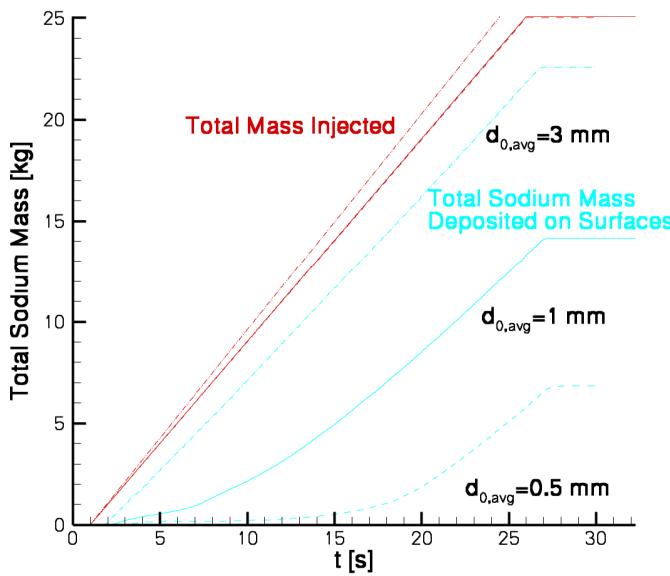
Discovery Experiments

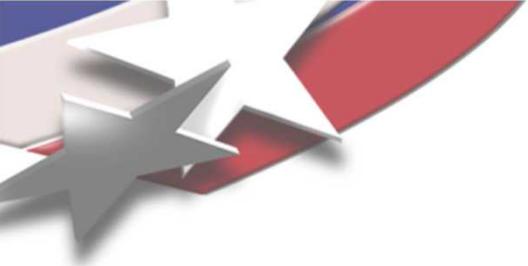
Sodium Test Plans


- Initial tests to be conducted outdoors
 - Melt generator proof of operation
 - Spray into a pan
 - Pour into a pan, quenching phenomena
- Later tests will use Surtsey vessel
 - Sealed pressure vessel
 - Monitor pressure and temperature effects
 - Allows for range of test conditions
 - pool fire, spray into pool, spray only

Discovery Experiments Sodium Test Plans (2)

- Experimental focus:
 - Measure heat release rates and heat flux from sodium spray fires
 - Crucial but poorly understood parameters that will determine system response and consequence for hazard analyses for some scenarios
 - Aerosol measurements in vessel
 - Aerosol impactors will utilized to collect aerosol characteristics
 - Explore quenching behavior for pool fires
 - Pool fires have been explored but quenching behavior remains poorly understood
 - Spray and pool fire behaviors
 - A spray that is not fully consumed so it forms a pool fire as well
 - One of the more likely fire scenarios given relatively low system pressures (i.e., large droplet sprays)


Computational Tools: Sodium Spray Fire Design Simulations

- “Rough-cut” simulations to estimate effect of sodium droplet size in Surtsey-scale vessel.
- General parameters:
 - 25 kg of Na injected over 25 s at 1 kg/s
 - solid cone nozzle with spray angle of 20 degrees (uniform distribution over 0-20 degrees)
 - particles mean diameters are 0.5 mm, 1 mm and 3 mm, lognormal distribution with variance of $\log = 0.15$.
 - initial particle temperature was 500 C (773 K).
 - SURTSEY-like chamber is rectangular prism and has dimensions 3.33 m x 3.33 m x 9 m high. The chamber volume is roughly correct.
 - Particles are injected 8 m above bottom.
 - Sodium oxidation leads to Na₂O₂ (over predicts heat release and oxygen consumption in low-oxygen situations).
 - Sodium particles radiate but Na₂O₂ aerosol does not participate in radiative heat transfer yet.
 - Walls are isothermal at 300 K. That is, walls cool the chamber by conduction / convection / radiation, but the walls do not heat up.

Computational Tools: Initial Sodium Spray Fire Results

- “Rough-cut” simulations to estimate effect of sodium droplet size in Surtsey-scale vessel.
 - For 3 mm (typical initial diameter) particles, the majority of the sodium sticks to the walls.
 - For 0.5 mm particles, the majority is oxidized and oxygen limitation is an issue.
 - For 1 mm particles, the split is close to 50-50.

Summary

Bringing modern analysis methods (experimental and computational) to bear on metal fire problem.

- Interface combustion models: liquid-gas (sodium-air/steam),
 - Develop and incorporate metal surface-reaction models
 - Significant in heating sodium for both pool and spray fires.
 - Models for oxide crust effect on surface oxidation are particularly challenging.
 - Extend single droplet models to include aerosol formation.
 - Couple aerosol with radiation heat transfer.
 - Study radiation/spray interactions as function of scale.
- Sodium flux data for code development and validation
- Future opportunities
 - Guidance on hazard mitigation strategies for new reactor designs.
 - Safety case assessments for future facilities.