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Outline

* Motivation/Technology horizon

* Physics and chemistry underpinning flow of
‘concentrated’ nanoparticle dispersions

* Multiscale methods, numerical approaches
« Sample results
» Retrospective and outlook

Rheology, dispersion stability, self
organization of ‘dense’ nanoparticle
suspensions -- Work in progress!



Imbedding Nanoparticles in functional
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Focus is on Processing Rheology and Microstructure in
Bulk and at Surfaces!
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Technical Challenges: rich
physical phenomena
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What effects Computational
Requirements?

* Predictive capability aimed at

Particles (10 nm-1um) in water at moderate to high
concentrations. Polydisperse but - mainly spherical or near
Spherical shape

Solvent/suspending fluid is Newtonian (continuum)

Physics includes interparticle forces (Static: Van Der Waals,
Steric/physical, osmotic, electrostatic, solvation. Dynamic:
hydro,Brownian)

Phenomenology: Micro/meso mechanics discovery, macro-
rheology and viscometric fluid mechanics, stability, surface self
assembly/organization

Other phenomenology of potential interest: nanoparticle effects
on wetting/spreading, product performance.

All at intermediate to “high” concentrations, which sets this effort apart....



Technical Approach: Integrated Capability
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About Coarse Graining - What
IS needed?

Particle

3

Osmotic and steric/structural
representation

Integration to Hammaker’s
Equation and equivalent

+Computational standoffs
*Porous constants

*Polymer layer parameters
«Structural constants (polymer
*And hard sphere)

Solvent
Blobs->SRD/DPD: dual particle

Molecular Dynamics approach




Colloidal Model: First Approach
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Integrated Lennard-Jones potential
represents colloidal particle!

— Hard spheres are poor model
since they phase separate for
disparate sizes

Compared to Lennard-Jones -
harder at short range but softer at
long range

Guarantees long-range interaction
between colloidal particles through
long-range attractive contribution

Addition of colloid-solvent and
solvent-solvent interactions

Hamaker constant A,-j represents
pairwise interaction strength



Viscosity

Aspherical Effects

 Composites

Analytical
shapes

— R. Everaers and
M.R. Ejtehadi,
PRE 67, 41710
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Effective Potential Development

Molecular dynamics. How small can we go with
continuum mechanics principles? Determining
interparticle potentials for mesoscale?

Direct force measurement (IFM, Optical Trapping)

specimen
a pla|ne
objective !
]
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:oplical
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MD of actual Silica/PEO/Water System .
(Dynamic and Equilibrium) Optical Tweezers Measurements

Accurate effective pair potentials required for simulations
of nanoparticles in suspension



Hydrodynamics and Coupling

» Platforms for development
LAMMPS, SIERRA, Home-grown

» Suitable flow solvers
FEM, BEM, DPD, SRD

* Suitable n-body Newton solvers
Effective potentials, contact, aspherical

Note that all this has been accomplished for dilute systems, small collections of
particles, and with a wider number of candidate specialty techniques



Simulating the Solvent

Computational cost
— Explicit atomistic solvent requires calculation of all
pair-wise solvent-solvent/colloid interactions

« typically many orders of magnitude more solvent atoms
than solute particles

 light, relatively fast dynamics => short timesteps

— Coarse-grain: Average over fast degrees of freedom
« all => Generalized Langevin dynamics of colloids

+ some => coarse-grained solvent with reduced # of solvent
particles, larger mass, longer timesteps (e.g., softer
potentials)

Multiple “coarse-grained” methods to capture
hydrodynamics
— MD-like, coarse-grained, “explicit” solvent
 DPD solvent
* SRD solvent treated as massive, ideal fluid, point particles

— NS-based (“continuum”) “implicit” solvent
+ BD (approximate hydrodynamics - F,, ~ 6wua)
+ SD/BEM (creeping Stokes equations)
- LB
* Solve full continuum Navier-Stokes equations numerically
(e.g., FEM)




shear velocity (d/T)
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Continuum FEM Accuracy:
Translational Friction Coefficient
in Stokes Flow
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Nanoparticle Suspension
Rheology: Predictive Manufacturing
Capability
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Production Design and Analysis
proven prototype in operational environment)

(
— e
e System Integration & Validation
APPS (novel materials applications and processing)

Invention & Characterization

Fundamental

(includes numerical methods and some
basic science directed to rheology,
dispersion stability, surface self-assembly
of dense nano-suspensions)

: (subsystem: functionalized particles,
SPHERE . FUNCTIONAL ASPHERE : :
MATERIAL MODELS novel materials & modeling)

Cornerstone: multiscale integration/V&V




Retrospective and Outlook

 Nanostructured Materials achieved through suspension
based processing of nanoparticles requires understanding
of

— =bulk rheology
— -dispersion stability
— -induced assembly and structure from volume reduction

 We are advancing a mod/sim platform to meet these needs
which targets a scale that bridges between the molecular
regime and the engineering regime

 Our vision is a computational platform to shorten the
experimental/test cycle time for designing nanocomposite
materials.
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