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Introduction: Massively multithreaded parallel architectures such as Cray’s MTA and XMT are
proving to be highly effective for graph analysis algorithms. By providing uniform memory access times for
data with much irregularity and little locality, these machines have demonstrated excellent scalability for a
wide range of graph-based algorithms. However, no apples-to-apples comparisons between these architectures
and our traditional distributed memory architectures had been performed using realistic input data.

We make the first such comparisons using Google’s PageRank method as the algorithmic kernel and
synthetic datasets with power-law vertex degree distributions. One might expect PageRank to favor tradi-
tional distributed-memory architectures, as PageRank reduces to matrix-vector multiplication with floating
point arithmetic. However, the choice of data clearly favors the multithreaded architectures. By comparing
PageRank performance using both distributed memory and massively multithreaded paradigms, we seek to
assess the effect of algorithm and data on architecture choice.

PageRank: PageRank [5] computes the importance of web pages based on the importance of pages
that link to them. The importance of page s increases if s is pointed to by other important pages. The share
of importance that s receives from page t is inversely proportional to the number of pages that t links to.

PageRank models the web as a directed graph G(V,E), with each vertex v ∈ V representing a web page
and each edge eij ∈ E representing a hyperlink from vi to vj . The probability of moving from vi to another
vertex vj is α/dout(vi) + (1 − α)/|V |, where α is a user-defined parameter (usually 0.8-0.9), dout(v) is the
outdegree of vertex v, and |V | is the cardinality of V . The first term represents the probability of following
a given link on page vi; the second represents the probability of moving to a random page. For pages with
no outlinks, the first term is α/|V |, indicating equal likelihood to move to any other page.

MultiThreaded Graph Library Implementation: In the MTGL [1] implementation of PageRank,
rank propagation is accomplished through adjacency list traversal. Our results were obtained with an under-
lying compressed sparse row data structure, but the same code would run on other graph representations.
A key requirement for scaling is that the code must be written so that a single thread spawns the loop that
processes all in-neighbors of a given vertex. This enables the compiler to generate hotspot-free code.

Distributed-Memory Implementation: The distributed-memory implementations of PageRank
represent the graph as a matrix A [4], with matrix entries Aij = α/dout(vi) if vertex vi links to vj . The
PageRank algorithm, then, is simply a power-method iteration in which the dominating computation is
matrix-vector multiplication Ax = y, where x is the PageRank vector from the previous iteration. Terms
representing random links could conceptually be included in A, but they are more efficiently handled as
adjustments to y. Rows or non-zeros of A are uniquely assigned to processors, along with the associated
entries of the PageRank vector x. Interprocessor communication is needed to gather x values for matrix-
vector multiplication and to sum partial products into the y vector. Most communication is point-to-point
communication, but some global communication is needed for computing residuals and norms of x and y.

Experimental Data: Our experimental data are R-MAT graphs [2]. R-MAT graphs are recursively
generated graphs with power-law degree distributions. They are commonly used to represent web and social
networks. They are generated using only four parameters a, b, c, and d, which represent the probability of
an edge being generated in one of four recursive quadrants of a matrix representing the graph. We used two
different R-MAT data sets, each with average vertex degree of eight and 25 R-MAT levels (i.e., 225 vertices).
The “nice” data set uses R-MAT parameters a = 0.45, b = 0.15, c = 0.15 and d = 0.25; the resulting
maximum vertex degree is 1108. The “nasty” data set uses R-MAT parameters a = 0.57, b = 0.19, c = 0.19,
and d = 0.05; the resulting maximum vertex degree is 230, 207.

Results: We ran our experiments on Cray’s XMT and MTA as well as Sandia’s RedStorm and a small
cluster called Odin. Cray MTA and XMT both support a global address space, hiding memory latency
by using 128 instruction streams per processor. The MTA has 220 MHz processors and a modified Cayley
network; the XMT has 500 MHz processors and a 3D-Torus network. RedStorm is a distributed memory
parallel supercomputer with two Dual-Core AMD 64-bit 2.4 GHz Opteron processors per node, 2GB memory
per node, and 9.6 GB/s link bandwidth. Odin has two AMD Opteron 2.2GHz processors and 4 GB of RAM
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Figure 1: Preliminary PageRank Derby results.

per node; nodes are connected with a Myrinet network.
For each data set, we computed page rank on each architecture; we present the time for one pagerank

iteration in Figure 1. For the nice data set, all implementations scaled well, with the XMT and MTA taking
less time per iteration than the distributed memory machines. With the nasty data set, load imbalance limits
the scalability of the distributed memory implementations; the maximum number of non-zeros of A assigned
to a processor is an order of magnitude greater than the average. Load-balancing techniques like those in
Zoltan [3] have the potential to improve the distributed memory performance. The XMT also struggles
somewhat with the nasty data set. Previous experiments on the MTA-2 led us to expect little or no change
in the scaling plots. The hitch in the XMT’s nasty data plot was an unwelcome surprise that has yet to be
explained. However, we note that the XMT’s strong scaling on these data from 64 to 128 processors resumes
a near-optimal slope. Parallelizing compiler artifacts may eventually explain the hitch.

Conclusions: Our results are preliminary. We have yet to run on exactly the same instances, and there
are artifacts of each implementation that need further exploration. However, several themes are emerging.

• Distributed memory clusters can process large, unstructured datasets in certain contexts.
Our simple algorithm applied to nasty data found strong scalability through at least 1000 processors.

• Massively multithreaded architectures can outperform microprocessor-based clusters,
even with floating point-intensive algorithms on datasets that are only mildly unbalanced.
The MTA/XMT machines have been spoken of only as boutique, pointer chasing vehicles. Before this
study, there was little reason to expect 500 MHz processors without floating point units to compete
with modern microprocessors in any floating point context. We explore sparse matrix multiplication
on mildly unbalanced data, however, and see this surprising result in our nice data plots.

• Realistic informatics data require programmer intervention for distributed memory archi-
tectures, but not for massively multithreaded architectures The slopes of the strong scaling
plots suggest that without load balancing, 10,000 Red Storm processors might not match 32 XMT
processors on realistic informatics data. The effectiveness of load balancing remains to be measured.
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