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Quadrilateral Mesh Simplification

Figure 1: Our simplification algorithm can be used to generate a pure quad level-of-detail hierarchy. The algorithm preserves topology
during simplification, and attempts to optimize geometric fidelity and quad structure (vertex valences near 4) throughout the process.

Abstract

We introduce a simplification algorithm for meshes composed of
quadrilateral elements. Our technique can handle models with
sharp features, and can be used for re-meshing polygonal, i.e. tri-
and quad-dominant, meshes into fully quad-meshes. It is reminis-
cent of edge-collapse based methods for triangle meshes, but takes a
novel approach to the challenging problem of maintaining the quad
structure during level-of-detail creation. The method consists of
a set of unit operations applied to the dual of the mesh, each de-
signed to maintain the quadrilateral structure and topology of the
mesh. Geometric shape is maintained by a simple extension of a
quadric error metric to quad meshes. The technique is straightfor-
ward to implement and efficient enough to be applied to real-world
models.

1 Introduction

Although in the past geometry processing methods have been dom-
inated by techniques that operate on triangule meshes, there is
a growing interest in developing algorithms that operate natively
on quad meshes (i.e., meshes composed of only quadrilateral ele-
ments). The motivation for the use of this type of mesh has been
well articulated in pioneering work on quad remeshing, e.g., [Lai
et al. 2008; Dong et al. 2006; Marinov and Kobbelt 2006; Alliez
et al. 2003]. Our attraction to this surface representation can be at-
tributed to the ability of quadrilateral elements to describe the prin-
cipal curvature directional fields of a surface naturally and to share
a common domain with surface parameterization solutions. These
characteristics enable a number of important applications, includ-
ing texturing and modeling with splines. An additional motivation
for our work in quad-based meshing algorithms is the use of quad
meshes in finite element analysis.

The goal of mesh simplification, analogous to downsampling in
digital signal processing, is to gracefully remove elements while
maintaining mesh fidelity. Mesh simplification is an important
geometry processing operation that has been used as a building
block for many higher-level processing steps, including mesh com-
pression, rendering, progressive transmission, editing operations,
smoothing, parameterization, and shape reconstruction. It is for
this reason that triangle mesh simplification techniques have been
some of the most useful operations developed.

A major challenge associated with quadrilateral simplification, un-
like triangle-based techniques, is the consideration of the structured
nature of the quadrilateral elements that force global constraints on

the mesh connectivity. For instance, it is not possible to create a
quadrangulation of a planar surface region bounded by a polyline
with an odd number of vertices. For triangle meshes it is possible to
limit the attention to local ooperations, that is, to collapse an edge in
a triangle mesh, one only needs to consider the triangles in its one-
neighborhood. In contrast, the deletion of a single quad element in
a quad mesh might require a much larger collection of elements to
be removed.

Our algorithm includes operations that are related to edge-collapse
based methods for triangle meshes, but addresses the challenging
problem of maintaining the quad structure at all levels-of-detail.
The method consists of a set of unit operations applied to the dual
of the mesh, each designed to maintain the quadrilateral structure
and topology of the mesh. The geometric shape is maintained by
a simple extension of a quadric error metric to quad meshes. In
addition our technique preserves sharp features in models and can
be used for re-meshing tri- and quad-dominant meshes into fully
quad-meshes.

Contributions. In this paper, we introduce a technique for quadri-
lateral mesh simplication that we term QMS. Our technique is based
on the novel idea of exploiting the dual structure of the mesh. We
propose simplification operators and a prioritization scheme based
on an extension of the quadric error metric to sort the collapse op-
erators. We also show how our simplification algorithm can be
used for re-meshing tri- and quad-dominant meshes into fully quad-
meshes. Our experimental results demonstrate the efficiency and
effectiveness of our technique on a variety of models.

2 Related Work

To our knowledge, there is no literature that directly addresses
quadrilateral mesh simplification. Some research has investigated
quadrilateral improvement methods [Staten and Canann 1997; Kin-
ney 1997]; however, it does not provide a controllable means to re-
duce element counts in the final mesh. On the other hand, many
quadrilateral remeshing algorithms can achieve varying level-of-
detail meshes, thus mimicking simplification in a bottom-up ap-
proach. Quadrilateral generation algorithms often have control pa-
rameters that tune the sizes of the created elements, with which they
can construct meshes with varying levels of detail.

Tracing iso-curves over orthogonal vector fields that form a chart
covering a surface yields the connectivity that defines a quadrilat-
eral mesh [Kalberer et al. 2007]. This technique extends earlier
anisotropic quadrilateral meshing algorithms that use principal cur-
vature to define the frames over the surface [Marinov and Kobbelt

1

SAND2008-3680C



Online Submission ID: 0153

2004; Alliez et al. 2003]. These techniques generate high quality,
feature aware quadrilateral meshes, and can achieve level-of-detail
meshes by adapting the spacing between the traced parameter lines.
A coarse-to-fine approach for generating quad shape approximation
is proposed in [Guskov et al. 2002].

Divide-and-conquer quadrilateral remeshing schemes segment the
input model then individually remesh each region. Paving [Blacker
and Stephenson 1991] is an early advancing front scheme that gen-
erates quadrilateral meshes of segmented and bounded regions of
a model. [Krishnamurthy and Levoy 1996] proposed a method
based on using a grid for resampling regions extracted by a user-
guided segmentation technique. A two step algorithm [Marinov and
Kobbelt 2006] automatically segments the model with a clustering
method similar to variational shape approximation [Cohen-Steiner
et al. 2004]. Samples are defined uniformly along the boundary
edges to obtain water-tight boundaries between adjacent regions;
then, the vertices are optimally paired using Bezier curves to define
the quadrilateral elements internal to each region. Morse-Smale
complexes automatically segment a surface into regions homeo-
morphic to a disc [Ni et al. 2004; Dong et al. 2005; Tong et al.
2006], and parameterization methods can guide the quadrilateral-
based remesh [Dong et al. 2006]. These divide-and-conquer ap-
proaches require careful attention along boundary edges to obtain
a piece-wise continuous surface representation across the divided
regions. By modifying the density of samples during the conquer
phase, these techniques are able to output models of varying ele-
ment counts.

Another method of quadrilateral mesh generation is the direct con-
version of triangular mesh elements into quadrilaterals. Splitting
schemes based on Catmull-Clark subdivision [Catmull and Clark
1978] and its square root extension [Kobbelt 1996], directly trans-
form the triangles into quadrilaterals. However, these techniques
greatly increase the number of elements describing the model and
tend to result in unstructured meshes.

Complete matching conversion, another direct conversion scheme,
pairs neighboring triangles to define a single quadrilateral, the
method seeks pairing combinations that will couple every element
with another. Q-Morph [Owen et al. 1999] is an advancing front
conversion mechanism that builds on this concept. Bubble packing
[Shimada 1993; Shimada and Gossard 1995], in particular rectan-
gular cell based algorithms [Shimada 1999; Viswanath et al. 2000],
build quadrilateral-dominant meshes through near complete match-
ings of Delaunay triangulations. These methods distribute vertices
over the surface using repulsion forces, where each rectangular cell
encodes forces similar to a clustered group of charged particles
[Meyer et al. 2007].

Other quadrilateral mesh generation methods [Eck and Hoppe
1996; Takeuchi et al. 2000] leverage conversion methods in com-
bination with triangular-based simplification methods. Conversion
back-and-forth between the quadrilateral and triangular mesh rep-
resentations allows the use of established triangle mesh simplifica-
tion algorithms while modeling quadrilateral elements. The con-
trol of the final element quality is not supported, and may prove
difficult, for such approaches because the triangle-based simplifica-
tion is unaware of the related quadrilateral elements. Additionally,
conversion between representations can become expensive and un-
stable, as it is not guaranteed to be one-to-one and onto. Instead,
we propose a simplification method to directly reduce quadrilateral
elements that does not require such conversions.

Simplification methods execute deletion operations to reduce the
number of elements until breaching a prescribed error threshold
[Luebke et al 2002]. In our work, we propose a generalization
of the triangle edge collapse (see Sec. 3) that provides promis-

Figure 2: The dual structure of a highly structured mesh is itself
highly structured (left); whereas, a non-structured mesh contains a
complex dual representation (right).

ing adaptability to quadrilateral meshing; whereas, quadrilateral
vertex merging does not maintain quadrilateral-only meshes and
neighborhood reconfiguration is an inherently expensive opera-
tion. Triangular-based simplification methods generate an auto-
mated prioritization method using a quadric error metric (QEM)
[Garland and Heckbert 1997], with extended development [Gar-
land and Heckbert 1998; Hoppe 1999; Lindstrom 2002; Garland
et al. 2001; Lindstrom and Silva 2001], which defines a measure-
ment tool to compare and minimize the collapse affects on the geo-
metric structure. The QEM matrix encodes the planar equations of
the neighboring triangles to store geometric data per vertex or edge.
By subdividing each quadrilateral into four triangular elements and
connecting the centroid to each corner, we accumulate planar equa-
tions for the original vertices using the established triangle-based
scheme. For further discussion of triangular mesh simplification,
we direct the reader to [Cignoni et al. 1998] and [Luebke et al
2002].

3 Quadrilateral Mesh Simplification

Our simplification algorithm is based on a set of operations that
modify the dual structure of the quad mesh in a controlled manner.
The dual representation of a quadrilateral mesh [Borden et al. 2002]
(see Figs. 2 and 3) is defined to have the following components:

• the dual of a quadrilateral element is its centroid,

• the dual of a quadrilateral edge is the chord that connects the
centroids of neighboring quadrilaterals,

• the dual of a vertex is the polygon formed by connecting the
centroids, in a cyclic order, of neighboring quadrilateral ele-
ments.

An important structure is the poly-chord, a polyline whose adja-
cent segments are chords that meet at a common centroid and are
dual to opposing edges in that quadrilateral. On a closed quadrilat-
eral mesh without boundaries, the poly-chords always form closed
loops. That is, starting at a single edge on a closed quadrilateral
mesh and traversing opposite edges on adjacent quadrilaterals, the
traversal will always end at the starting edge.

Many simplification techniques for triangle meshes are based on
edge-collapse operations. Unfortunately, if an edge is collapsed in
a quad structure, triangles are introduced and structure is lost. We
adapt ideas proposed in [Shepherd 2007; Shepherd and Johnson
2007] who showed, in the context of hexahedral mesh generation,
that the quality of a hex mesh is related to properties of its dual
structure. In our case, we use the dual structure as a tool for design-
ing simplification operators.

In order to sharpen our intuition, consider the dual structure of the
two different quad representations of a torus shown in Fig. 2. A
high-quality quad mesh of a torus (shown on the left) with uni-
form valence 4 vertices has a similar dual structure, with chords
that tend to meet at approximately right angles, poly-chordal loops
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Figure 3: Three deletion operations utilized throughout this paper: poly-chord (a-c), quadrilateral (d-f) and doublet collapse (g-l). For
a quadrilateral mesh with the dual representation (a), deletion of the selected poly-chord (b) merges the vertex groups (red) creating the
simplified mesh (c). A quadrilateral collapse (d) merges two opposing vertices thus modifying the topology of two highlighted chords in
the simplified mesh (e). Deletion of a doublet, two neighboring quadrilaterals that share two consecutive edges (h), removes the common
edges to create a single element, altering the dual structure (i). In the presence of an annotated feature, the doublet quadrilaterals (k) are
simultaneously collapsed to preserve the topology of the feature (l).

that exhibit low curvature, and polygons that are dual to the ver-
tices are generally rectangular (i.e., four-sided). The lower-quality
quad mesh (shown on the right) has chords intersecting with non-
right angles, poly-chordal loops that exhibit higher curvature, and
the polygons that are dual to the vertices of the mesh are typically
non-rectangular (i.e., typically, are not four-sided).

Below, we design operators that are used to modify the dual struc-
ture of the quad mesh to improve its overall quality. To raise ge-
ometric fidelity, we extend the well-known quadric-error metric to
assist prioritization of the simplification operators based on the ge-
ometric error incurred by each operation, as well as to determine
the locations of created vertices.

3.1 Simplification Operations

We introduce three different simplification operators, each designed
to modify the dual representation of a quadrilateral mesh, as illus-
trated in Fig. 3. The poly-chord collapse is a global operator while
and the quadrilateral and doublet collapses induce modification of
the dual structure through localized deletions.

Poly-Chord Collapse. Removal of a poly-chord from the dual rep-
resentation simultaneously deletes all quadrilaterals through which
it passes by merging the vertices of each edge dual to the selected
poly-chord. A poly-chord, as it is related to hexahedral meshing, is
equivalent to the intersection of a hexahedral dual sheet [Murdoch
et al. 1997] with the boundary surface. Because removal of hexahe-
dral sheets has been shown to preserve the hexahedral connectivity
during mesh improvement [Borden et al. 2002], the lower dimen-
sional equivalent poly-chord deletions preserve quadrilateral-only
elements.

Quadrilateral Collapse. The quadrilateral collapse is a localized
deletion operator that removes a selected element by merging di-
agonally opposing vertices (also described as a quadrilateral close
[Kinney 1997]). By imagining the quadrilateral as two triangle el-
ements connected by an edge between the merging vertices, ob-
serve that the described quadrilateral collapse is a generalization of
the triangle edge collapse. The elements modified by a quadrilat-
eral collapse are limited to a local neighborhood and maintains our
quadrilateral-only constraint. Furthermore, we emphasize the mod-
ifications that result to the connectivity of the dual poly-chords, ob-
serving that the collapse describes a swap in the connectivity of two
poly-chords.

Doublet Collapse. Doublets, neighboring quadrilaterals that share

two consecutive edges, are removed from the quadrilateral mesh
following each collapse operation. The valence 2 doublet vertex
describes a degenerate critical point, associated with a degenerate
dual polygon. Under normal circumstances, a doublet is removed
by merging the two faces into a single quadrilateral element modi-
fying the connectivity of the highlighted dual chords. The removal
of a doublet may generate new doublets, requiring additional dele-
tions, and, similar to the quadrilateral collapse, modifies the struc-
ture of two poly-chords.

3.2 Prioritizing Operations

To improve the mesh connectivity and maintain geometric fidelity,
it is important that the algorithm selects the elements for deletion in-
telligently. The prioritization of the collapse operations is achieved
by queuing the elements based on the impact of the deletion on
the resulting mesh. A combination of factors is considered by the
weighting scheme, including the quality of the final vertex valences,
the geometric loss, and the area distortion associated with each col-
lapse operator. Consequently, our prioritization scheme is able to
reduce the accumulated geometric error while improving the ele-
ment quality during sequential deletions.

The poly-chord collapse is a more complicated simplification op-
erator than the quadrilateral deletion so the weighting scheme dis-
cussion focuses on this operator. The error metric E assigned to a
poly-chord p is

E(p) = αq(1− e−Eq(p))+ αd(1− e−Ed(p))+ αv(1− e−Ev(p)).

where αs are user defined positive scalars that sum to 1. This func-
tion considers multiple contributors while weighing the impact of
the deletion, similar in purpose to [Smith and Boier-Martin 2005];
however, the user defined α’s enable control over the influence of
each term. The function Eq(p) returns the worst case QEM error
over all of the groups of merging vertices for the poly-chord p. The
function Ed(p) evaluates the length of the longest edge collapse
(or group of edges) due to the collapse of the poly-chord p. The
purpose of Ed is to prioritize collapses in order to construct square
elements.

The final weighting term, Ev(p), measures the change in vertex
valences from the ideal 4 and penalizes poly-chord collapses that
deteriorate the valences of neighboring vertices. The poly-chord p

is decomposed into multiple vertex groups Vi = {vNi
i,j=0}

M
i=0 that

merge to a single new vertex ṽi, illustrated in Fig. 3b. The valence
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Figure 4: A poly-chord may form a complex knot over a significant
portion of the mesh (a single poly-chord is shown in the image on
the right) complicating, and often invalidating, its collapse. The lo-
calized quadrilateral collapse is used to modify the chord structure,
unwinding such knots.

weighting term sums the worst created valence with the average,

Ev(p) = max
i

max
j

βi,j(|ν(vi,j)− 4| − |ν(ṽi)− 4|))

+ 1/M

MX
i=0

1/Ni

NiX
j=0

βi,j(|ν(vi,j)− 4| − |ν(ṽi)− 4|))

βi,j =

(
0, if |ν(vi,j)− 4| ≤ |ν(ṽi)− 4|
1, otherwise

where ν(v) returns the valence of v. Thus, Ev penalizes poly-chord
collapses that result in a variation from the ideal vertex and sorts the
deletions with equivalent worst cases based on their average created
valence.

The weighting metric assigned to each quadrilateral element for the
quadrilateral collapse is computed similarly as E(p), allowing the
user to vary the influence of the geometric-, area-, and valence-
based functions. For a quadrilateral q with vertices (in counter-
clockwise order) a, b, c, d, the QEM measurement Eq(q) associ-
ated with a quadrilateral collapse is based on the loss of shape fi-
delity induced by merging the chosen opposing vertices, for exam-
ple, merging a and c to ṽac. The area term Ed(q) measures the
distance between the two merging vertices of q.

The final weighting term, Ev(q), measures the difference between
the current vertex valences and the new configuration and is biased
to favor collapses that improve the local connectivity. The valence
term sums the difference of the created valences from the originals,

Ev(q) = βa(|ν(a)− 4| − |ν(ṽac)− 4|)
+ δb(|ν(b)− 5| − |ν(b)− 4|)
+ βc(|ν(c)− 4| − |ν(ṽac)− 4|)
+ δd(|ν(d)− 5| − |ν(d)− 4|)

βi =

(
0, if |ν(i)− 4| ≤ |ν(ṽ)− 4|
1, otherwise

δi =

(
0, if |ν(i)− 5| ≤ |ν(i)− 4|
1, otherwise

Thus, Ev penalizes quadrilateral collapses that lower the quality of
the local vertex valences. Note that for a given quadrilateral two

collapse configurations exist, each with distinct metrics. Finally,
doublets are given the highest priority and collapsed when detected.

3.3 Naı̈ve Simplification

The repeated iteration of any single collapse operator, while ideal in
some circumstances, proves inadequate when applied to a broader
spectrum of quadrilateral mesh connectivity. In particular, illus-
trated in Fig. 6, the poly-chord simplification scheme ideally re-
duces the structured Pensatore quadrilateral mesh, maintaining the
high quality elements at all levels of detail. However, in an un-
structured model, poly-chord deletions create many high valence
vertices and poorly shaped quadrilaterals. Furthermore, the method
terminates early, unable to generate lower resolution models, due
to the creation of a complex poly-chord structure. Even for quadri-
lateral meshes that exhibit a relatively structured connectivity, il-
lustrated in Fig. 4, the poly-chords may exhibit a knotting effect,
winding over a significant portion of the model, prohibiting further
deletions.

On the other hand, the quadrilateral-based scheme is not impeded
by the dependence on the dual structure. Given unstructured
meshes, the weighting scheme prioritizes the collapses such that
the number of ideal vertices significantly improves through simpli-
fication, illustrated in Fig. 6. However, this technique increases the
number of non-ideal valence vertices undesirably during simplifi-
cation of structured quadrilateral meshes.

3.4 Simplification Algorithm

We propose a novel quadrilateral mesh simplification, that we call
QMS, algorithm that balances the poly-chord and quadrilateral col-
lapses to achieve a flexibility that generates high quality results in-
dependent of the structure of the mesh connectivity, further ana-
lyzed in Sec. 4. As shown in the state diagram, illustrated in Fig. 5,
the algorithm favors the poly-chord collapse, iteratively choos-
ing the deletion that best improves the mesh’s connectivity while
least affecting its geometry (looping over state transitions a and b).
When no further poly-chord collapses are available, bounded by
threshold tolerances, the algorithm selects a quadrilateral element
for deletion (state transition c). The quadrilateral collapse modifies
the local neighborhood’s adjacencies and alters the dual poly-chord
structure. Consequently, the algorithm returns to the poly-chord
collapse state (via state transitions d and b), to inspect the dele-
tion eligibility of the newly configured poly-chords. By removing
the doublets following each collapse (state transitions a and d), as
opposed to waiting until the simplification is complete, our experi-
ments indicated a better control over the element count and quality
of the final mesh.

The state transition from the poly-chord collapse to the

Figure 5: Our QMS state diagram.

4



Online Submission ID: 0153

Figure 6: Simplification results for a structured (left) and an unstructured (right) quadrilateral mesh using the poly-chord, quadrilateral-
based and QMS algorithms. The poly-chord method maintains high quality elements at all levels of detail of a structured mesh, but generates
high vertex valences for unstructured meshes at intermediate resolutions and is unable to complete the simplification to lower resolutions.
The quadrilateral-based simplification generates additional critical points on the structured mesh, but improves the number of ideal vertices
on an unstructured mesh. The QMS algorithm mimics the poly-chord results for structured meshes and the quadrilateral-based results for
unstructured meshes, performing well, independent of the underlying connectivity.

quadrilateral-based collapse enables the adaptive nature of our
simplification method. This approach relies on the quadrilateral
collapse to unwind complex knots that prevent poly-chord col-
lapses, illustrated in Fig. 4, to continue simplification. Furthermore,
given unstructured meshes, the algorithm quickly transitions to the
quadrilateral collapse, avoiding the poor quality results associated
with poly-chord deletions.

For the simplification results shown throughout this paper, mesh
connectivity is the dominant factor of the sorting metrics (αv ≥
0.95). The QEMs associated with each collapse are used primarily
to determine the new vertex locations to better maintain the sur-
face geometry. To improve element quality and vertex location, we
implement a posteriori smoothing procedure described by [Zhang
et al. 2007], applied only after the simplification has finished. The
mesh vertices are perturbed in the normal direction to reduce mesh
noise while preserving the mesh volume; simultaneously, a tangen-
tial movement is included to improve the quad aspect ratios.

Topology Preservation. To preserve the topology of the mani-
fold mesh, we use the Link condition [Edelsbrunner 2006]. The
quadrilateral collapse inserts an edge between the merging vertices,
equating its link condition discussion to that of the triangular edge
collapse. Because the poly-chord collapse consists of multiple si-
multaneous edge contractions, the discussion is more complicated.

Deletion of the poly-chord p executes multiple edge collapses si-
multaneously, merging the vertex groups Vi into the new vertices
ṽi. In the simple case this involves a single edge, pairing the two
endpoints as a vertex group. However, more complex groups are
formed when multiple edges merge together as the poly-chord is
adjacent to itself or self-intersects, illustrated in Fig. 3. There-
fore, while inspecting a vertex group Vi, the remaining vertex
groups are temporarily replaced with their collapse vertex Vk =
ṽk, ∀k, k 6= i, to account for the multiple edge collapses occur-
ring. The mesh topology is preserved during poly-chord deletions
by comparing the intersection of Link conditions associated with
the one-neighborhoods of the vertices in Vi to the union of those
associated with the one-neighborhoods of the edges that connect
any two vertices of Vi. For further details, we refer the reader to
[Edelsbrunner 2006].

Complexity. The complexity of a single call to the different oper-
ators differ; while quadrilateral and doublet collapse operators take
Θ(1), a single poly-chord operation can take Θ(n). Still, it is not
hard to use amortized analysis to show that the overall cost of each
operation is still Θ(1). The argument is based on the fact that that
once an element is deleted, it is not touched again.

Sharp Features. In some applications, the preservation of user an-
notated feature edges is important. Our method supports the preser-
vation of feature edges. Included in Fig. 10 are two manufacturable
models that contain user annotated features highlighting the sharp
edges of the mesh.

Our implementation ensures that the simplified feature edges are
homeomorphic to their original counterparts. Conceptually, tri-
angular facets are connected from each feature edge to a tempo-
rary transition vertex. In this way, the feature edges belong to
three polygonal faces, thus defining degree-3 edges. The remain-
ing edges of the 2-manifold quadrilateral mesh are degree-2, shared
by only 2 quadrilateral elements. The Link condition supports the
preservation of the non-2-manifold edges to ensure topological iso-
morphism of the annotated features.

The preservation of feature edges defines additional constraints that
restrict the simplification operators and invalidate some collapses.
While this is terminal for the poly-chord and quadrilateral collapse
operators, we describe a special case to handle doublet deletions
along feature edges. Illustrated in Fig. 3, when the shared edges of
a doublet are annotated as part of a feature edge, the two quadrilat-
erals are simultaneously collapsed. If the synchronized quadrilat-
eral collapse special case maintains the topology of the mesh and
features edges, the doublet is removed from the mesh.

4 Experimental Results and Applications

We have implemented the QMS algorithm as described in Sec. 3
in C++. Our code was written with flexibility in mind, with no
particular effort given to optimizations for speed at this time. The
running times reported in this section were performed on a dual
core AMD Opteron 2.21 GHz processor with 4GB memory. The
code is robust, and our implementation has been tested on a large
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Time Vertex Valences
Model |Quads| (sec) % Ideal |Critical| Worst

Pensatore1
44k n/a 99.9% 8 3

5.2k 52 99.9% 8 3

2.5k 53 99.9% 8 3

Pensatore2
46k n/a 50% 23k 10

5.7k 157 76% 1.3k 7

2.9k 160 80% 556 6

Torus
95k n/a 50% 47.6k 13

23.5k 878 66% 8006 10

Bimba

62.8k n/a 98% 726 6

15.5k 479 94% 898 6

7.8k 500 92% 600 6

3.9k 505 89% 398 7

970 506 80% 189 6

Fish

32.4k n/a 97% 876 6

8k 115 91% 678 6

4k 119 88% 475 6

2k 120 84% 314 6

490 121 73% 131 6

Casting

20.8k n/a 98% 405 6

5.1k 30 90% 491 6

2.6k 31 86% 344 6

1.3k 32 79% 259 6

630 32 67% 205 6

Ra

3.9k n/a 98% 52 5

925 1 94% 52 5

450 1 90% 44 5

190 1 81% 36 5

95 1 69% 28 5

Table 1: Performance and vertex valence analysis of models shown
throughout the paper: the structured pensatore and unstructured
pensatore (1,2 respectively, Fig. 6), the bumpy torus (Fig. 9), and
the bimba, fish, casting and Ra (Fig. 10) models.

number of quad meshes, including the models used to created the
figures in this paper.

For quad meshes, we not only consider the visual quality of the
simplified models as shown in Fig. 10, but it is also important to
consider quality metrics. Here, we examine the connectivity of the
simplified meshes as well as the quality of the quadrilateral ele-
ments. An ideal vertex, important in finite element meshing, has a
valence of 4. Non-ideal vertices are critical points that complicate
parameterization solutions and geometric computations. Included
in Table 1 is the percentage of ideal vertices, the number of critical
points, and the worst case valence for each mesh. To further inves-
tigate the quality of the quadrilateral elements, in Fig. 7 we plot a
histogram of the original and simplified element angles and scaled
Jacobians. The scaled Jacobian is a metric equal to 1.0 for a rect-
angular element, 0.0 if three vertices (of the four) are co-linear, and
negated if the quadrilateral is not convex. Ideally, the angles of a
quadrilateral mesh are near 90◦ and the scaled Jacobians near 1.0,
corresponding to orthogonal corners in the mesh.

As shown in Table 1, the QMS algorithm generates high quality
connectivity. The QMS algorithm maintains low worst case va-
lences and reduces the number of critical points. For unstructured
models, i.e. the bumpy torus and the Pensatore2, the simplifica-
tion results in significant improvements in the number of ideal va-
lence vertices. Simplification of highly structured models, i.e. the
Pensatore1 and Ra models, generates high quality results. In some
cases, the number of critical points increases on the structured mod-
els, i.e. the Bimba and casting models. This is the result of a num-
ber of quadrilateral collapses executed in order to unwind complex
poly-chords, as illustrated in Fig. 4.

The improved connectivity augments the quality of the correspond-

Figure 7: A comparison of the angle distributions and scaled Jaco-
bians measured on the original and QMS simplified meshes shown
throughout this paper, analyzed in Table 1. The QMS algorithm
produces angles near 90◦ and scaled Jacobians near 1.0 despite
the input distributions.

ing quadrilateral elements (Fig 7). Despite the quality of the input
models, our QMS algorithm results in simplified meshes with good
quality angles and scaled Jacobians. Some degradation is inherent,
similar to the geometric error incurred during the deletions. Im-
portantly, the element quality of the two models with poor original
distributions in Fig. 7, corresponding to the bumpy torus (Fig. 9)
and the Pensatore2 (Fig. 6), are improved through the QMS sim-
plification. There are no similarly bad distributions evident in the
simplified histograms. The low quality mesh angles and their cor-
responding scaled Jacobians are attributed to the preservation of
feature edges, i.e. the casting and Ra models (Fig. 10), further dis-
cussed in Sec. 5.

4.1 Quadrilateral Remeshing

We introduce a novel approach to quadrilateral remeshing of ar-
bitrary topological and polygonal surface meshes. Our remeshing
pipeline constructs a quad-only mesh by splitting the polygonal el-
ements based on the rules of Catmull-Clark subdivision (Fig. 8)
then simplifies to the desired element count, illustrated in Fig. 9.
A single iteration of Catmull-Clark subdivision constructs quad-
only meshes despite the polygonal types of the original model. In
this way, our technique is also able to generate quadrilateral only
remeshes of quad-dominant models. Geometric error thresholds
during simplification are used to constrain the output remesh within
a bounded distance of the original model surface. Additionally, our
validation methods maintain mesh topology and user-annotated fea-

Figure 8: A single iteration of the Catmull-Clark splitting scheme
generates quad-only meshes despite the original polygonal type.
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Figure 9: The elements of a triangular mesh (a) are split using a
Catmull-Clark based scheme to generate a quadrilateral-only mesh
(b) which is simplified to the original element count (c).

ture edges, thus recreating important (i.e. sharp) feature curves from
the original model.

We could further improve the ratio of ideal valence vertices to crit-
ical points, the remeshing pipeline can be extended by simplifying
to a quarter of the desired element count then subdivide the results
via Catmull-Clark. The additional simplification and subdivision
increases the geometric error of the final results. Consequently, it
may necessitate a projection of the final vertices to the original sur-
face mesh.

5 Discussion & Limitations

Our QMS algorithm balances the poly-chord and quadrilateral-
based simplification operators to generate high quality meshes in-
dependent of the underlying mesh structure. As illustrated in Fig. 6,
the QMS algorithm is an improved approach over any single oper-
ation type. For the structured mesh, QMS behaves similarly to the
poly-chord simplification method, better maintaining the regularity
of the mesh with a minimal number of critical points and near or-
thogonal edges. However, where the poly-chord collapse performs
poorly, terminating early on the unstructured mesh, our QMS algo-
rithm instead mimics the results of the quadrilateral-based simplifi-
cation scheme.

Quadric error metrics are used to reduce the loss of geometric fi-
delity experienced during the simplification process. Consequently,
even when the weighting metrics used to sort the simplification op-
erators heavily emphasize connectivity improvement, the reduced
meshes maintain high shape fidelity. Illustrated in Fig. 10 are sev-
eral organic and machined models simplified using the QMS algo-
rithm, weighing the deletions solely based on connectivity.

Our simplification algorithm is unable to discern when too many el-
ements have been deleted from constrained regions surrounding the
user annotated feature edges. In practice, simplification to coarse
representations generates low quality edge angles (Fig. 7), some-
times resulting in negative scaled Jacobians, indicating inverted el-
ements. These poorly shaped elements typically reside in regions
of the constrained feature edges. While the mesh topology is pre-
served, the inverted elements may inhibit computations and visual-
ization of the mesh. Another issue is that when compared to triangle
simplification (see Fig. 11), it is harder to maintain small detailed
features like the scales of the dragon because of the global nature

Figure 10: The hybrid simplification generates controlled level-of-
detail representations for quadrilateral-only models while preserv-
ing the topology of the mesh and annotated features.

of the poly-chord collapses. It should be possible to add feature
constraints to the algorithm to favor creating poly-chords around
features.

6 Conclusion

In this paper we show how it is possible to use the dual structure of
a quad mesh to develop a quadrilaterial mesh simplification (QMS)
technique. To the best of our knowledge, QMS is the first tech-
nique for simplification of quad meshes. Robustness is one of the
key strengths of this approach; we have successfully experimented
with our QMS implementation on a large number of models. An-
other is simplicity; it is relatively easy to implement our algorithm
and reproduce our results. We only touched on the potential appli-
cations of this framework with our description of a simple quadri-
lateral remeshing approach. We believe this technique can be used
as a building block in many other geometry processing algorithms
for quad meshes.

There are many avenues for future research. We plan to investi-
gate improvements on the weighting of the simplification methods,
stressing the relationship between the quadrilateral collapse and the
dual structure. Currently, the scheme implements a greedy priori-
tization, that may give too much weight to improving the connec-
tivity of the mesh. It may be possible to improve the final results
of the QMS algorithm by intelligently selecting quadrilateral col-
lapses that better improve the poly-chord structure. We would like
to further explore other optimizations, including the minimization
of critical vertices, controlling element size and scaling, curvature
alignment and other related challenges. We are also interested in
creating high-efficient implementations of this framework, includ-
ing out-of-core and streaming approaches. Furthermore, we are
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Figure 11: The QMS algorithm generates controlled level-of-detail
representations, shown in the comparison between QEM triangle
mesh simplification and our method for the dragon model with 150k
elements (top) at 37.5k (middle) and 9.4k elements (bottom).

also interested in other applications, e.g., improved quality remesh-
ing and progressive compression of quad meshes.
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