

**Piezoelectric Property Relationships for Lead-Free Compositions in the Piezoceramic
 $\text{Bi}_{0.5}\text{Na}_{0.5}\text{TiO}_3\text{-BaTiO}_3\text{-K}_{0.5}\text{Na}_{0.5}\text{NbO}_3$ System**

Chris DiAntonio, P. Yang, M. Winter, M. Rodriguez, G. Burns, and T. Chavez, Sandia National Laboratories, Albuquerque, New Mexico

Lead zirconate titanate solid solutions with the perovskite structure have long been the materials of choice for piezoelectric applications. The investigation of lead-free piezoelectric ceramic compositions has recently gained an increased level of interest and considerable effort has been devoted to the development of lead-free piezoceramics due to the high toxicity level of the heavy metal lead. The focus vehicle of this work is in the piezoceramic $\text{Bi}_{0.5}\text{Na}_{0.5}\text{TiO}_3\text{-BaTiO}_3\text{-K}_{0.5}\text{Na}_{0.5}\text{NbO}_3$ system, particularly near the 'so-called' morphotropic phase boundary, due to its consideration as a promising candidate material as a lead-free option to some lead-based compositions. A conventional mixed-oxide approach from raw oxides and solid-state sintering technique has been employed to produce analysis samples. Efforts on characterizing processing induced variations, crystal structure, microstructure and dielectric, ferroelectric and piezoelectric behavior for compositions in this lead-free ternary system will be presented.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.