Remap of solenoidal fields on
unstructured quadrilateral grids

Pavel Bochev Mikhail Shashkov
Applied Mathematics and Applications Theoretical Division T-7
Sandia National Laboratories Los Alamos National Laboratory
MS-1320 Albuquerque, NM 87185 MS-B284, Los Alamos, NM 87545

ALE from ART to SCIENCE
June 10th - June 13th
LANL

\
SE ffice of 7
Supported in part by 4% TS0 Seince {QE

" Sandiaisa multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, @
for the United States Department of Energy under contract DE-AC04-94AL85000. A

SAND2008- 3745C

Sandia
'11 National

Laboratories




Summary

« Edge and face finite element spaces on quads
* Formal statement of the remap problem

« Constrained Interpolation (Cl) remapper
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— Optimization
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* Numerical results
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K 'Y'Edge and Face Elements on
Logically Rectangular Grids
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Local
shape functions

Piola transform is “hidden” in function definitiora

Sandia
National
Laboratories



Definition of discrete derivative

Duality of 0 and d

qﬁfsz;,B-n ds

0K = JFp + Frt Fu-FL=20:F

dBV(K)=- &p + @5 + Dy - @, =)0, D

d=div
Coordinate independent definitions of grad, curl, div @
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Exactness Relation

A=(0 0 ¢)
U

A =Wy, + 0, W, + ¢, W, + oW, ¢ ¢
VXWOO: WD - WL VXW1O= -WR - WD

V xA = ¢OO(WD _WL)+ ¢10<_WL _WR)

+¢01(WL + WU)+ ¢11(WR - WU)

V xA = (¢00 - ¢10 )WD + (¢01 . ¢11)WU

+(¢11 - ¢10 )WR + (¢01 = ¢00 )WL VXW01= WL + WU VXW11= WR - WU

Discrete Poincare Lemma: V- B=0<B=V xA
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(Formal) Statement of the remap problem:

Given:

« NEW and OLD meshes with possibly different types and numbers of cells

* Discrete solenoidal field B on the OLD mesh, represented by its fluxes

Find: « Discrete solenoidal field B on the NEW mesh such that B = B

i IR gﬂ

A good remapper

v’ |s accurate

v’ Preserves energy

v Has good feature retention
v Does not “ring” at jumps

v Is efficient (EXPLICIT)!
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Taxonomy of Remap Algorithms

Remap via Transport Algorithms: (Robinson, Bochev, Rambo, SAND2001-2146P)

0 Same connectivity required for grids B_ v, (Bxu,,)

O Explicit ot
O Upwinding required. ‘
Q Equivalent to Taylor expansion: B"" =B" - AtV x (B” X uREL)

[Getails] B(r +Ar) =B(r) -V x (Ar xB) + O[ Ar|’) J

Remap via Constrained Optimization: (Carey et al. IINME 50, 2001, Girault 2003)

O Arbitrary grids
Q Implicit: solution of a saddle-point “Darcy” problem required:

2
Bold _Bnew dx

min A C new old
B"ewewnew(g)i —) (CT OIBA HBO

subjectto V-B"" =0

Remap via Grid Structure:(Balsara JCP 174, 2001, Roe & Toth JCP 180, 2002)

U Limited to Cartesian grids
Q Additional restrictions required: factor-of-2 resolution change, etc. @ ool
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Constrained Interpolation (Cl) Algorithm

Principal idea: exploit existence of discrete potentials in exact sequences
=> divergence-free constraint automatically satisfied

Key component: an explicit potential recovery algorithm

RECOVERY V:-B“ =0 V:-B™ =0
c D ! T
WiW W . .
BO — V XAO Bnew — V XAnew REMAP
DB=0<B=CA | 1
Aold Anew
POSTPROCESSING
R(A™ ) INTERPOLATION
OPTIMIZATION
Patch recovery A" =7A(A,,)
A (A)=2A" +(1-A)R(A™ »
PP operators | (1) ( ) ( ) “upwinding”
FV reconstruction A,, = argmin J( A% A( A))
‘reconstruction” “limiting”
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Cl Remap in a Nutshell

recover interpolate
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Explicit Potential Recovery

V x AB = (¢00 - ¢10)WD + (¢01 B ¢11)WU
D), = (P —b10) P =(Po1 — Do
+(¢” il ¢10)WR + ((])01 = (/)OO)WL =VxA;=B @{ ( ) o ( )

d - = -
B =9o,W,+ oW, +® W, +®W, U (¢01 ¢11) R (¢11 ¢10)

&

1 North & West

{—1 South & East

{-Q (|
X P
P(Q) = 9(P) + 0P, ’

H(Q) =p(P)+ Y 05D,
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Path Independence

=>O=fB-ndx—fB-ndx =

fB-ndx=fB-ndx=cp(Q)

o 3
g 2
% 3
P 4

Q Q
® I ) ¢ *
— - e
® ® ® ® ® ® ® ®
—»‘ *4— e C, =EOS Ts —»‘ *4— — |
® i ® ® o Tsi ® i ® ° ® ®
; x
o — ¢ _>
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i w20 4y I_j +
- —>
® ®
. S
Q. =C, -C,
oheo } — O=£{V-de=dLB-ndx
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Recovery on Logically Rectangular Grids

1. Choose a spanning tree

Qy
o X K -~ e
Csp = EO'SSP TSW
Fs,,
[ = '3 o ' ®
2. Initialize the root
) e > ~@
¢(Qo) =0 r
3. Traverse the branches O &< @< &< |
for k=1:N o 6 e P o
P(Q,) = p(Q, 1) + O Py, $(Qq)=0
end
3D recovery on logically Cartesian grids similar
0 &
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Base potential recovery in 3D

On one cell:

1
®

02
3 e 4@

95

6 flux DOF - 1 constraint = 5
12 edges - 7SP edges =5

BN~

On a logically rectangular mesh

3

2 1

5

N |

4

Choose a spanning tree and mark edges on co-spanning tree as free
Order faces with respect to the number of free edges
Recover Ag on all faces with 1 free edge; update number of free edges
If no faces with free edges left then stop, else proceed to step 3
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Post-processing and Optimization

Post-processing

® A; — base
m A — extended

Optimization

A (A)=2A"" +(1- A)R(A™)

A,,, = argmin J(A™

A. Feedback

B. I-parameter control

C. Cell-by-cell control

Q1 (bilinear interpolant) P
8 node serendipity
-
o)
A(2))
o max(0,4,,, + €) 8<0; ool Bl
min (1, A, +€) €>0 B...o
. 2 2
AQ) — arg mln(‘Bgld ; - HBW(A(Q))HQ)

Requires conservative remap of magnetic energy
(see Shashkov and Margolin, LANL LAUR-2002)




Numerical Results: Cyclic Remap

Wave Mesh Random Mesh

100 cycles

Shashkov and Margolin, LANL LAUR-2002 Natora
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Potential Optimization: Wave Mesh

17x17 Wave tlesh

Base

Extended

1 parameter

cell-wise

Feedback

17x17 Wave Hesh

1 parameter

cell-wise

Feedback

3.8 S
3.6 E
é Dj2 0;4P;ra;et;r0j6 0;8 . . . 1

17x17 Wave Mesh:
80 cycles

B=VxA;
A =sin(2mx)sin(2my)
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Potential Optimization: Random Mesh

17x17 Wave tlesh

8

7
Base

3

___..——"’"-__-.___- Extended
17x17 Random Mesh:

1 parameter 80 cycles
cell-wise
Feedback

B=VxA;

0 0.2 0.4 0.6 0.8 1
Parameter

5 : : : : : A = sin(2mx) sin(27y)

1 parameter

g‘t.z i e — B 1 cell-wise

e Feedback
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30x30 Wave Mesh:
100 cycles

1-parameter control

Cell-by-cell control

Energy

Potential Optimization:

Discontinuous Field
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30x30 Wave Mesh:

100 cycles

Cl Base:

CT Donor:

Energy:

Smooth Field

Cl Base vs. CT Donor:

B=VxA; A =sin(2mx)sin(2my)

Mave tesh
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Cl Base vs. CT Donor:
Smooth Field

30x30 Random Mesh:

100 cycles

Cl Base:

CT Donor:

Energy:

B=VxA; A =sin(2mx)sin(2my)
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Cl Base vs. CT Donor:
Smooth Field

Feature retention

0.z
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Conclusions
Constrained Interpolation Remap:

O Algorithm applicable to arbitrary pairs of grids:

1. Old and new grid can have different topologies
(refinement)

2. New grid is not necessarily a small perturbation of the old one
(no CFL condition required for stability)

3. High accuracy retained for unstructured grids

4. Explicit!

Qd Modular: can be extended to different discretizations (FE, FV, FD)
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Constrained Transport (CT) Remapper

Based on CT scheme of Evans, Hawley, The Astrophysical Journal 332, 1988

Advection equation Discretization
% =-V x (B X um) B - ;CDOTMW;M
e S B
Flux update Exactness

@y =Dy + AH(Ch' - Ciy' ) ﬂ Q VxE™ =(Co' - Ci )W 5"
o =@y + A Cp - C) /’/\ m Heo' - crwye
O =Dy + A(C - C ) //\ //X HC = Cil w
@y =0 + A - G f/\ f/\ +Cor' = Ca'
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Computation of EMF in CT

E is required at virtual edges P —

B is discontinuous at P

= B must be (upwind) averaged atP  — B (P)= (Bold

Donor

\

Cy = (uzBfld —ulB‘;ld)(P)

\

Upwind interpolation at P: \ /{
A
\ |
N F, +|F -
B, -, + of ol P -Af“f] i "
D
S| |F +|F
Bl?ld <P> = BiOIDdonor(P) ToIE ‘ = ‘ e - Atuz B
’ 2 2
(min($,}S,])sgn(s,) monotone
25,5, /(S, +S,) harmonic S, =B, -Bo)((Fo| +|Fa)12): S, =B, -By)/(Fo/2)

min([S, S, (18] + |S,])/2)sgn(S,) Van Leer
0 if §5,<0 or

S, = By - Be) /((Fo| +|Fol)12): S, =By -By) /(| Fy|/2)

donor

< G
g I
g N
% &

+ l§Z\lgead ) /2
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Extension to unstructured meshes

A. Robinson, P. Bochev, P. Rambo. http://infoserve.sandia.gov/sand_doc/2001/012146p.pdf.

CT Remap and Taylor expansion

AB,(r) , . IB,(r)

B,(r+Ar)=B(r)+
ox

Ay + O[|arf’)
dB,(r) . dB,(r) )
B (r +Ar) = B,(r) + =2 ZAr+ TA}) + O(|Ar| )

V.B=a_131+&_

0x dy

B,(r + Ar)=B,(r) + (aBl(r) Ax
ox

IB,(r)

B,(r +Ar)=B,(r) +
ox

P
2 (B,(r)Ay - B, (r)Ax
é’y( (r)Ay - B,(r)Ax)

B(r + Ar) = B(r) + +O[|ar{") = B@) - V x (Ar x B)

j (B,(r)Ay - B,(r)Ax)

X

D
B(r + Ar) = B(r) - V x (Ar x B) + 0(\Ar\2)

Reconstruction must be
exact for the 1st derivatives
to get 2nd order accuracy.
Not easy on unstructured

meshes!

return | © T
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Base Cl Uses Information Better
Than Donor Cell CT

it 0
C“ld
i
new new new new old old old
o, = (¢01 -y ) O, =Dy + At(Cm -Cy )
@ = (9" - 915" P =Dy + A(C - C)
¢, depend on all 4 old flux values C;“ depend only on 2 old flux values
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