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Summary

• Edge and face finite element spaces on quads
• Formal statement of the remap problem
• Constrained Interpolation (CI) remapper

– Recovery
– Optimization
– Interpolation

• Numerical results
– Optimization of potentials
– Discontinuous B



Computational mathematics and algorithms  Edge and Face Elements on
Logically Rectangular Grids
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Definition of discrete derivative

Duality of ∂ and d

B= ΦD WD  +  ΦR WR + ΦU WU  + ΦL WL

ΦF =∫F B•n ds   

dBV(K)= - ΦD + ΦR  + ΦU  - ΦL =∑σs Φs 
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Coordinate independent definitions of grad, curl, div
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Exactness Relation

∇×W10= -WR - WD

∇×W11= WR - WU

∇×W00= WD - WL

∇×W01= WL + WU
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(Formal) Statement of the remap problem:

• NEW and OLD meshes with possibly different types and numbers of cells
• Discrete solenoidal field B on the OLD mesh, represented by its fluxes

Given:

Find: • Discrete solenoidal field B on the NEW mesh such that B ≈ B

A good remapper

 Is accurate

 Preserves energy
 Has good feature retention
 Does not “ring” at jumps

 Is efficient (EXPLICIT)!
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Taxonomy of Remap Algorithms
Remap via Transport Algorithms: (Robinson, Bochev, Rambo, SAND2001-2146P)

Remap via Constrained Optimization: (Carey et al. IJNME 50, 2001, Girault 2003) 
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Remap via Grid Structure:(Balsara JCP 174, 2001, Roe & Toth JCP 180, 2002)

 Same connectivity required for grids
 Explicit 
 Upwinding required. 
 Equivalent to Taylor expansion:
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 Limited to Cartesian grids
 Additional restrictions required: factor-of-2 resolution change, etc.
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Constrained Interpolation (CI) Algorithm
Principal idea:     exploit existence of discrete potentials in exact sequences
      ⇒ divergence-free constraint automatically satisfied

Key component:     an explicit potential recovery algorithm
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CI Remap in a Nutshell

ΦD(new)

ΦU (new)

ΦR(new)ΦL(new)

recover interpolate remap



Computational mathematics and algorithms  

P

+
+ -

-

Explicit Potential Recovery

! 

" #A
B

= $
00
%$

10( )WD
+ $

01
%$

11( )WU

+ $
11
%$

10( )WR
+ $

01
%$

00( )WL

B =&
D
W

D
+&

U
W

U
+&

R
W

R
+&

L
W

L

' 

( 
) 

* 
) 
+"#A

B
= B,

&
D

= $
00
%$

10( ) &
L

= $
01
%$

00( )

&
U

= $
01
%$

11( ) &
R

= $
11
%$

10( )

- 
. 
) 

/ ) 

    

! 

"(Q) = "(P) + #
S
$

Fs

Fs

%

    

! 

"(Q) = "(P) +#
S
$

Fs

  

! 

"
S

=
1   North &  West

#1   South &  East

$ 
% 
& 

' & 

P

Q

Q

Q

Q

Q



Computational mathematics and algorithms  

Path Independence
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Recovery on Logically Rectangular Grids
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Base potential recovery in 3D

6 flux DOF - 1 constraint = 5
12 edges   - 7SP edges  = 5
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On one cell: On a logically rectangular mesh

1. Choose a spanning tree and mark edges on co-spanning tree as free
2. Order faces with respect to the number of free edges
3. Recover AB on all faces with 1 free edge; update number of free edges
4. If no faces with free edges left then stop, else proceed to step 3
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Post-processing and Optimization

B. I-parameter control
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Numerical Results: Cyclic Remap

Wave Mesh

100 cycles

Random Mesh

Shashkov and Margolin, LANL LAUR-2002
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Potential Optimization: Wave Mesh
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17x17 Wave Mesh:
80 cycles
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Potential Optimization: Random Mesh
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B =" #A;

A = sin(2$x)sin(2$y)

17x17 Random Mesh:
80 cycles



Computational mathematics and algorithms  

Potential Optimization:
Discontinuous Field

30x30 Wave Mesh: 
100 cycles

1-parameter control

Cell-by-cell control

Energy
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< 4%{
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Smooth Field
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B =" #A; A = sin(2$x)sin(2$y)

CI Base:

CT Donor:

Energy:

30x30 Wave Mesh: 
100 cycles
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CI Base vs. CT Donor:
Smooth Field

CI Base:

CT Donor:

Energy:

30x30 Random Mesh: 
100 cycles
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Smooth Field

Feature retention
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B =" #A; A = sin(2$x)sin(2$y)

CI Base Constrained Transport Donor

30x30 Wave mesh: 
100 cycles
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Conclusions

 Algorithm applicable to arbitrary pairs of grids:

1. Old and new grid can have different topologies
(refinement)

2. New grid is not necessarily a small perturbation of the old one
(no CFL condition required for stability)

3. High accuracy retained for unstructured grids

4. Explicit!

 Modular: can be extended to different discretizations (FE, FV, FD)

Constrained Interpolation Remap:
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Constrained Transport (CT) Remapper
Based on CT scheme of Evans, Hawley, The Astrophysical Journal 332, 1988
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P

Computation of EMF in CT
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Extension to unstructured meshes
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CT Remap and Taylor expansion 
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Reconstruction must be
exact for the 1st derivatives
to get 2nd order accuracy.
Not easy on unstructured
meshes!
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A. Robinson, P. Bochev, P. Rambo. http://infoserve.sandia.gov/sand_doc/2001/012146p.pdf.
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Base CI Uses Information Better
Than Donor Cell CT
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