SAND2014-3929C

Evolving Decision Trees for the Categorization of
Software

Jasenko Hosic, Daniel R. Tauritz
Natural Computation Laboratory
Department of Computer Science

Missouri University of Science and Technology
Rolla, Missouri 65409-0350, USA
Email: jhosic@gmail.com, dtauritz@acm.org

Abstract—Current manual techniques of static reverse engi-
neering are inefficient at providing semantic program under-
standing. We have developed an automated method to categorize
applications in order to quickly determine pertinent characteris-
tics. Prior work in this area has had some success, but a major
strength of our approach is that it produces heuristics that can
be reused for quick analysis of new data. Our method relies
on a genetic programming algorithm to evolve decision trees
which can be used to categorize software. The terminals, or leaf
nodes, within the trees each contain values based on selected
features from one of several attributes: system calls, byte n-
grams, opcode n-grams, cyclomatic complexity, and bonding. The
evolved decision trees are reusable and achieve average accuracies
above 90% when categorizing programs based on compiler origin
and versions. Developing new decision trees simply requires
more labeled datasets and potentially different feature selection
algorithms for other attributes, depending on the data being
classified.

I. INTRODUCTION

The problem of software classification has been previously
examined, and its use for authorship [14], quality [8], and
content attribution [1] is apparent. This field, however, can
have far-reaching implications on new problem spaces as well.
For instance, system administrators maintaining systems often
need to quickly determine various information about new
software appearances. In terms of digital forensics, recognizing
more detailed semantic qualities of applications is essential.
Current methods for determining vital semantic data require
deep dynamic analysis or manual reverse engineering [6], [15].
While a thorough understanding of the instruction sequences of
an application will most likely require some human expertise
and manual analysis, the process can be assisted with some
basic categorical knowledge. Is the application obvious mal-
ware? Is the program a mutation or new version of a known,
preexisting program? Is the software packed or not? It is for
these reasons that we propose a means of rapidly classifying
software into categories through evolved decision trees.

In this paper, we focus on performing two distinct ex-
periments: categorizing software based on the compiler and
optimization flags used during development, and categoriz-
ing multiple versions of the same software. Although the
versioning and compiler identification problems have been
tackled in previous research [6], [11], [13], we performed
these experiments as an initial demonstration of our approach.

Samuel A. Mulder
Sandia National Laboratories
Albuquerque, New Mexico 87185, USA
Email: samulde @sandia.gov

We are able to categorize software using a variety of criteria
with the same algorithm. Furthermore, due to the absence
of any dynamic analysis in our algorithm, it performs more
efficiently than many previous approaches. We achieve over
90% accuracy when matching test programs to categories in
both experiments, and the resulting decision heuristics that are
derived can quickly be reused to categorize more software
without requiring thorough binary analysis.

Due to the known limitations and problems of classic
decision tree methods [16], an approach utilizing genetic
programming (GP) [9] was used to develop the decision
trees. GP is a population-based meta-heuristic technique that
searches for a solution by making multiple initial guesses.
These guesses are then broken into fragments and recombined
until a termination condition is met. With the use of a fitness
function, a numerical value can be calculated to represent
the quality of a solution. Natural selection determines which
solutions should continue to reproduce and which should
be discarded. In classic GP, each solution, encoded in an
individual in the population, is represented with a tree wherein
the leaf nodes take the form of some terminal value while the
internal nodes perform functionality that relates the terminals.
This structure is ideal as it translates directly into the decision
trees we use to categorize applications. GP algorithms usually
have a long runtime, and while this is true of our GP, applying
the evolved decision trees on new software takes only seconds.

II. RELATED WORK

Significant contributions have been made to the fields of GP
as it relates to developing new heuristics [2]-[4], [12], software
classification [7], [8], version matching [5], [6], [11], and
compiler attribution [13]. The research presented in this paper
takes inspiration from those ideas with distinct differences
for the purposes of providing fast semantic categorization.
Methods used in former papers provide solid results but either
tend to focus on solving one kind of problem or require long
running times. As a result, we propose a hybrid of some of
these concepts in the design of our GP evolution of decision
trees.

Using GP to generate heuristics is not a new concept. It
is often chosen because, in scenarios such as software cate-
gorization, determining the appropariate formulas by which
programs can be compared and classified is not inherently



obvious. Since the optimal metrics could be far too complex
and difficult to construct by hand, GP can be used to evolve
a heuristic without the need for hand-tuned trial and error.
According to [2], [4], the tree structure of a GP and its ability
to mutate in order to escape local optima are ideal for evolving
heuristics where little is known about the possible final result.
With appropriate selective pressure, the algorithm is able to
explore a wide variety of options before converging to a final
solution.

V. Nagarajan et al. [11] attempt to tackle the version
comparison problem, but take a drastically different approach
than the categorization schemes considered in other papers.
They specifically aim to detect version differences by using
a similarity metric to match the call graphs and control flow
of two programs. Their research attempts to identify situations
in which two programs are functionally equivalent, but one
is written in a more obfuscated manner. The applications are
dynamically analyzed and every executed instruction is stored
in tables of execution histories. Due to the sporadic nature of
multiple calls in potentially obfuscated code, V. Nagarajan et
al. dynamically construct call graphs and perform flattening
techniques so that the obfuscated code can accurately be
matched to the execution history traces of another program.
In order to reduce the error, whenever one program’s calls
or instructions match multiple sections of another program,
a confidence measure is applied to each match and used as
a prioritization field. The accuracy of this technique when
applied to applications that have undergone common obfus-
cation techniques is high. When comparing many applications
at once, the number of control flow comparisons that would be
required to achieve this success rate (n?) could become unman-
ageable. The work proposed in this paper attempts to provide
a more efficient method, requiring fewer comparisons and no
dynamic analysis to produce accurate results when attempting
to identify multiple versions of the same application.

Compiler attribution has been examined in much the same
way as version classification. Rosenblum et al. [13] have
performed deep analysis of program binaries to determine
compiler origin, even if multiple compilers were used (such
as when statically linked library code is included). Their work
analyzes idioms, or simply put, opcode trigrams along with
their respective operands. These sequences of three instructions
at function entry points allow for pattern recognition that hints
at compiler origin [15]. Furthermore, gaps between functions
as well as intraprocedural branches are also used to model
compiler behavior. Whether multiple compilers were used or
not, the compiler matching accuracy reaches as high as 90%.

Their work extends beyond just compiler provenance. One
of the biggest inspirations for this paper comes from the ideas
presented in [14]. Rosenblum et al. use various features, such
as n-grams, idioms, graphlets (several basic blocks retrieved
from control flow for pattern matching), and super graphlets
(graphlets spanning larger distances with some collapsed con-
trol flow) to determine code authorship from compiler binaries.
Using a statistical feature selection technique, essential features
are extracted which aid in the categorization of software
based on programmer. Idioms and n-grams assist in detecting
patterns that comprise an author’s signature, allowing for high
accuracy during classification. This paper attempts to utilize
some similar concepts in order to produce quick, reliable

results for the version and compiler categorization problems.

III. METHODOLOGY

In order to accurately develop a system of distinguishing
and categorizing software, a heuristic for the decision making
process of what software belongs in which group must be
developed. However, many different criteria exist with which
applications can be measured and grouped. For instance,
programs that are simply version revisions of each other should
intuitively have similar functionality while programs that are
entirely different most likely contain very different instructions
or code. There are a vast number of categories which software
can be placed into, and a massive set of potential features
that can resolve acceptance or denial into a particular group.
Even when appropriate attributes are chosen, such as using
byte n-grams to differentiate the programs, proper feature
selection must be performed to obtain solid results [8]. For
this reason, we have chosen six different attributes to consider,
each with their own feature selection process. The attributes
were chosen for their potential as distinguishing factors for
the versions and compiler problems. A testing set for the
version problem, composed of nineteen different applications
with four to six versions each, totalling 90 programs, was
used during experimentation. For the compilers problem, 61
programs compiled with GCC and Visual Studio, each with
two different optimization levels for a total of 244 programs,
were used. 80% of the data was used as the training set for
determining the pertinent features and 20% was used as the
testing set. The following is an explanation of each attribute
and its feature selection scheme.

A. System calls

We identified system calls as possible discriminating fea-
tures because different versions of the same program are
likely to make the same types of calls due to their related
functionality. They are likely less useful in distinguishing
compilers. When determining the proper way to select features
with system calls, we had to strike a balance between focusing
on the number of times each call was made within a category
or program versus the weight each call would have as a
distinguishing factor. In order to achieve this balance, we first
created histograms of the system calls within each application.
The histograms were treated as vectors wherein the system
calls denoted dimensions and the quantities determined the
magnitudes of the vector. The vectors were then reduced to
direction vectors in order to negate the impact of program size.
An average direction vector was calculated for each category,
and the resultant vector’s direction was then compared to the
direcion vector of test programs. The difference in direction
from test program vectors and category vectors was used to
match programs to categories.

B. Cyclomatic complexity

Cyclomatic complexity was selected as a potentially useful
feature as it was expected to aid in both experiments. Programs
that are merely different versions of each other likely have
the same complexity if their functionality did not change
much. Likewise, there is a possibility that complexity could



be a factor in distinguishing compiler optimization. Cyclomatic
complexity, in this case, is defined by the following equation:

C = edges — nodes + 2P (1)

where P is the number of exit nodes and C' is the cyclomatic
complexity. This equation is applied to an application on a
per-function basis. The results are then averaged to produce
the cyclomatic complexity for an entire program. The mean of
all the cyclomatic complexity averages is calculated to produce
the categories complexity baseline. Test programs are matched
based on smallest difference between a category’s complexity
and their own average complexity.

C. Bonding

Bonding is a concept presented in [10]. This metric has
been useful in distinguishing many graph types, such as
social graphs, and we wanted to investigate its applicability
in distinguishing control flow graphs. Bonding is calculated
with a formula that takes the following form:

_ 6x#triangles
- #length_two_paths

As with complexity, the bonding values are calculated on a
per-function basis. Bonding refers to a ratio of triangles within
the control flow to the number of potential triangles (2-paths).
It takes a maximum value of one if a graph is complete and
zero if a graph contains no triangular subgraphs. The function
bonding values are averaged to find the program values, and
a category average is again evaluated for each. Test programs
are matched based on smallest difference in bonding values.

©))

D. Byte n-grams

The byte n-grams attribute, for the purposes of our experi-
ments, used only trigrams. Initial experiments were performed
with bigrams and quadgrams as well, but their results were
either virtually identical or significantly worse than the ac-
curacies achieved with trigrams. Table I shows the results of
the n-grams feature selection with n values of two, three, and
four. Standard deviation values are shown in parentheses. The
results were obtained from using 80% of each data set as the
training set and 20% as the testing set.

TABLE 1. BYTE n-GRAM PERFORMANCE WITH VARIED n VALUES,

AVERAGED OVER 30 RUNS.

is added to the feature set. Testing programs are matched to the
category with which they have the highest number of histogram
values in common.

E. Opcode n-grams

Opcode n-grams are gathered by producing n-grams from
the instruction opcodes (excluding operands) of a disassembled
application. Again, trigrams were used exclusively in our
experiments. Using bigrams or quadgrams did not significantly
improve the results. Table II shows the comparisons of each
n value. Standard deviation values are shown in parentheses.
The histogram intersection technique used with byte n-grams,
as we presumed, did not produce viable results. Instead, the
opcode n-grams were placed into a unified histogram. The
histogram represents the frequency of each opcode n-gram as
it occurs among all programs in a category. The top 50% of
the n-grams are used as essential features for that category.
Test programs are matched to categories that have the most
opcode n-grams in common. The percentage threshold value
was determined through experimentation as it produced the
most optimal results in our dataset.

TABLE II. OPCODE n-GRAM PERFORMANCE WITH VARIED n VALUES,

AVERAGED OVER 30 RUNS.

Versions

Compilers

33.68% (3.27)

59.55% (8.23)

58.95% (4.23)

71.09% (4.96)

BlW 3

59.29% (4.35)

71.67% (5.02)

Versions

Compilers

95.26% (1.61)

59.55% (9.25)

95.09% (1.34)

92.69% (3.48)

alwlo|3

94.21% (1.61)

92.88% (4.20)

Trigrams of the programs in each category were placed into
histograms. The intersection of all of the histograms within
a category comprised the feature set. It is not necessarily
the most common mn-grams that carry the most weight in
correctly categorizing applications, but instead, a particular n-
gram may carry immense weight with only a few appearances.
By intersecting not only on the n-grams that all programs
in a category have in common, but also on the frequency
with which they appear, we attempt to capture some of those
scenarios. With this scheme, a particular trigram appearing the
same number of times in each of the programs of the category

F. Individual attribute performance

Each feature was individually tested 30 times over both
datasets with randomized training and testing groups for each
run. The averages of the results are shown in Figure 1.

Individual Feature Categorization Accuracies
100.00%

90.00% —

80.00% ————

70.00% —1 —

60.00% +——— ——1 ——1 ——

50.00% _— | _— X
W Versions

Percent Match

40.00% - . W Compilers

30.00% -

20.00% -

10.00% -

0.00% -

opcode ngrams  byte ngrams bonding
Features

complexity system calls

Fig. 1. Individual feature tests run on both data sets, averaged over 30 runs.
80% of the data was dedicated to the training set, and the rest comprised the
testing set

It is evident that while both n-gram features produced
performed very well, they were not perfect for all cases. The
other features showed signs of promise in certain setups. Our
goal was to use some combination of these features to achieve
fast, consistent results with high accuracy.



G. GP algorithm

A GP algorithm was developed to evolve decision trees
that represent each individual category. In this way, a program
could be matched to multiple categories (such as a program
that belongs to a certain version group, and has been compiled
by a particular compiler). The terminals in the GP trees contain
the feature selection data presented above. Every category has
its own values for each attribute, normalized between zero
and one, and the terminals contain the relational data for a
program being examined for acceptance into a category. For
instance, a byte n-gram terminal contains the percent match
between the n-gram histogram of the program in question and
the essential n-gram histogram features selected for a category.
For cyclomatic complexity and bonding, the difference value
is subtracted from one when normalized so that a high value
in that terminal denotes a closer match.

The functional operators used in the non-leaf nodes of
the GP trees are the binary operators AND, OR, and XOR.
Due to the normalization of the terminal data, the binary
operators must use fuzzy logic operators to be evaluated
appropriately. Fuzzy logic dictates that the union of two values
(OR) is equivalent to the maximum of both values, while an
intersection (AND) is the same as a minimum of the values.
A negation is equal to one minus the value. Extrapolating this
further, an XOR can be represented as the AND of a higher
value and the negation of a lower value.

Testing showed that if a hard threshold is imposed for the
binary evaluations within the trees, such as evaluating anything
greater than .5 as true, the category matching is far less precise.
By using the fuzzy logic binary operators, a best match can
be evaluated because each tree receives a numerical value as
opposed to a true or false evaluation. Figure 2 illustrates this
concept.

Fig. 2. A fuzzy logic example showing that using a threshold, such as > .5
signifying true for a boolean operation, does not distinguish categories well.
Both of the trees in this example would evaluate to true. Using the max/min
rules, however, Tree A evaluates to .9987 while Tree B evaluates to .5141.
This is used to prioritize matches.

A fitness function is needed in order for the GP algorithm
to assess the quality of each tree in the population. The fitness
function does make use of a threshold (.5) to denote a match
during the training phase. When a decision tree is evaluated for
fitness, each program that makes up a category in the training
set, known as the category set, is evaluated to determine if
it would be accepted into the category using the current tree.
An equal number of programs outside of the category set are
evaluated to guide the decision tree in properly filtering out
known mismatches. This set of programs, called the helper set,
reduces the number of false positives and ensures that the trees
do not evolve to accept every program. A program in the helper
set is not accepted by a category if the tree returns a value

lower than the lowest match from the category set. Essentially,
the lowest matching member of the category set becomes the
new threshold for acceptance. The helper set carries the same
weight as the category set to preserve fairness in acceptance
and filtration.

IV. EXPERIMENTAL SETUP

A GP generally requires a lot of parameters, all of which
benefit greatly from tuning. In this case, parameters were hand-
tuned. A high tree depth was not necessary for either the
versions or the compilers problem since optimal convergence
came quickly with small values, and testing showed that
higher values produced redundant logic. Throughout the GP
evolution, parsimony pressure was applied to the trees to
prevent unnecessary growth. The algorithm was trained on
80% of the data and tested on the remaining 20%. The intent
of this option was to make sure that the evolved formula was
not over-specialized to the dataset. 30 runs were performed
with the category, helper, and testing sets randomized each
time. Table III shows the parameters applied to the GP for
each problem.

TABLE III. GP PARAMETERS
Parameter Versions Compilers
I 100 100
A 20 20

max depth 2 2
selection k-tournament k-tournament
survival k-tournament k-tournament

k 7 7
crossover single-point single-point
mutation sub-tree sub-tree
mutation rate 1 2
termination 5000 generations | 5000 generations

The results of these configurations are shown and discussed

in the subsequent sections.

Figure 3 shows the matching accuracy of the GP method

V. RESULTS

for both datasets, averaged over 30 runs.

100 1

95

90

85 1

80

75 1

70 A

65 -

60

Versions

Fig. 3.

* Min Outlier

Compilers

* Max Outlier

Percent match with decision trees — versions max = 100%, versions

min = 89.47%; compilers max = 100%, compilers min = 82.69%

The average accuracy of this method was higher than the
accuracy of any single feature running alone. The n-grams




performed only slightly worse, however. We used t-tests in
order to show that this method is a significant improvement
over using only the n-grams feature. F'-tests showed that
unequal variance should be assumed for the versions data, but
not the compilers data. In both ¢-tests, £ Stat was greater than
t Critical Two-Tail. The results are summarized in the tables
below.

TABLE IV. F-TEST: TWO-SAMPLE FOR VARIANCES - VERSIONS
Parameter Decision Trees n-Grams
Mean 0.9719298246 0.950877193
Variance 0.0012863374 | 0.0001783042
df 29 29

F 72142.8571
P(F < f) One-Tail 1.4186E-63
F' Critical One-Tail 1.86081144

TABLE V. F-TEST: TWO-SAMPLE FOR VARIANCES - COMPILERS
Parameter Decision Trees n-Grams
Mean 0.9525641026 0.9269230769
Variance 0.0017020336 0.001208937
df 29 29
F 1.407876231

0.181150886
1.860811435

P(F" < f) One-Tail
F' Critical One-Tail

TABLE VI t-TEST: TWO-SAMPLE ASSUMING UNEQUAL VARIANCE -
VERSIONS
Parameter Decision Trees n-Grams
Mean 0.9719298246 0.950877193
Variance 0.0012863374 0.0001783042
Hypoth. Mean Dif. 0
df 37
t Stat 3.0130152454
P(T' < 't) Two-Tail 0.0046475888
t Critical Two-Tail 2.026192463

TABLE VIIL t-TEST: TWO-SAMPLE ASSUMING EQUAL VARIANCE -
COMPILERS
Parameter Decision Trees n-Grams
Mean 0.9525641026 | 0.9269230769
Variance 0.0017020336 0.001208937
Pooled Variance 0.0014554853
Hypoth. Mean Dif. 0
df 58
t Stat 2.6030176593
P(T < t) Two-Tail 0.011713133
t Critical Two-Tail 2.0017174841

Figures 4, 5, and 6 contain some of the trees with the
highest fitness values for certain categories.

Fig. 4. Category: Versions - Nestopia

Fig. 5. Category: Compilers - GCC, No optimization

Byte
n-grams

Fig. 6. Category: Versions - Pidgin

The trees vary in complexity based on the categories they
represent. Although these small trees were all that was required
to represent some of the categories within our datasets, larger
trees with more intricate logic relationships are possible.

VI. DISCUSSION

The advantages of using a GP to produce distance heuris-
tics for programs are quite clear. In both of the test cases,
the decision tree heuristics produced by the GP performed
very well. For the versions problem, the solution produces
an average accuracy of 97.2% while the compilers problem
reached a slightly lower average of 95.3%. The majority of
the compiler mismatches came from incorrectly guessing the
optimization flags, not the actual source compiler. Version
mismatches encountered a far different hurdle. Some of the
programs in the versions dataset had very minor changes from
one version to the next, and the evolved trees were able to make
those connections. On more complicated version differences,
if two very different versions of the same program were not
both in the category set, some false matches occurred. One
of the programs in the dataset had a size increase of 43%
between versions. The evolved heuristics were unable to make
this big leap and relate the versions. Ultimately it is a question
of semantics, but a case can be made that the large variation
from one version to the next resulted in an altogether different
application. After all, if an application remains the same in
name but completely overhauls every aspect of its code, it is
reasonable to expect a different categorization between those
versions.

The GP evolution process executed as expected. Conver-
gence was reached at a reasonable pace, and the best solution
produced excellent results. The solutions produced by the
algorithm all made intuitive sense based on the datasets used
to produce them.



It should be noted from our individual feature tests and a
majority of the GP trees, that byte n-grams in conjunction with
the feature selection method listed previously produced the
best results. This is presumably due to the types of categories
used in this experiment. In both cases, byte n-grams from the
portable executable (PE) header could be the primary features
selected with this attribute. Since none of the applications were
purposely obfuscated and had no reason to contain corrupted
or misleading headers, this information most likely led to
easy matches. It can be assumed that these types of features
would not be as useful given different problem types, such as
categorizing software by functional classes.

Even in this experiment, not all terminals were useful
all of the time. Cyclomatic complexity was a highly used
attribute for the versions problem tests, but not throughout
the compiler identification runs (unless it was included in an
XOR). It stands to reason that the complexity of an application
would give little insight to the compiler used to create it,
unless optimization flags caused an extreme difference in
complexity. The system calls primitive experienced the same
high frequency of occurrence in the versions problem tests, but
was almost nonexistent when applied to the compilers dataset.
Although bonding occasionally appeared in final solutions
of the compilers problem, it was not a major discriminator.
Despite some filtration qualities within a few decision trees,
this metric is best suited for social graphs.

VIL

The need for quick methods of software classification is
undeniable. Although techniques exist to analyze binaries in
order to extract some semantic information about them, most
require long running times and considerable computational
resources. The ideas presented in this paper aim to provide
a means of quickly categorizing software based on a few key
attributes. We explored the notion of evolving decision trees
through GP. Due to the nature of the solutions being evolved by
the GP, they can be reused to categorize more data. Applying a
decision tree to a new set of data without executing the entire
GP process requires only a few seconds.

CONCLUSION

This method can be applied to a large range of problems
that require classification. All that is required is a training set to
evolve initial decision trees, and the GP does the rest. When
distinguishing programs by versions or compiler origin, the
decision trees achieve over 90% accuracy. These same methods
can be utilized to categorize software using different criteria,
though more applicable attributes may need to be mined for
features as the particular attributes used in this paper may not
be sufficient discriminators of every kind of dataset.

The future work of this research can take many logical
paths. Most importantly, more difficult categorization problems
should be attempted with these methods. For instance, catego-
rizing software based on functionality would have far-reaching
impact on many fields in computer science. While viable
solutions exist for authorship attribution, it would be useful
to compare this method with prior works. The true strength
of the techniques discussed in this paper lies in the richness
of the features that comprise the decision trees. Any research
that extracts valuable semantic data about software can be
easily combined with this method to further its categorization
capabilities.

(1]

(2]

(3]

(4]

(31

(6]

(71

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active Learning for
Automatic Classification of Software Behavior. In Proceedings of the
2004 ACM SIGSOFT international symposium on Software testing and
analysis, ISSTA *04, pages 195-205, July 2004.

E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R.
Woodward. Exploring Hyper-heuristic Methodologies with Genetic
Programming. In Computational Intelligence: Collaboration, Fusion
and Emergence, pages 177-201. Springer, Berlin-Heidelberg, Germany,
March 2009.

E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward. Automatic
Heuristic Generation with Genetic Programming: Evolving a Jack-of-
all-Trades or a Master of One. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, GECCO 07,
pages 1559-1565, 2007.

E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward. A
Genetic Programming Hyper-Heuristic Approach for Evolving 2-D Strip
Packing Heuristics. IEEE Transactions on Evolutionary Computation,
14(6):942-958, December 2010.

S. Cesare and Y. Xiang. Malware Variant Detection Using Similarity
Search over Sets of Control Flow Graphs. In /IEEE 10th International
Conference on Trust, Security and Privacy in Computing and Commu-
nications, TrustCom, pages 181-189, November 2011.

B. Danilo, L. Martignoni, and M. Monga. Detecting Self-Mutating
Malware Using Control-Flow Graph Matching. In Proceedings of the
Third international conference on Detection of Intrusions and Malware
and Vulnerability Assessment, DIMVA ’06, pages 129-143, 2006.

P. G. Espejo, S. Ventura, and F. Herrera. A Survey on the Application of
Genetic Programming to Classification. /[EEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 40(2):942—
958, March 2010.

K. Gao, T. M. Khoshgoftaar, and H. Wang. An Empirical Investigation
of Filter Attribute Selection Techniques for Software Quality Classifi-
cation. In /0th IEEE International Conference on Information Reuse
and Integration, pages 272-277, August 2009.

J. R. Koza. Overview of Genetic Programming. In Genetic Pro-
gramming: On the Programming of Computers by Means of Natural
Selection, pages 74-78. MIT PRESS, Cambridge, MA USA, 1992.

0. Macindoe and W. Richards. Graph Comparison Using Fine Structure
Analysis. In Proceedings of the 2010 IEEE Second International
Conference on Social Computing, SOCIALCOM 10, pages 193-200,
August 2010.

V. Nagarajan, R. Gupta, X. Zhang, M. Madou, and B. De Sutter.
Matching Control Flow of Program Versions. In IEEE International
Conference on Software Maintenance, ICSM, pages 84-93, October
2007.

U.-M. O’Reilly. Using a Distance Metric on Genetic Programs to
Understand Genetic Operators. In IEEE International Conference on
Systems, Man, and Cybernetics, pages 4092-4097, October 1997.

N. E. Rosenblum, B. P. Miller, and X. Zhu. Extracting Compiler
Provenance from Program Binaries. In Proceedings of the 9th ACM
SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools
and Engineering, PASTE 10, pages 21-28, June 2010.

N. E. Rosenblum, X. Zhu, and B. P. Miller. Who Wrote This Code?
Identifying the Authors of Program Binaries. In Proceedings of the 15th
European Symposium on Research in Computer Security, ESORICS ’11,
pages 172—189, September 2011.

N. E. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt. Machine Learning-
Assisted Binary Code Analysis. In Workshop on Machine Learning in
Adversarial Environments for Computer Security, NIPS 07, December
2007.

J. Sun and X.-Z. Wang. An initial comparison on noise resisting
between crisp and fuzzy decision trees. In Proceedings of 2005 Inter-
national Conference on Machine Learning and Cybernetics, volume 4,
pages 2545-2550, August 2005.



