
 
 

 

 

  

Abstract:  First responders bear the task of restoring order 
and protecting the public in the wake of disasters, both man-
made and natural.  Ground Truth: Toxic City, a game developed 
in partnership with Sandia National Laboratories and Univer-
sity of Southern California GamePipe Lab, puts a player in the 
role of an Incident Commander.  The player works with virtual 
teammate agents serving as fire, police, and HazMat units to 
evacuate an urban area from a chlorine spill.   To add more 
realism for training, these agents simulate certain emotions that 
a responder may feel during this high-stress situation.   We 
construct psychology-plausible models compliant with the 
Sandia Human Embodiment and Representation Cognitive 
Architecture (SHERCA) for driving the reactions of the agents 
to both the scenario and the player’s actions.  The models are 
run on the Sandia Cognitive Runtime Engine with Active 
Memory (SCREAM) software, which has been integrated with 
the game software.   This paper gives an overview of Ground 
Truth: Toxic City and discusses the adaptation of the SHERCA 
into the game for constructing realistic emotions in these vir-
tual teammates. 

I. INTRODUCTION 
Emerging modes of attack using weapons of mass de-

struction (WMD), now defined within threat scenarios from 
the United States Department of Homeland Security (DHS) 
and the Department of Defense (DoD), require new ap-
proaches to examining detection, mitigation, and response 
options. In recent years, DHS and other government agen-
cies, charged with preparing for WMD attacks and other 
catastrophic events, have turned to large multi-person exer-
cises using computer-based simulation to address prepared-
ness training. While this approach is extremely valuable, it 
also suffers from drawbacks: a large number of trainees must 
use the system at the same time and each threat scenario 
takes a day or more to complete. 

To mitigate those drawbacks, we investigated different 
methodologies that would lead us to a complimentary solu-
tion. Our selected option was to develop a software gaming 
platform specifically designed to prepare decision makers 
for WMD attacks. Two key features of this platform are:  
allowing for single player training and shorter scenario run-
times. We selected 20 minute run-times as our target time 
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limit for the training scenarios to focus our design by ab-
stracting out the details to keep the scenario focused on key 
learning objectives. This allows us to more effectively de-
liver quality training to the target audience at a frequency 
that facilitates learning the material in a timely manner.   
Furthermore, the single player mode lets a responder train 
anytime, anywhere with software agents taking the place of 
the responder’s human counterparts. 

However, the nature of the scenarios we are targeting 
prevents us from simply replacing the response team mem-
bers with traditional drone-like non-player characters 
(NPCs). This is because the training scenarios are based on 
events that trigger emotionally biased actions from the many 
people involved. For example, an Incident Commander (IC) 
in charge of responding to a toxic industrial chemical spill 
must protect the lives of the general population while keep-
ing their first responders out of harm’s way.  But what if a 
trainee orders a police unit to shelter-in-place a city block 
that is covered in the toxic fog? Traditional drone-like NPCs 
would blindingly obey the command given by the IC trainee 
and conduct the action regardless of the effects on its safety. 
Instead, we wish to provide trainees with virtual teammates 
that may or may not obey the command due to their emo-
tions and the IC trainee’s reactions to the incident. In our 
case, the NPC would detect the hazardous fog and resist the 
action. Trainees who then force the units to perform the ac-
tion, regardless of the feedback, are then penalized in multi-
ple ways: the unit suffers from the physical damage, the 
trainee’s response effectiveness score is reduced, and emo-
tional distress is caused to the unit which reduces its ability 
or interest to perform requested actions. As such, including 
emotion into the virtual teammates provides a more accurate 
representation on the effect of a trainee’s decisions in these 
types of situations. 

This paper covers our work in developing emotion mod-
els into the virtual teammates for Ground Truth:  Toxic City, 
a game-based platform for training Incident Commanders on 
response strategies following a toxic chemical spill.  The 
paper will detail the Sandia Human Embodiment and Repre-
sentation Cognitive Architecture (SHERCA), the design 
used for constructing how fundamental emotions influence 
the human cognitive process, and how SHERCA is inte-
grated into the virtual teammates built for the training envi-
ronment. 
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II. GROUND TRUTH: TOXIC CITY  

A. Gameplay Description 
Ground Truth: Toxic City is modeled after the Real-Time 

Strategy class of gameplay. The trainee assumes the role of 
the IC and has an overhead view of the city s/he is chartered 
to protect. A common feature in these types of games is the 
“fog of war” that represents what the trainee can or cannot 
see. In our case, we allow the player to see through this fog 
based on his/her unit’s field of view as shown in Figure 1.  
As units travel the space, the map shows the accurate or 
ground truth information while the information on darkened 
space is considered unknown. 

 

 
Figure 1: Police unit Fog of War 

  
The trainee’s main objective is to save as many lives as 

possible within the 20-minute game time by keeping them 
away from the toxic cloud.  Civilians can only survive for a 
few minutes inside the cloud area before they are considered 
significantly injured and treated as a “loss” for sake of scor-
ing.  For directing the civilians to safety, the trainee controls 
a selection of fire, police, and HazMat units.  The trainee 
can: 1) evacuate city blocks, which moves people from 
buildings onto the city streets, 2) shelter in place city blocks, 
which provides reduced exposure levels, 3) barricade and 
direct traffic, which affects the throughput of the city streets, 
and 4) attempt to contain the leak.  The player can monitor 
street traffic on the display with shaded arrows indicating 
traffic direction and colored regions representing traffic den-
sity. Blue colored regions equal low, yellow equals moder-
ate, and red equals severe traffic density.  Each unit also has 
different actions they can perform based on their type. For 
example, firefighters can don Personal Protective Equipment 
(PPE) to protect themselves when entering the toxic cloud 
area.  

B. Game AI Virtual Teammates 
 In Ground Truth, agents serve as the virtual teammates 
the player must direct in order to win the game. Initially, we 
implemented a reactive agent design for the virtual team-
mates.   The agents executed commands ordered by the 

player and report on events of interest to the player in game 
(i.e., location of the fog cloud).  These agents did not have 
any belief-desire-intent (BDI) modeling [Wooldridge, 2002] 
that would result in them acting autonomously.  This deci-
sion on the agent design resulted from the original intent of 
the game, training first responder commanders on the best 
methods on where to direct resources to minimize civilian 
casualties.  However, the reactive agent behavior creates a 
game that over-simplifies the scenario from a realistic train-
ing perspective.  
 

 
Figure 2: Ground Truth gameplay view 

 
 We generated an agent architecture for the game that 
would support not only this reactive agent design, but would 
also allow for the creation of more complex agents that pre-
sent the player with challenges more in line with the actual 
environment.    The architecture decomposes each of the 
game actions into states.  For Ground Truth, the states in-
clude MoveTo, Evacuate, Shelter-In-Place, Barricade, 
and PutOnPPE.  A state is entered by a command request for 
an action, with the state’s end condition defining when the 
action should terminate.  The state performs the interactions 
necessary with the game to initiate the action and receive 
notice that the action has been accomplished.   For the reac-
tive agent design, all command requests originate from the 
player.  However, as more sophisticated agents are devel-
oped for Ground Truth, agents can request these states to 
perform actions themselves, masking the communication 
between the agent and game world from the agent developer.   
 In creating our reactive agent, we constructed a hierarchi-
cal state machine (HSM) [Yannakakis, 2000] by building 
meta-states that would chain together action states for more 
complex behaviors.  For example, a player may request an 
agent evacuate a building on the other side of the game 
world.  To create this behavior, one can construct a finite 
state machine (FSM), PlanEvacuation, which connects the 
MoveTo and Evacuate states for performing all actions 
needed to evacuate the distant location.  PlanEvacuation 
serves as a child FSM to the master FSM, IdleState, which 
awaits commands from player and calls the proper child 
FSM to execute the command (see Figure 3).   



 
 

 

 

III. RELATED WORK 

A. Role of Emotion in Decision-Making 
Since disaster response operations involve “in extremis” 

decision making, intense emotions associated with this type 
of environment can impair decisions by disrupting critical 
thinking.  In fact, one’s emotions are a critical mediator in 
the types of decisions that are made and how people will 
ultimately behave.  Emotion states serve as action tendencies 
that provide additional information to make judgments; es-
pecially when conditions are uncertain—as found in high-
stress and high-consequence situations such as man-made 
and natural disasters.  For example, [Bernard & Smith, 
2006] found that emotion states accounted for 34% of the 
variance in choices made when their expected utility was not 
obvious. Thus, representing the role of emotion in arriving at 
a decision may prove useful in assessing how people will 
ultimately behave. 

 

 
Figure 3: Example of Master FSM calling Child FSM to handle evacuation 

and barricade commands 
 
Converging lines of research suggest that a person’s atti-

tude (which is a general opinion towards a person, object, or 
concept) influences behavior. A general theory supporting 
this research, the Theory of Planned Behavior, proposes that 
behaviors are influenced by 1) attitudes towards a specific 
behavior, 2) the subjective norms associated with acting out 
that behavior, and 3) the perception that this behavior is 
within a person’s control. This forms an action intention 
state, which then typically drives that person’s actual behav-
ior [Ajzen & Madden, 1986; Fishbein & Stasson, 1990; 
Madden, Ellen, & Ajzen, 1992]. 

A person’s emotional state often plays a large role in a 
determining the ultimate behavior of the individual. Accord-
ing to the research by [Berkowitz, 1993] and others, certain 
experiences may create general negative affects (such as the 
fight or flight impulse when a threat is perceived), which 
then may stimulate associations linked to fear and anger. 
How people respond can be a result of both goal- or moral-
related decisions and their perceived emotion state. As men-
tioned above, assessments of the environment and the poten-
tial outcome can also temper behaviors. Consequently, angry 
persons might refrain from aggressive behavior if it would 
conflict with their goals or moral values. Accordingly, they 
may choose other behaviors that more closely align with 
their goals or values [Bandura, Barbaranelli, Caprara, & 
Pastorelli, 1996]. 

B. Modeling Emotion for Game-based Training Environ-
ments 
Emotion modeling for NPCs is not a new concept. For 

commercial games, clever character development written 
into game designs allow NPCs to reflect emotional growth 
and behavioral changes based upon the player’s choices 
[Krawczyk & Novak, 2006]. Advancements in animation 
have allowed these NPCs to visibly express a wide range of 
emotions, giving a wider range of empathetic responses for 
the player. Yet, these techniques focus on just creating the 
illusion of emotions felt by NPCs, rather than attempting to 
understand and computationally model the human emotional 
responses within these characters.  With commercial game 
AI techniques being viewed as an insufficient model for 
virtual characters in game-based training, or serious gaming 
[Van Lent, 2007], the necessity for more realistic human 
modeling has become a prevalent research area.    
 As noted in the prior section, emotions tie into a person’s 
motivation for deciding what actions to pursue.  To compu-
tationally represent the role of emotion in motivation, re-
searchers have found mapping perceptions to pre-defined 
emotional states as an effective method for virtual characters 
in these environments.  [Chaplin et al., 2004] created agents 
for a derivation of the Iterative Prisoners Dilemma that 
mapped previous interactions with other agents to emotional 
states for determining whether to cooperate or defect.  [Hus-
sian et al., 2006] incorporated a similar approach into a 3D 
predator/prey type game to aid a prey agent in reaching 
checkpoints without being detected by the predator. 
 Though several research efforts on emotion modeling 
exist, few instances of this research have transferred into 
game-based training environments.  An explanation for this 
is the challenge in both modeling how emotion interacts with 
reasoning along with physical behavior. The Institute for 
Creative Technologies (ICT) [Kenney et al., 2007] has un-
dertaken a comprehensive effort toward including virtual 
humans into training systems, combining cognitive modeling 
with natural language generation and animation for repre-
senting to the trainee how emotion impacts these virtual 
characters.  Since the Ground Truth platform does not repre-
sent virtual teammates with the same fidelity as the envi-
ronments used by the ICT, the focus of our research has 
been on constructing psychology-plausible models of emo-
tion at the agent decision-making level. The paper will later 
describe our first attempts at having Ground Truth commu-
nicate the emotions of the virtual teammates to the trainee.  
  Other researchers involved in modeling human cogni-
tive processes have also investigated how emotion can con-
struct a more realistic virtual teammate.  The ICT virtual 
human research mentioned earlier uses the SOAR architec-
ture [Rosenbloom et al., 1993] in forming their cognitive 
models.  The SOAR community has made several contribu-
tions in modeling how emotion interacts with working 
memory, perception, and expression for NPCs ([Henninger 
et al. 2003; Marinier & Laird 2004]).  While SOAR tags 
perceptions with factors such as arousal, pain, and pleasure 
to make emotion an emergent property of the model, our 



 
 

 

 

research serves as a complimentary effort by directly defin-
ing role of emotions in the decision making process.     

C. Related Sandia Cognitive Works 
Our work builds on research that initially sought to com-

putational cognitive architecture that supports Human Natu-
ralistic Decision Making [Klein, 1997] while incorporating 
“organic” factors such as emotion [Forsythe & Wen-
ner][Forsythe & Xavier, 2002].  The emphasis on emotions 
from the very beginning distinguishes this program of re-
search from other cognitive architectures such as as ACT-R 
[Anderson & Lebiere, 1998] and SOAR [Rosenbloom & 
Laird, 1993].  Preliminary work attempted to combine a psy-
chological model representing knowledge and cognitive 
processes with a physiologically-inspired model that pro-
vided the basis for incorporating organic factors. Using sub-
sequently-developed simulation software that extended prac-
ticality, [Forsythe, et al, 2003] developed a prototype human 
augmentation system based on discrepancy detection with 
respect to a task-based runtime cognitive model.   

 

 
Figure 4.  Conceptual cognitive architecture. 

 
A high-level, psychological framework was fleshed out 

(Figure 4) to enable application within an embodied agent, 
as distinguished from a disembodied “decider” [Forsythe, 
et.al., 2004][Bernard, et al., 2005].  At the same time, the 
Sandia Cognitive Runtime Engine with Active Memory 
(SCREAM) was developed to provide a practical cognitive 
simulation capability that supported that psychological 
framework.  Emphasis on cognitive elements with activa-
tion-levels updated according to dynamics distinguishes 
SCREAM and most other Sandia cognitive simulation work 
from more common production-rule-based approaches.  

The Sandia Human Embodiment and Representation 
Cognitive Architecture (SHERCA) is being developed to 
extend the psychological framework for modeling the behav-
ior of humans as embodied agents while encouraging 
physiological plausibility.  Conceptually, SHERCA fleshes 
out the high-level architecture down into to subsystem mod-
els of perceptual memory, spatial memory, and action gen-
eration.   SHERCA also refines the psychological model of 
decision-making with respect to action selection, providing a 
more detailed model of how emotional processes are inte-
grated with the application of semantic and contextual 
knowledge.  

Applying SHERCA  for the conceptual and psychological 
model structure and SCREAM for the computational cogni-
tive engine, [Bernard, et al., 2007] used runtime cognitive 
models to control the behavior of cognitive characters in a 
virtual 3D environment  in a prototype training application 
emphasizing cultural awareness [Bernard, et al., 2005].  
Standard embodied-agent simulation techniques imple-
mented in Sandia’s Umbra simulation framework [Gottlieb, 
et al., 2002] model the characters’ ability to “perceive” their 
environment, other entities, and those entities’ various at-
tributes and actions.  

Several other efforts at Sandia are developing computa-
tional cognitive modeling technologies that have foreseeable 
application in gaming.  An example with current capability 
is the Cognitive Foundry [Basilico, et al, 2008], which pro-
vides (a) a theory-of-cognition-agnostic framework for de-
veloping cognitive models for intelligent agents and (b) a set 
of tools for automatically populating such models and evalu-
ating them using statistical, machine learning, and visualiza-
tion techniques.  An example with applicability on the hori-
zon is the development of a computational, neuro-
physiologically plausible model of episodic memory [Verzi, 
et al., 2008]. 

IV. MODELING EMOTION IN VIRTUAL TEAMMATES 

A. SHERCA 
SHERCA was designed to correspond to the theories and 

supporting research mentioned in Section III [Bernard, et al., 
2007].  SHERCA allows for multiple cues, cognitive percep-
tions, goals, action intentions, etc., to concurrently have 
some degree of activation. In SHERCA’s model of decision-
making, once a cognitive perception—an element of percep-
tual/situational awareness—has been activated by cues in the 
environment, it may trigger activation of specific, intermedi-
ate goals that are consistent with higher-level goals and other 
active cognitive perceptions.  For example, one goal may be 
to protect family, and another, to protect oneself.  Intermedi-
ate goals help support the higher-level goals by breaking 
down the goals into discrete tasks.   The overall emotional 
state mediates activation of action intentions from the inter-
mediate goals. As a consequence, the intended actions are a 
product of both the intermediate goals and the current emo-
tional state of the simulated human.  This emotional state 
may change dynamically, for example from very low to very 
high levels of anger, if the perceptions change.  Action in-
tentions that are contradictory with respect to goals can be-
come concurrently highly activated due to the influence of 
emotion.  At the same time, cognitive perception is influ-
enced by a hierarchy of higher-level goals/directives or 
moral states, as well as state within a behavior  (e.g., current 
step in a procedure). 

In SHERCA, an impression of culture can be generated 
by varying a simulated human’s emotional response to par-
ticular perceptions. Cultures also exhibit variations within 
their high-level and intermediate goals.  As a result, their 
intended and actual behaviors will show cultural uniqueness.  
The result is a complex set of behaviors that have certain 
emergent properties common to a particular group.   



 
 

 

 

While SHERCA is intended eventually to achieve human-
plausibility at a detailed level as various cognitive compo-
nent models improve [Verzi, et al., 2009], initial emphasis 
has been on applying it to virtual embodiment.  In this role 
SHERCA has been instantiated as a human-representative 
computational model through which a cognitive character 
recognizes patterns of stimuli in the environment and re-
sponds to those stimuli according to current contexts, goals, 
and emotions [Bernard, et al., 2007].   Our main focus has 
been endowing characters with SHERCA’s model of deci-
sion-making to select behavior-level actions rather than 
model detailed procedures or low-level control.  Instead, we 
make use of non-cognitive AI/gaming techniques or features 
built into the virtual character model and virtual environ-
ment to implement those capabilities.   

 
Figure 5 Model of decision-making to select actions in SHERCA. 

 

B. SCREAM 
SHERCA models in Ground Truth NPCs use SCREAM 

for the computational cognitive engine.  We now summarize 
key components of SCREAM, describe the basic cognitive 
elements, and sketch out their computational updates. 

1) Basic cognitive elements in SCREAM 
A concept is the fundamental semantic element in 

SCREAM. For convenience, concepts have names, but 
SCREAM associates no meaning with those names. To func-
tion in environments with multiple entities (e.g., things, 
creatures, features, etc.) of a given type requires a mecha-
nism to associate concept activations with specific entities.  
SCREAM takes the simple approach of endowing concepts 
with slots.  A concept instance associates slots with entities. 
Concept instances are created as needed.  Each has its own 
activation state and is uniquely identified by concept and a 
vector of entity identifiers, which are merely labels to enable 
convenient interaction with people and other non-SCREAM 
system components.  For example, chases {22, 31} identifies 
an instance of the concept chase (i.e., entity #22 chases en-
tity #31).  Thus, a concept is similar to a fuzzy predicate, but 
we do not claim that SCREAM implements any logic. 

Contexts can be defined as meaningful perceptual repre-
sentations that are based on recognizable patterns of stimuli, 
as well as, consistent with situation models, schema and 
theme-based representations of events. Context activation is 
governed by pattern recognition applied to the activation 
states of concepts that are the cues for/against that context.  
For example, the concepts bicycle, clown, elephant and pop-
corn might be cues for the context Circus.    A context in-

stance is related to a context similar to the way that a con-
cept instance is related to a concept.   In SCREAM, a con-
cept whose raw (input) activation is driven by the contextual 
pattern recognition process is also called a context.  

Because contextual knowledge can include behaviors, 
SCREAM includes a context-to-abstract-action module that 
applies specified patterns to expand context instances into 
schema instances that describe behavior at a high level. 

2) Updating cognitive state 
  At game start-up, each cognitive model instance is 

loaded with model definition and parameterization files.  
These files declare concepts and contexts and define context 
recognition patterns, context-to-behavior expansion patterns, 
and associations between concepts and emotions. 

The main runtime cognitive state representation can be 
viewed as a dynamically-structured activation network of 
concept, concept instance, context instance and emotional 
state nodes.  The concept instance driver, semantic associa-
tion network, context recognizer, emotional processes and 
context-to-abstract-action modules of a SCREAM-based 
agent share the responsibility for updating the network struc-
ture and node activation.  For example, the context recog-
nizer uses a maximal unification criterion with respect to 
concept instances in maintaining the set of context instances.  
SCREAM episodic memory and spatial memory modules are 
not currently used in Ground Truth. Node activation values 
are always non-negative.  

The instantiation and raw activation of input-level con-
cepts are controlled from outside SCREAM via a concept 
instance driver. For example, a model definition might in-
clude the following input-level concept declarations: 

c morning {} 
c afternoon {} 
c noon {} 
c eats {ID1 ID2} 

If the agent’s perception module saw an entity it labeled 
Fred nibbling on one labeled L19, then it could call the 
agent’s concept instance driver to set the raw activation level 
of the concept instance eats {Fred, L19} to, say, 0.7.   

The semantic association network module updates the 
gross (output) activation of concept instances.  Gross activa-
tion of a concept instance is computed from raw activation, 
spreading priming from concepts specified in the model, and 
top-down priming from contexts for which the concept is a 
cue. Priming is specified by global spreading- and top-down-
gain gains and directed pairwise weights.  For example, 

sa noon {eats 0.2} 
specifies a spreading activation weight of 0.2 from the con-
cept noon to the concept eats. 

Priming is distributed from concept nodes to concept in-
stances.  Summation with raw activation at instance nodes is 
followed by application of an activation function and 
rise/decay model.  Concept instance node output updates are 
individually scheduled at rates within the alpha (8-13Hz) 
range, with frequency rising with activation level. 

SCREAM currently includes two types of context recog-
nition patterns. The first type of pattern is a template de-
scribing how specific concept instances act as inputs to asso-



 
 

 

 

ciated instances of a given context and how the weights will 
be applied to the input activation levels.    

 For example, we can use 
S Breakfasts {ID} { 

Eats-meal {{ID} 1.0} 
Breakfast-time {{} 1.0} 
 morning {{} 1.0}  
 afternoon {{} -10.0} 

 } {ii 1.0} 
as the pattern for a context whose activation reflects the 
awareness of the model that an observed entity is having 
breakfast.  If, say, the concept instance Eats-meal {99} is 
active, then it will be an input to the context instance Break-
fasts {99} with weight 1.0.   The “{ii 1.0}” specifies that an 
intrinsic inhibitive bias of 1.0 will be applied when comput-
ing the activation level of an instance of Breakfasts.  If 
Breakfasts is also a concept, then the Breakfasts {99} context 
instance output is the input to the corresponding concept 
instance, subject to capacity limitation.  (See Figure 6.) 

If !  is an instance of the context X , then the immediate 
activation level of !  is expressed by  
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The latter is more intuitive for building models by hand, 
while the former appears better suited for machine learning. 

Gross (output) activation levels of all context instances 
are updated at 5Hz (i.e., in the theta band).  Outputs are 
made available synchronously to enable efficient implemen-
tation of simple capacity limitation. 

A second type of context pattern is used for templates of 
context instances whose immediate activation is based on 
the activations all instances of the same concept that have 
matching values at specified slots.  This pattern type has 
been useful in abstracting away slot values from con-
cept/context instances and in approximately expressing a 
minimum quantity.  For example, 

XQ Eats-meal {ID1} {eats {{ID1 ID2} 1.0}} {ii 2} 
XQ Breakfast-time {} {Breakfasts {{ID} 1.0} } {ii .5}. 

In the first pattern specifies that currently active instances 
of the concept eats with matching first slots will contribute 
activation to the same instance of context Eats-meal.  The 
“plain English” interpretation is that somebody is eating a 
meal if (s)he is eating at least three things.  Immediate and 

gross activation of instances of contexts of the “XQ” type 
are computed similarly to the “S” type context activation.  
This type of context pattern offers tremendous benefit in 
representation capacity for large numbers of concept in-
stances that can be related in this fashion. 

For example, subject to simple parameter choices, if we 
consider the model examples presented earlier in this section 
and activate the concept instances eats {99 19}, eats {99 31}, 
eats {99 31}, eats {86 6}, eats {86 31}, eats {86 20}, and 
morning {} all with raw activation 1.0, then the concept and 
context instance network will have the structure shown in 
Figure 6.  The ability to define a set of context patterns that 
can give rise to recurrent network structures enables the 
models to be stateful even without additional memory com-
ponents.  
 

 
Figure 6: SCREAM runtime model with recurrent structure.  Ovals repre-
sent concept instance nodes, and rectangles, context instance nodes;  flow is 
from left to right except where indicated by arrows 
 

A basic capability for modeling emotional processes in 
cognition ([Bernard & Smith, 2006] with elements from 
[Bernard, et al., 2007]) has been implemented in SCREAM. 
SCREAM updates the level of activation of each emotion 
based on concept activation levels and parameters that spec-
ify how the concepts influence emotional state.  Each con-
cept can be associated with a level of activation and a weight 
coefficient for each emotion. For example, in an emotion 
parameters file,  

cee clown 2  fear 0.6 0.7  anger 1.5 0.9 
specifies that concept clown influences two emotions.  For 
fear it has a weight coefficient of 0.6 and a target activation 
of 0.7, and for anger it has a weight coefficient of 1.5 and a 
target activation of 0.9.  

The emotional processes module takes as input the overall 
activation levels of all concepts. The immediate activation 
level aµ  of emotion µ  can be expressed as 
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Here, ,( )
i j
p!  is the activation of the th

j  of ( )m i active 

instances of concept i ; 
,i

wµ  and 
,iµ!  are the weight coeffi-

cient and target activation for concept i  associated with 
emotion µ ; and there are n  concepts.  Thus, the emotional 
state is computed similarly to center of mass. 

The activation levels of the modeled emotions are con-
verted into fuzzy-set representations whose membership 
levels determine the activation of corresponding concepts.  
For example, the level of anger can be represented by mem-
bership levels in the fuzzy sets anger::Low, anger::Medium, 
and anger::High that cover the range of anger activation 
levels.  We currently use normalized Gaussian fuzzy set rep-
resentations.  Thus converted into concept instance represen-
tations, emotional state affects the activation of concept in-
stances and context instances via the mechanisms described 
previously in this section. 

C. Integration of SHERCA into Ground Truth Agents 
We now describe architectural aspects of how SHERCA 

is integrated into Ground Truth agents.  Each cognitive 
agent has a SHERCA-based cognitive model, which it 
mainly uses to continuously determine and update its high-
level behavior. Each cognitive agent is an instance for the 
ScreamAgent class and has its own SCREAM Cognitive-
ModelObject instance.  The ScreamAgent class builds on the 
class of state-machine-driven agents described in Section 
III.C., and a cognitive agent uses this inherited capability to 
carry out the cognitively-selected behavior. 

When a cognitive agent is created, it loads cognitive 
model definition (data) files whose contents include  

• the concepts, contexts, and context patterns; 
• context-instance to behavior/action conversion 

patterns; and 
• spreading activation (priming) and emotional as-

sociation parameters. 
Currently, individual cognitive model definitions in Ground 
Truth differ only in emotional association parameters and 
levels of activation of high-level goals, reflecting differences 
in personality, culture and values. Setting activation of other 
specific concepts appropriately allows us to customize the 
generic model for each specific type of Ground Truth NPC. 

To explain how the update of agent cognitive state fits 
into the game state update, we first view the latter loop at 
very high level: 

• The respective Managers for fog, evacuation, traf-
fic, etc., update the states of game elements not di-
rectly controlled by the agents. 

• The Agent Manager updates the states of the NPC 
agents. 

The AgentManager updates the states of the agents in an 
update cycle by doing the following: 

• It updates the agents’ physical states, based on 
their current states and game state external to the 
agents. 

• It has the agents update their perceptual states, with 
help from the Perception Manager. 

• It has the agents make decisions. 

• It has the agents act on their decisions. 
The last item is carried out by the cognitive agent’s state-

machine element.  When elements of an agent acting on a 
decision have an observable aspect, that part of the action 
takes the form of requests to the Game State, so that it can 
maintain consistency.  

To make decisions, a cognitive agent: 
• Updates raw activation levels of input-level con-

cept instances  
• Iterates its internal CognitiveModelObject to the 

current game time. 
• Passes the highest-ranked behavior option to its 

state machine component for execution. 
The receipt of a user command that includes at least one 

argument, such as a location, corresponds to a concept that 
has a matching number of slots.  Each unique argument 
value is translated into a symbolic label for activation of a 
concept instance.   This label is subsequently converted back 
when the start state of a behavior is initialized.   

In both the state-machine-based agents and cognitive 
agents, decision-making considers perceptual data, the most 
recent command received from the player, and various state 
data.  For a state-machine-based agent, user commands di-
rectly set the high-level behavior that the agent will perform.  
A new user command results in the state machine popping 
states until one is reached that can dispatch the desired be-
havior.  However, in a cognitive agent, the cognitive model 
determines the high-level behavior. 

States in the state machine of a cognitive agent can access 
its emotional state for use in modeling affect within a behav-
ior.  For example, dialogue output takes into account emo-
tional state.  Generally, determination of low-level behavior, 
such as path planning, also makes use of separate algorithms 
that are called from within states. 

D. Implementation of SHERCA Driven Teammate 
We have developed a SHERCA cognitive model for 

Ground Truth NPCs and use specific model instances to 
govern their behaviors independently. The model currently 
contains roughly 80 concepts and contexts and over 50 con-
text patterns. It is intended only to be sufficient for those 
NPCs, and we view its development as an exploration into 
the use of emotional cognitive models to increase the realism 
of the effects of player decisions.  

In our initial cognitive model development and integra-
tion spiral, we constructed a minimalist cognitive model 
whose behavior selection enabled the cognitive NPCs to act 
like the state-machine-based NPCs.  To begin our more re-
cent spiral, we identified game situations for individual 
NPCs that we believed should evoke emotional responses.  
We then expanded the cognitive model to follow the 
SHERCA framework of decision making, and we identified 
situations in which it would be intuitive to a player when an 
NPC chose not to obey the most recent command it received, 
based on its emotional state and activation levels of its high-
level goals. 

Developing the minimalist cognitive model enabled us to 
exercise model elements needed for the behavior selection 
role.  We defined input-level concepts for communicating: 



 
 

 

 

• simple perceptive state, such as current location, 
noticing the toxic fog, or current action/behavior; 

• receiving commands; 
• endogenous state; 
• declarative state knowledge, such as whether agent 

has PPE to wear, and whether it is being worn. 
Note that in this discussion, names of input-level concepts 
will begin with a lower-case letter.    

Because it is located between user-issued commands and 
the behavior-executing state machine, the cognitive model 
must keep track of the current command to (possibly) be 
acted upon.  We defined contexts for achieving this capabil-
ity.  For example, we have a context whose instances model 
whether the current command is to move to a given location:  

S Curr-cmd-move-to {LOC} { 
    rcv-move-command {{LOC} 1.0} 
    Curr-cmd-move-to {{LOC} 1.0} 
    self-at {{LOC} -5.0} 
    Task-some-other-loc-cmd {{LOC} -10.0}  }. 
Activation of a rcv-move-command instance results in ac-

tivation of a corresponding Curr-cmd-move-to context in-
stance.  Because the activation duration of an input-level 
concept instances that model receiving a command is limited 
by a timer to approximate, e.g., conversation duration,  a 
Curr-cmd-move-to context instance is self-stimulating  once 
activated.  (Recall that the activation function will modulate 
output activation.)  The self-at negative cue models complet-
ing command execution or ignoring the command if the 
agent is already at the destination.  The Task-some-other-
loc-cmd negative cue, whose activation is also (context) pat-
tern-driven, enables activation to be canceled by more recent 
reception of another command.  Thus, the context pattern 
defines a recurrent relationship for sustaining self-activation 
until overcome by terminating cues. 

SCREAM computes emotional state with respect to con-
cept activation.  In addition to basic recognition of certain 
stimuli or aspects of those stimuli, there are three particu-
larly interesting categories of concepts that influence emo-
tional state in Ground Truth agents: 

• physical state or sensation; 
• assessment of a situation; 
• assessment of a situation including behavior of an-

other agent. 
The first category is currently limited to (the intuitively 
named) feel-sick and feel-dying concepts in Ground Truth 
ScreamAgents, which convert their health levels to activa-
tion levels of these concepts.  The latter two categories fall 
into the Perceptual Awareness part of the SHERCA decision 
making model.  An example from the second category is the 
concept that models awareness that the agent is endangered 
by the presence of toxic fog because (s)he is not wearing 
PPE.  Examples from the third category correspond to being 
aware of carrying out an order that will result in people dy-
ing and being aware of carrying out an evacuation when the 
situation is appropriate.  Ground Truth cognitive models 
include a permanently activated dummy concept and associ-
ated emotional parameters to define a base emotional state 
and to provide resistance to mood swings due to low-
activation concept instances. 

Ground Truth cognitive models include three concepts 
that model the high-level goals of staying alive, maintaining 
discipline, and saving lives.  Activation patterns of these 
concepts and those representing perceptual awareness give 
rise to the activation of intermediate goals and action inten-
tions.  Intermediate-goal-action-intentions (IGAIs) that 
might imply a non-local behavior generally require the agent 
to receive a user command, such as the order to evacuate a 
specific block of the city, in order to be recognized.  The 
high-level goal of maintaining discipline can help overcome 
local observations that might not apply at a task destination.  
IGAIs whose recognition only requires local information can 
become activated without the NPC receiving a prompting 
command from the user, and even in opposition to a user 
command.  An example of this latter type of IGAI is to seek 
to stop an evacuation in the presence of toxic fog to avoid 
hurting civilians. 
 

 
Figure 7: Heads-up display for an agent after SHERCA integration.  The 
green bar shows the agent's health level, yellow shows fear, and red shows 
anger level. 
 

Emotion further contributes to selection among behaviors 
that are responses to the same situation.  Higher levels of 
fear help prompt the behavior of putting on PPE in the pres-
ence of toxic fog without a command or approval from the 
IC, while sufficient levels of fear and anger in the same 
situation will cause the agent to panic and flee instead of 
communicating with the IC if the goal of maintaining disci-
pline is not sufficiently high. 

E. Discussion and Ongoing/Future Development 
With a basic capability achieved, there are many direc-

tions for further development and research. Our plan is to 
improve the feedback to the player with respect to the NPCs 
emotional state by outputting context sensitive dialog and 
sound effects. By doing this we would seek to eliminate the 
need for the emotional status bars. However, we foresee this 
to be a labor-intensive process due to the necessity for a 
wide variety of relevant, yet different, verbal responses. In 
addition, we plan on semantically tagging areas of the game 
world. This will provide our cognitive agents with richer 
perceptions of the game world and allow for more substan-
tive cognitive models. Lastly, we plan on conducting further 



 
 

 

 

experiments to quantitatively demonstrate that our training 
objectives were fulfilled with the inclusion of cognitive 
NPCs. These tests will include subject matter experts from 
the training community. 

Experience developing Ground Truth cognitive NPCs 
leads us to consider several directions for improvements to 
SCREAM, SHERCA, and integration of cognitive models 
into NPCs.  We have noticed that emotion levels fall more 
quickly than what is intuitively appropriate.  Implementing 
support for individual decay rates for concepts, and possibly 
computed emotion levels that they tend to evoke, could be a 
solution.  We would like to understand how to appropriately 
model suppression or maintenance of a behavior for a dura-
tion that is most easily understood in terms of a particular 
length of time. We also need to consider whether/how to 
enable SCREAM to model emotions being directed at par-
ticular entities.  In more complex environments, a model of 
attention would be needed.  Finally, in the long term, 
SCREAM/SHERCA require an understanding of how epi-
sodic memory is used in decision-making, with and without 
context learning. 

Future scenario development from this work should look 
at events that span multiple cities, shared resources, and 
multiple attacks. High-level decisions from those scenarios 
impact response by adding extra constraints responders must 
operate in, thus affecting their emotional pressures. This 
opens up a new avenue for training even higher-level deci-
sion makers.  Related developments could include training 
for leadership and teaming abilities. Another option is to 
adopt emotional models for the civilian population. For ex-
ample, telling a region to evacuate while the toxic cloud is 
right over them would cause panic. Would the civilians con-
tinue to respectfully obey the first responders? This would 
enhance the training by providing support for civil disobedi-
ence. 

 

V. CONCLUSION 
Based on our early experiences with integrating SHERCA-
driven cognitive models into Ground Truth NPCs we have 
seen positive results with increasing the realism of the train-
ing experience.   The SHERCA cognitive model structure 
and methodology enables us to use SCREAM’s combination 
of neural network representation and AI-based model de-
scription to effectively build psychologically plausible mod-
els that select behaviors as intended.  We were able to incor-
porate fear and anger in an intuitive manner within 
SHERCA’s modeling guidelines. Also, we are able to give 
the NPCs individual variations by specifying different emo-
tional sub-models and setting different high-level goal acti-
vations at runtime.  Within expected limitations, the cogni-
tive NPCs make decisions and exhibit emotional states that 
are mutually consistent with the perceptions they are pro-
vided about the game state via its interface to the cognitive 
models.  Thus, including emotion in NPCs via SHERCA-
based cognitive models increases the realism of effects 
based upon an IC trainee’s decisions when playing Ground 
Truth. 
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