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Abstract: First responders bear the task of restoring order
and protecting the public in the wake of disasters, both man-
made and natural. Ground Truth: Toxic City, a game developed
in partnership with Sandia National Laboratories and Univer-
sity of Southern California GamePipe Lab, puts a player in the
role of an Incident Commander. The player works with virtual
teammate agents serving as fire, police, and HazMat units to
evacuate an urban area from a chlorine spill. To add more
realism for training, these agents simulate certain emotions that
a responder may feel during this high-stress situation. We
construct psychology-plausible models compliant with the
Sandia Human Embodiment and Representation Cognitive
Architecture (SHERCA) for driving the reactions of the agents
to both the scenario and the player’s actions. The models are
run on the Sandia Cognitive Runtime Engine with Active
Memory (SCREAM) software, which has been integrated with
the game software. This paper gives an overview of Ground
Truth: Toxic City and discusses the adaptation of the SHERCA
into the game for constructing realistic emotions in these vir-
tual teammates.

1. INTRODUCTION

Emerging modes of attack using weapons of mass de-
struction (WMD), now defined within threat scenarios from
the United States Department of Homeland Security (DHS)
and the Department of Defense (DoD), require new ap-
proaches to examining detection, mitigation, and response
options. In recent years, DHS and other government agen-
cies, charged with preparing for WMD attacks and other
catastrophic events, have turned to large multi-person exer-
cises using computer-based simulation to address prepared-
ness training. While this approach is extremely valuable, it
also suffers from drawbacks: a large number of trainees must
use the system at the same time and each threat scenario
takes a day or more to complete.

To mitigate those drawbacks, we investigated different
methodologies that would lead us to a complimentary solu-
tion. Our selected option was to develop a software gaming
platform specifically designed to prepare decision makers
for WMD attacks. Two key features of this platform are:
allowing for single player training and shorter scenario run-
times. We selected 20 minute run-times as our target time
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limit for the training scenarios to focus our design by ab-
stracting out the details to keep the scenario focused on key
learning objectives. This allows us to more effectively de-
liver quality training to the target audience at a frequency
that facilitates learning the material in a timely manner.
Furthermore, the single player mode lets a responder train
anytime, anywhere with software agents taking the place of
the responder’s human counterparts.

However, the nature of the scenarios we are targeting
prevents us from simply replacing the response team mem-
bers with traditional drone-like non-player characters
(NPCs). This is because the training scenarios are based on
events that trigger emotionally biased actions from the many
people involved. For example, an Incident Commander (IC)
in charge of responding to a toxic industrial chemical spill
must protect the lives of the general population while keep-
ing their first responders out of harm’s way. But what if a
trainee orders a police unit to shelter-in-place a city block
that is covered in the toxic fog? Traditional drone-like NPCs
would blindingly obey the command given by the IC trainee
and conduct the action regardless of the effects on its safety.
Instead, we wish to provide trainees with virtual teammates
that may or may not obey the command due to their emo-
tions and the IC trainee’s reactions to the incident. In our
case, the NPC would detect the hazardous fog and resist the
action. Trainees who then force the units to perform the ac-
tion, regardless of the feedback, are then penalized in multi-
ple ways: the unit suffers from the physical damage, the
trainee’s response effectiveness score is reduced, and emo-
tional distress is caused to the unit which reduces its ability
or interest to perform requested actions. As such, including
emotion into the virtual teammates provides a more accurate
representation on the effect of a trainee’s decisions in these
types of situations.

This paper covers our work in developing emotion mod-
els into the virtual teammates for Ground Truth: Toxic City,
a game-based platform for training Incident Commanders on
response strategies following a toxic chemical spill. The
paper will detail the Sandia Human Embodiment and Repre-
sentation Cognitive Architecture (SHERCA), the design
used for constructing how fundamental emotions influence
the human cognitive process, and how SHERCA is inte-
grated into the virtual teammates built for the training envi-
ronment.



II. GROUND TRUTH: Toxic CITY

A. Gameplay Description

Ground Truth: Toxic City is modeled after the Real-Time
Strategy class of gameplay. The trainee assumes the role of
the IC and has an overhead view of the city s/he is chartered
to protect. A common feature in these types of games is the
“fog of war” that represents what the trainee can or cannot
see. In our case, we allow the player to see through this fog
based on his/her unit’s field of view as shown in Figure 1.
As units travel the space, the map shows the accurate or
ground truth information while the information on darkened
space is considered unknown.
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Figure 1: Police unit Fog of War

The trainee’s main objective is to save as many lives as
possible within the 20-minute game time by keeping them
away from the toxic cloud. Civilians can only survive for a
few minutes inside the cloud area before they are considered
significantly injured and treated as a “loss” for sake of scor-
ing. For directing the civilians to safety, the trainee controls
a selection of fire, police, and HazMat units. The trainee
can: 1) evacuate city blocks, which moves people from
buildings onto the city streets, 2) shelter in place city blocks,
which provides reduced exposure levels, 3) barricade and
direct traffic, which affects the throughput of the city streets,
and 4) attempt to contain the leak. The player can monitor
street traffic on the display with shaded arrows indicating
traffic direction and colored regions representing traffic den-
sity. Blue colored regions equal low, yellow equals moder-
ate, and red equals severe traffic density. Each unit also has
different actions they can perform based on their type. For
example, firefighters can don Personal Protective Equipment
(PPE) to protect themselves when entering the toxic cloud
area.

B. Game Al Virtual Teammates

In Ground Truth, agents serve as the virtual teammates
the player must direct in order to win the game. Initially, we
implemented a reactive agent design for the virtual team-
mates. The agents executed commands ordered by the

player and report on events of interest to the player in game
(i.e., location of the fog cloud). These agents did not have
any belief-desire-intent (BDI) modeling [Wooldridge, 2002]
that would result in them acting autonomously. This deci-
sion on the agent design resulted from the original intent of
the game, training first responder commanders on the best
methods on where to direct resources to minimize civilian
casualties. However, the reactive agent behavior creates a
game that over-simplifies the scenario from a realistic train-
ing perspective.

Figure 2: Ground Truth gameplay view

We generated an agent architecture for the game that
would support not only this reactive agent design, but would
also allow for the creation of more complex agents that pre-
sent the player with challenges more in line with the actual
environment. The architecture decomposes each of the
game actions into states. For Ground Truth, the states in-
clude MoveTo, Evacuate, Shelter-In-Place, Barricade,
and putonPPE. A state is entered by a command request for
an action, with the state’s end condition defining when the
action should terminate. The state performs the interactions
necessary with the game to initiate the action and receive
notice that the action has been accomplished. For the reac-
tive agent design, all command requests originate from the
player. However, as more sophisticated agents are devel-
oped for Ground Truth, agents can request these states to
perform actions themselves, masking the communication
between the agent and game world from the agent developer.

In creating our reactive agent, we constructed a hierarchi-
cal state machine (HSM) [Yannakakis, 2000] by building
meta-states that would chain together action states for more
complex behaviors. For example, a player may request an
agent evacuate a building on the other side of the game
world. To create this behavior, one can construct a finite
state machine (FSM), PlanEvacuation, which connects the
MoveTo and Evacuate states for performing all actions
needed to evacuate the distant location. PlanEvacuation
serves as a child FSM to the master FSM, 1dlestate, which
awaits commands from player and calls the proper child
FSM to execute the command (see Figure 3).



III. RELATED WORK

A. Role of Emotion in Decision-Making

Since disaster response operations involve “in extremis”
decision making, intense emotions associated with this type
of environment can impair decisions by disrupting critical
thinking. In fact, one’s emotions are a critical mediator in
the types of decisions that are made and how people will
ultimately behave. Emotion states serve as action tendencies
that provide additional information to make judgments; es-
pecially when conditions are uncertain—as found in high-
stress and high-consequence situations such as man-made
and natural disasters. For example, [Bernard & Smith,
2006] found that emotion states accounted for 34% of the
variance in choices made when their expected utility was not
obvious. Thus, representing the role of emotion in arriving at
a decision may prove useful in assessing how people will
ultimately behave.

Figure 3: Example of Master FSM calling Child FSM to handle evacuation
and barricade commands

Converging lines of research suggest that a person’s atti-
tude (which is a general opinion towards a person, object, or
concept) influences behavior. A general theory supporting
this research, the Theory of Planned Behavior, proposes that
behaviors are influenced by 1) attitudes towards a specific
behavior, 2) the subjective norms associated with acting out
that behavior, and 3) the perception that this behavior is
within a person’s control. This forms an action intention
state, which then typically drives that person’s actual behav-
ior [Ajzen & Madden, 1986; Fishbein & Stasson, 1990;
Madden, Ellen, & Ajzen, 1992].

A person’s emotional state often plays a large role in a
determining the ultimate behavior of the individual. Accord-
ing to the research by [Berkowitz, 1993] and others, certain
experiences may create general negative affects (such as the
fight or flight impulse when a threat is perceived), which
then may stimulate associations linked to fear and anger.
How people respond can be a result of both goal- or moral-
related decisions and their perceived emotion state. As men-
tioned above, assessments of the environment and the poten-
tial outcome can also temper behaviors. Consequently, angry
persons might refrain from aggressive behavior if it would
conflict with their goals or moral values. Accordingly, they
may choose other behaviors that more closely align with
their goals or values [Bandura, Barbaranelli, Caprara, &
Pastorelli, 1996].

B. Modeling Emotion for Game-based Training Environ-
ments

Emotion modeling for NPCs is not a new concept. For
commercial games, clever character development written
into game designs allow NPCs to reflect emotional growth
and behavioral changes based upon the player’s choices
[Krawczyk & Novak, 2006]. Advancements in animation
have allowed these NPCs to visibly express a wide range of
emotions, giving a wider range of empathetic responses for
the player. Yet, these techniques focus on just creating the
illusion of emotions felt by NPCs, rather than attempting to
understand and computationally model the human emotional
responses within these characters. With commercial game
Al techniques being viewed as an insufficient model for
virtual characters in game-based training, or serious gaming
[Van Lent, 2007], the necessity for more realistic human
modeling has become a prevalent research area.

As noted in the prior section, emotions tie into a person’s
motivation for deciding what actions to pursue. To compu-
tationally represent the role of emotion in motivation, re-
searchers have found mapping perceptions to pre-defined
emotional states as an effective method for virtual characters
in these environments. [Chaplin et al., 2004] created agents
for a derivation of the Iterative Prisoners Dilemma that
mapped previous interactions with other agents to emotional
states for determining whether to cooperate or defect. [Hus-
sian et al., 2006] incorporated a similar approach into a 3D
predator/prey type game to aid a prey agent in reaching
checkpoints without being detected by the predator.

Though several research efforts on emotion modeling
exist, few instances of this research have transferred into
game-based training environments. An explanation for this
is the challenge in both modeling how emotion interacts with
reasoning along with physical behavior. The Institute for
Creative Technologies (ICT) [Kenney et al., 2007] has un-
dertaken a comprehensive effort toward including virtual
humans into training systems, combining cognitive modeling
with natural language generation and animation for repre-
senting to the trainee how emotion impacts these virtual
characters. Since the Ground Truth platform does not repre-
sent virtual teammates with the same fidelity as the envi-
ronments used by the ICT, the focus of our research has
been on constructing psychology-plausible models of emo-
tion at the agent decision-making level. The paper will later
describe our first attempts at having Ground Truth commu-
nicate the emotions of the virtual teammates to the trainee.

Other researchers involved in modeling human cogni-
tive processes have also investigated how emotion can con-
struct a more realistic virtual teammate. The ICT virtual
human research mentioned earlier uses the SOAR architec-
ture [Rosenbloom et al., 1993] in forming their cognitive
models. The SOAR community has made several contribu-
tions in modeling how emotion interacts with working
memory, perception, and expression for NPCs ([Henninger
et al. 2003; Marinier & Laird 2004]). While SOAR tags
perceptions with factors such as arousal, pain, and pleasure
to make emotion an emergent property of the model, our



research serves as a complimentary effort by directly defin-
ing role of emotions in the decision making process.

C. Related Sandia Cognitive Works

Our work builds on research that initially sought to com-
putational cognitive architecture that supports Human Natu-
ralistic Decision Making [Klein, 1997] while incorporating
“organic” factors such as emotion [Forsythe & Wen-
ner|[Forsythe & Xavier, 2002]. The emphasis on emotions
from the very beginning distinguishes this program of re-
search from other cognitive architectures such as as ACT-R
[Anderson & Lebiere, 1998] and SOAR [Rosenbloom &
Laird, 1993]. Preliminary work attempted to combine a psy-
chological model representing knowledge and cognitive
processes with a physiologically-inspired model that pro-
vided the basis for incorporating organic factors. Using sub-
sequently-developed simulation software that extended prac-
ticality, [Forsythe, et al, 2003] developed a prototype human
augmentation system based on discrepancy detection with
respect to a task-based runtime cognitive model.
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Figure 4. Conceptual cognitive architecture.

A high-level, psychological framework was fleshed out
(Figure 4) to enable application within an embodied agent,
as distinguished from a disembodied “decider” [Forsythe,
et.al., 2004][Bernard, et al., 2005]. At the same time, the
Sandia Cognitive Runtime Engine with Active Memory
(SCREAM) was developed to provide a practical cognitive
simulation capability that supported that psychological
framework. Emphasis on cognitive elements with activa-
tion-levels updated according to dynamics distinguishes
SCREAM and most other Sandia cognitive simulation work
from more common production-rule-based approaches.

The Sandia Human Embodiment and Representation
Cognitive Architecture (SHERCA) is being developed to
extend the psychological framework for modeling the behav-
ior of humans as embodied agents while encouraging
physiological plausibility. Conceptually, SHERCA fleshes
out the high-level architecture down into to subsystem mod-
els of perceptual memory, spatial memory, and action gen-
eration. SHERCA also refines the psychological model of
decision-making with respect to action selection, providing a
more detailed model of how emotional processes are inte-
grated with the application of semantic and contextual
knowledge.

Applying SHERCA for the conceptual and psychological
model structure and SCREAM for the computational cogni-
tive engine, [Bernard, et al., 2007] used runtime cognitive
models to control the behavior of cognitive characters in a
virtual 3D environment in a prototype training application
emphasizing cultural awareness [Bernard, et al., 2005].
Standard embodied-agent simulation techniques imple-
mented in Sandia’s Umbra simulation framework [Gottlieb,
et al., 2002] model the characters’ ability to “perceive” their
environment, other entities, and those entities’ various at-
tributes and actions.

Several other efforts at Sandia are developing computa-
tional cognitive modeling technologies that have foreseeable
application in gaming. An example with current capability
is the Cognitive Foundry [Basilico, et al, 2008], which pro-
vides (a) a theory-of-cognition-agnostic framework for de-
veloping cognitive models for intelligent agents and (b) a set
of tools for automatically populating such models and evalu-
ating them using statistical, machine learning, and visualiza-
tion techniques. An example with applicability on the hori-
zon is the development of a computational, neuro-
physiologically plausible model of episodic memory [Verzi,
et al., 2008].

IV. MODELING EMOTION IN VIRTUAL TEAMMATES

A. SHERCA

SHERCA was designed to correspond to the theories and
supporting research mentioned in Section III [Bernard, et al.,
2007]. SHERCA allows for multiple cues, cognitive percep-
tions, goals, action intentions, etc., to concurrently have
some degree of activation. In SHERCA’s model of decision-
making, once a cognitive perception—an element of percep-
tual/situational awareness—has been activated by cues in the
environment, it may trigger activation of specific, intermedi-
ate goals that are consistent with higher-level goals and other
active cognitive perceptions. For example, one goal may be
to protect family, and another, to protect oneself. Intermedi-
ate goals help support the higher-level goals by breaking
down the goals into discrete tasks. The overall emotional
state mediates activation of action intentions from the inter-
mediate goals. As a consequence, the intended actions are a
product of both the intermediate goals and the current emo-
tional state of the simulated human. This emotional state
may change dynamically, for example from very low to very
high levels of anger, if the perceptions change. Action in-
tentions that are contradictory with respect to goals can be-
come concurrently highly activated due to the influence of
emotion. At the same time, cognitive perception is influ-
enced by a hierarchy of higher-level goals/directives or
moral states, as well as state within a behavior (e.g., current
step in a procedure).

In SHERCA, an impression of culture can be generated
by varying a simulated human’s emotional response to par-
ticular perceptions. Cultures also exhibit variations within
their high-level and intermediate goals. As a result, their
intended and actual behaviors will show cultural uniqueness.
The result is a complex set of behaviors that have certain
emergent properties common to a particular group.



While SHERCA is intended eventually to achieve human-
plausibility at a detailed level as various cognitive compo-
nent models improve [Verzi, et al., 2009], initial emphasis
has been on applying it to virtual embodiment. In this role
SHERCA has been instantiated as a human-representative
computational model through which a cognitive character
recognizes patterns of stimuli in the environment and re-
sponds to those stimuli according to current contexts, goals,
and emotions [Bernard, et al., 2007]. Our main focus has
been endowing characters with SHERCA’s model of deci-
sion-making to select behavior-level actions rather than
model detailed procedures or low-level control. Instead, we
make use of non-cognitive Al/gaming techniques or features
built into the virtual character model and virtual environ-
ment to implement those capabilities.
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Recognition
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Figure 5 Model of decision-making to select actions in SHERCA.

B. SCREAM

SHERCA models in Ground Truth NPCs use SCREAM
for the computational cognitive engine. We now summarize
key components of SCREAM, describe the basic cognitive
elements, and sketch out their computational updates.

1) Basic cognitive elements in SCREAM

A concept is the fundamental semantic element in
SCREAM. For convenience, concepts have names, but
SCREAM associates no meaning with those names. To func-
tion in environments with multiple entities (e.g., things,
creatures, features, etc.) of a given type requires a mecha-
nism to associate concept activations with specific entities.
SCREAM takes the simple approach of endowing concepts
with slots. A concept instance associates slots with entities.
Concept instances are created as needed. Each has its own
activation state and is uniquely identified by concept and a
vector of entity identifiers, which are merely labels to enable
convenient interaction with people and other non-SCREAM
system components. For example, chases {22, 31} identifies
an instance of the concept chase (i.e., entity #22 chases en-
tity #31). Thus, a concept is similar to a fuzzy predicate, but
we do not claim that SCREAM implements any logic.

Contexts can be defined as meaningful perceptual repre-
sentations that are based on recognizable patterns of stimuli,
as well as, consistent with situation models, schema and
theme-based representations of events. Context activation is
governed by pattern recognition applied to the activation
states of concepts that are the cues for/against that context.
For example, the concepts bicycle, clown, elephant and pop-
corn might be cues for the context Circus. A context in-

stance is related to a context similar to the way that a con-
cept instance is related to a concept. In SCREAM, a con-
cept whose raw (input) activation is driven by the contextual
pattern recognition process is also called a context.

Because contextual knowledge can include behaviors,
SCREAM includes a context-to-abstract-action module that
applies specified patterns to expand context instances into
schema instances that describe behavior at a high level.

2) Updating cognitive state

At game start-up, each cognitive model instance is
loaded with model definition and parameterization files.
These files declare concepts and contexts and define context
recognition patterns, context-to-behavior expansion patterns,
and associations between concepts and emotions.

The main runtime cognitive state representation can be
viewed as a dynamically-structured activation network of
concept, concept instance, context instance and emotional
state nodes. The concept instance driver, semantic associa-
tion network, context recognizer, emotional processes and
context-to-abstract-action modules of a SCREAM-based
agent share the responsibility for updating the network struc-
ture and node activation. For example, the context recog-
nizer uses a maximal unification criterion with respect to
concept instances in maintaining the set of context instances.
SCREAM episodic memory and spatial memory modules are
not currently used in Ground Truth. Node activation values
are always non-negative.

The instantiation and raw activation of input-level con-
cepts are controlled from outside SCREAM via a concept
instance driver. For example, a model definition might in-
clude the following input-level concept declarations:

c morning {}

c afternoon {}

cnoon{}

ceats {IDI ID2}
If the agent’s perception module saw an entity it labeled
Fred nibbling on one labeled L/9, then it could call the
agent’s concept instance driver to set the raw activation level
of the concept instance eats { Fred, L19} to, say, 0.7.

The semantic association network module updates the
gross (output) activation of concept instances. Gross activa-
tion of a concept instance is computed from raw activation,
spreading priming from concepts specified in the model, and
top-down priming from contexts for which the concept is a
cue. Priming is specified by global spreading- and top-down-
gain gains and directed pairwise weights. For example,

sa noon {eats 0.2}
specifies a spreading activation weight of 0.2 from the con-
cept noon to the concept eats.

Priming is distributed from concept nodes to concept in-
stances. Summation with raw activation at instance nodes is
followed by application of an activation function and
rise/decay model. Concept instance node output updates are
individually scheduled at rates within the alpha (8-13Hz)
range, with frequency rising with activation level.

SCREAM currently includes two types of context recog-
nition patterns. The first type of pattern is a template de-
scribing how specific concept instances act as inputs to asso-



ciated instances of a given context and how the weights will
be applied to the input activation levels.
For example, we can use
S Breakfasts {ID} {

Eats-meal {{ID} 1.0}

Breakfast-time {{} 1.0}

morning {{} 1.0}

afternoon {{}-10.0}

F{ii 1.0}
as the pattern for a context whose activation reflects the
awareness of the model that an observed entity is having
breakfast. If, say, the concept instance Eats-meal {99} is
active, then it will be an input to the context instance Break-
fasts {99} with weight 1.0. The “{ii 1.0} specifies that an
intrinsic inhibitive bias of 1.0 will be applied when comput-
ing the activation level of an instance of Breakfasts. If
Breakfasts is also a concept, then the Breakfasts {99} context
instance output is the input to the corresponding concept
instance, subject to capacity limitation. (See Figure 6.)
If x is an instance of the context X , then the immediate

activation level of ) is expressed by

a ()= max((E wka(pk)) _ /5<X),0).

Here a(p,) and w, are, respectively, the gross activation of

the k" input concept instance with respect to x , and f’

is the intrinsic inhibitive bias of context X . The gross acti-
vation level of y is computed from a,__ (x) by applying

an activation function followed by a normalized leaky inte-
grator. It is important for the activation function to be non-
linear, and some activation function choices that SCREAM
provides include:
X ifx=1
Alx) =
l+tan™ (x - 1)
A(x) = min(x, 1).
The latter is more intuitive for building models by hand,
while the former appears better suited for machine learning.

Gross (output) activation levels of all context instances
are updated at 5SHz (i.e., in the theta band). Outputs are
made available synchronously to enable efficient implemen-
tation of simple capacity limitation.

A second type of context pattern is used for templates of
context instances whose immediate activation is based on
the activations all instances of the same concept that have
matching values at specified slots. This pattern type has
been useful in abstracting away slot values from con-
cept/context instances and in approximately expressing a
minimum quantity. For example,

XQ Eats-meal {ID1} {eats {{IDI ID2} 1.0}} {ii 2}
XQ Breakfast-time { } { Breakfasts {{ID} 1.0} } {ii .5}.

In the first pattern specifies that currently active instances
of the concept eats with matching first slots will contribute
activation to the same instance of context Eats-meal. The
“plain English” interpretation is that somebody is eating a
meal if (s)he is eating at least three things. Immediate and

;and
otherwise

gross activation of instances of contexts of the “XQ” type
are computed similarly to the “S” type context activation.
This type of context pattern offers tremendous benefit in
representation capacity for large numbers of concept in-
stances that can be related in this fashion.

For example, subject to simple parameter choices, if we
consider the model examples presented earlier in this section
and activate the concept instances eats {99 19}, eats {99 31},
eats {99 31}, eats {86 6}, eats {86 31}, eats {86 20}, and
morning {} all with raw activation 1.0, then the concept and
context instance network will have the structure shown in
Figure 6. The ability to define a set of context patterns that
can give rise to recurrent network structures enables the
models to be stateful even without additional memory com-
ponents.

eats(99,19)
eats(99,31)
eats(99,57)

Eats-Meal(99)

Breakfasts(99)

Breakfasts(99)

Breakfast-time( )

Breakfast-time( )

Breakfasts(86)

Breakfasts(86)

cats(86.,6)
£ats(86,20) Eats-Meal(86)

Figure 6: SCREAM runtime model with recurrent structure. Ovals repre-
sent concept instance nodes, and rectangles, context instance nodes; flow is
from left to right except where indicated by arrows

A basic capability for modeling emotional processes in
cognition ([Bernard & Smith, 2006] with elements from
[Bernard, et al., 2007]) has been implemented in SCREAM.
SCREAM updates the level of activation of each emotion
based on concept activation levels and parameters that spec-
ify how the concepts influence emotional state. Each con-
cept can be associated with a level of activation and a weight
coefficient for each emotion. For example, in an emotion
parameters file,

cee clown 2 fear 0.6 0.7 anger 1.5 0.9
specifies that concept clown influences two emotions. For
fear it has a weight coefficient of 0.6 and a target activation
of 0.7, and for anger it has a weight coefficient of 1.5 and a
target activation of 0.9.

The emotional processes module takes as input the overall
activation levels of all concepts. The immediate activation

level a, of emotion u can be expressed as

n=1 m(i)-1
> Y wap )5,
_ i=0 ;=0
a.’-‘ - n-1 m(i)-1
Wuz (pi,j)
i=0 j=0



Here, a(p; j) is the activation of the ;" of m(i) active

instances of concept i; w,;

cient and target activation for concept i associated with
emotion u ; and there are n concepts. Thus, the emotional

and & ; are the weight coeffi-

state is computed similarly to center of mass.

The activation levels of the modeled emotions are con-
verted into fuzzy-set representations whose membership
levels determine the activation of corresponding concepts.
For example, the level of anger can be represented by mem-
bership levels in the fuzzy sets anger::Low, anger::Medium,
and anger::High that cover the range of anger activation
levels. We currently use normalized Gaussian fuzzy set rep-
resentations. Thus converted into concept instance represen-
tations, emotional state affects the activation of concept in-
stances and context instances via the mechanisms described
previously in this section.

C. Integration of SHERCA into Ground Truth Agents

We now describe architectural aspects of how SHERCA
is integrated into Ground Truth agents. Each cognitive
agent has a SHERCA-based cognitive model, which it
mainly uses to continuously determine and update its high-
level behavior. Each cognitive agent is an instance for the
ScreamAgent class and has its own SCREAM Cognitive-
ModelObject instance. The ScreamAgent class builds on the
class of state-machine-driven agents described in Section
II.C., and a cognitive agent uses this inherited capability to
carry out the cognitively-selected behavior.

When a cognitive agent is created, it loads cognitive
model definition (data) files whose contents include

* the concepts, contexts, and context patterns;
* context-instance to behavior/action conversion
patterns; and
* spreading activation (priming) and emotional as-
sociation parameters.
Currently, individual cognitive model definitions in Ground
Truth differ only in emotional association parameters and
levels of activation of high-level goals, reflecting differences
in personality, culture and values. Setting activation of other
specific concepts appropriately allows us to customize the
generic model for each specific type of Ground Truth NPC.

To explain how the update of agent cognitive state fits
into the game state update, we first view the latter loop at
very high level:

* The respective Managers for fog, evacuation, traf-
fic, etc., update the states of game elements not di-
rectly controlled by the agents.

* The Agent Manager updates the states of the NPC
agents.

The AgentManager updates the states of the agents in an
update cycle by doing the following:

e It updates the agents’ physical states, based on
their current states and game state external to the
agents.

¢ It has the agents update their perceptual states, with
help from the Perception Manager.

¢ It has the agents make decisions.

¢ It has the agents act on their decisions.

The last item is carried out by the cognitive agent’s state-
machine element. When elements of an agent acting on a
decision have an observable aspect, that part of the action
takes the form of requests to the Game State, so that it can
maintain consistency.

To make decisions, a cognitive agent:

¢ Updates raw activation levels of input-level con-
cept instances

e Iterates its internal CognitiveModelObject to the
current game time.

¢ Passes the highest-ranked behavior option to its
state machine component for execution.

The receipt of a user command that includes at least one
argument, such as a location, corresponds to a concept that
has a matching number of slots. Each unique argument
value is translated into a symbolic label for activation of a
concept instance. This label is subsequently converted back
when the start state of a behavior is initialized.

In both the state-machine-based agents and cognitive
agents, decision-making considers perceptual data, the most
recent command received from the player, and various state
data. For a state-machine-based agent, user commands di-
rectly set the high-level behavior that the agent will perform.
A new user command results in the state machine popping
states until one is reached that can dispatch the desired be-
havior. However, in a cognitive agent, the cognitive model
determines the high-level behavior.

States in the state machine of a cognitive agent can access
its emotional state for use in modeling affect within a behav-
ior. For example, dialogue output takes into account emo-
tional state. Generally, determination of low-level behavior,
such as path planning, also makes use of separate algorithms
that are called from within states.

D. Implementation of SHERCA Driven Teammate

We have developed a SHERCA cognitive model for
Ground Truth NPCs and use specific model instances to
govern their behaviors independently. The model currently
contains roughly 80 concepts and contexts and over 50 con-
text patterns. It is intended only to be sufficient for those
NPCs, and we view its development as an exploration into
the use of emotional cognitive models to increase the realism
of the effects of player decisions.

In our initial cognitive model development and integra-
tion spiral, we constructed a minimalist cognitive model
whose behavior selection enabled the cognitive NPCs to act
like the state-machine-based NPCs. To begin our more re-
cent spiral, we identified game situations for individual
NPCs that we believed should evoke emotional responses.
We then expanded the cognitive model to follow the
SHERCA framework of decision making, and we identified
situations in which it would be intuitive to a player when an
NPC chose not to obey the most recent command it received,
based on its emotional state and activation levels of its high-
level goals.

Developing the minimalist cognitive model enabled us to
exercise model elements needed for the behavior selection
role. We defined input-level concepts for communicating:



* simple perceptive state, such as current location,
noticing the toxic fog, or current action/behavior;
* receiving commands;
* endogenous state;
* declarative state knowledge, such as whether agent
has PPE to wear, and whether it is being worn.
Note that in this discussion, names of input-level concepts
will begin with a lower-case letter.

Because it is located between user-issued commands and
the behavior-executing state machine, the cognitive model
must keep track of the current command to (possibly) be
acted upon. We defined contexts for achieving this capabil-
ity. For example, we have a context whose instances model
whether the current command is to move to a given location:

S Curr-cmd-move-to {LOC}{

rev-move-command {{LOC} 1.0}
Curr-cmd-move-to {{LOC} 1.0}

self-at {{LOC}-5.0}
Task-some-other-loc-cmd {{LOC} -10.0} }.

Activation of a rcv-move-command instance results in ac-
tivation of a corresponding Curr-cmd-move-to context in-
stance. Because the activation duration of an input-level
concept instances that model receiving a command is limited
by a timer to approximate, e.g., conversation duration, a
Curr-cmd-move-to context instance is self-stimulating once
activated. (Recall that the activation function will modulate
output activation.) The self-at negative cue models complet-
ing command execution or ignoring the command if the
agent is already at the destination. The Task-some-other-
loc-cmd negative cue, whose activation is also (context) pat-
tern-driven, enables activation to be canceled by more recent
reception of another command. Thus, the context pattern
defines a recurrent relationship for sustaining self-activation
until overcome by terminating cues.

SCREAM computes emotional state with respect to con-
cept activation. In addition to basic recognition of certain
stimuli or aspects of those stimuli, there are three particu-
larly interesting categories of concepts that influence emo-
tional state in Ground Truth agents:

¢ physical state or sensation;

e assessment of a situation;

e assessment of a situation including behavior of an-

other agent.

The first category is currently limited to (the intuitively
named) feel-sick and feel-dying concepts in Ground Truth
ScreamAgents, which convert their health levels to activa-
tion levels of these concepts. The latter two categories fall
into the Perceptual Awareness part of the SHERCA decision
making model. An example from the second category is the
concept that models awareness that the agent is endangered
by the presence of toxic fog because (s)he is not wearing
PPE. Examples from the third category correspond to being
aware of carrying out an order that will result in people dy-
ing and being aware of carrying out an evacuation when the
situation is appropriate. Ground Truth cognitive models
include a permanently activated dummy concept and associ-
ated emotional parameters to define a base emotional state
and to provide resistance to mood swings due to low-
activation concept instances.

Ground Truth cognitive models include three concepts
that model the high-level goals of staying alive, maintaining
discipline, and saving lives. Activation patterns of these
concepts and those representing perceptual awareness give
rise to the activation of intermediate goals and action inten-
tions. Intermediate-goal-action-intentions (IGAIs) that
might imply a non-local behavior generally require the agent
to receive a user command, such as the order to evacuate a
specific block of the city, in order to be recognized. The
high-level goal of maintaining discipline can help overcome
local observations that might not apply at a task destination.
IGAIs whose recognition only requires local information can
become activated without the NPC receiving a prompting
command from the user, and even in opposition to a user
command. An example of this latter type of IGAI is to seek
to stop an evacuation in the presence of toxic fog to avoid
hurting civilians.

Figure 7: Heads-up display for an agent after SHERCA integration. The
green bar shows the agent's health level, yellow shows fear, and red shows
anger level.

Emotion further contributes to selection among behaviors
that are responses to the same situation. Higher levels of
fear help prompt the behavior of putting on PPE in the pres-
ence of toxic fog without a command or approval from the
IC, while sufficient levels of fear and anger in the same
situation will cause the agent to panic and flee instead of
communicating with the IC if the goal of maintaining disci-
pline is not sufficiently high.

E. Discussion and Ongoing/Future Development

With a basic capability achieved, there are many direc-
tions for further development and research. Our plan is to
improve the feedback to the player with respect to the NPCs
emotional state by outputting context sensitive dialog and
sound effects. By doing this we would seek to eliminate the
need for the emotional status bars. However, we foresee this
to be a labor-intensive process due to the necessity for a
wide variety of relevant, yet different, verbal responses. In
addition, we plan on semantically tagging areas of the game
world. This will provide our cognitive agents with richer
perceptions of the game world and allow for more substan-
tive cognitive models. Lastly, we plan on conducting further



experiments to quantitatively demonstrate that our training
objectives were fulfilled with the inclusion of cognitive
NPCs. These tests will include subject matter experts from
the training community.

Experience developing Ground Truth cognitive NPCs
leads us to consider several directions for improvements to
SCREAM, SHERCA, and integration of cognitive models
into NPCs. We have noticed that emotion levels fall more
quickly than what is intuitively appropriate. Implementing
support for individual decay rates for concepts, and possibly
computed emotion levels that they tend to evoke, could be a
solution. We would like to understand how to appropriately
model suppression or maintenance of a behavior for a dura-
tion that is most easily understood in terms of a particular
length of time. We also need to consider whether/how to
enable SCREAM to model emotions being directed at par-
ticular entities. In more complex environments, a model of
attention would be needed. Finally, in the long term,
SCREAM/SHERCA require an understanding of how epi-
sodic memory is used in decision-making, with and without
context learning.

Future scenario development from this work should look
at events that span multiple cities, shared resources, and
multiple attacks. High-level decisions from those scenarios
impact response by adding extra constraints responders must
operate in, thus affecting their emotional pressures. This
opens up a new avenue for training even higher-level deci-
sion makers. Related developments could include training
for leadership and teaming abilities. Another option is to
adopt emotional models for the civilian population. For ex-
ample, telling a region to evacuate while the toxic cloud is
right over them would cause panic. Would the civilians con-
tinue to respectfully obey the first responders? This would
enhance the training by providing support for civil disobedi-
ence.

V. CONCLUSION

Based on our early experiences with integrating SHERCA-
driven cognitive models into Ground Truth NPCs we have
seen positive results with increasing the realism of the train-
ing experience. The SHERCA cognitive model structure
and methodology enables us to use SCREAM’s combination
of neural network representation and Al-based model de-
scription to effectively build psychologically plausible mod-
els that select behaviors as intended. We were able to incor-
porate fear and anger in an intuitive manner within
SHERCA’s modeling guidelines. Also, we are able to give
the NPCs individual variations by specifying different emo-
tional sub-models and setting different high-level goal acti-
vations at runtime. Within expected limitations, the cogni-
tive NPCs make decisions and exhibit emotional states that
are mutually consistent with the perceptions they are pro-
vided about the game state via its interface to the cognitive
models. Thus, including emotion in NPCs via SHERCA-
based cognitive models increases the realism of effects
based upon an IC trainee’s decisions when playing Ground
Truth.

VI. ACKNOWLEDGEMENTS

This work was funded through an internal research and
development program at Sandia National Laboratories.
Sandia is a multi-program laboratory operated by the Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-
94AL85000.

VII. REFERENCES

[1] M. Krawczyk and J. Novak, Game Development Essentials: Game
Story & Character Development. Thomson Delmar Learning, 2006.

[2] I Ajzen and T. J. Madden, "Prediction of Goal-Directed Behavior:
Attitudes, Intentions, and Perceived Behavioral Control,” Journal of
Experimental Social Psychology, pp. 453-470, 1986.

[3] A. Bandura, C. Barbaranelli, V. Caprara, and C. Pastorelli, “Mecha-
nisms of Moral Disengagement in the Exercise of Moral Agency,”
Journal of Personality and Social Psychology, pp. 364 — 374, 1996.

[4] L. Berkowitz, “Pain and Aggression: Some Findings and Implica-
tions,” Motivation and Emotion, pp. 277 -- 293, 1993.

[S] M. Bernard and B. Smith, The Effects of Emotional States and Traits
on Risky Decision-Making, Sandia National Laboratories Internal
Technical Report (SAND 2006-7642), 2006.

[6] M. Bernard, M. Glickman, S. Verzi, D. Hart, P. Xavier, and P.
Wolfenberger, Simulating Human Behavior for National Security
Human Interactions, Sandia National Laboratories Internal Technical
Report (SAND 2006-7812), 2007.

[71 M. Bernard, P. Xavier, P. Wolfenbarger, D. Hart, R. Waymire, and
Glickman, “Psychologically Plausible Cognitive Models for Simulat-
ing Interactive Human Behaviors,” in Proceedings of the Human Fac-
tors and Ergonomics Society 49th Annual Meeting, 2005.

[8] M. Fishbein and M. Stasson, “The Role of Desires, Self-Predictions,
and Perceived Control in the Prediction of Training Session Atten-
dance,” Journal of Applied Social Psychology, pp. 173 -- 198, 1990.

[91 C. Forsythe, M. Bernard, P. Xavier, R. Abbott, A. Speed, and N.

Brannon, Engineering a Transformation of Human-Machine Interac-

tion to an Augmented Cognitive Relationship: Phase la Final Report.

Prepared for DARPA Augmented Cognition Program by Sandia Na-

tional Laboratories, 2002.

C. Forsythe and P. Xavier, “Human Emulation: Progress Toward

Realistic Synthetic Human Agents,” in Proceedings of the 11th Con-

ference on Computer-Generated Forces and Behavior Representation,

2002, pp. 257 — 266.

[11] G. Klein, “The Recognition-Primed Decision Model (RPD): Looking
Back, Looking Forward,” in Naturalistic Decision Making, Lawrence
Erlbaum Associates, Inc., p. 285 — 292, 1997.

[12] T.J. Madden, P.S. Ellen, and 1. Ajzen, ”A Comparison of the Theory
of Planned Behavior and the Theory of Reasoned Action,” Personality
and Social Psychology Bulletin, pp.3—9,1992.

[13] M. Van Lent, “Entertainment Game Al vs. Serious Game AI”, in
Proceedings from the 27" SOAR Workshop, 2007.

[14] D. Chaplin and A. El Rhalibi, “IPD for Emotional NPC Societies in
Games,” in Proceedings from the Affective Computational Entities
Symposium, 2004, pp. 51 — 60.

[15] T. Hussian and G. Vidaver, “Flexible and Purposeful NPC Behaviors
using Real-Time Genetic Control,” in I[EEE Congress on Evolutionary
Computation, 2006, pp. 785 —790.

[16] P. Kenney, A. Hartholt, J. Gratch, W. Swartout, D. Traum, S.

Marsella, and D. Piepol, “Building Interactive Virtual Humans for

Training Environments,” in Proceedings from the 2007 Inter-

service/Industry, Training, Simulation, and Education Conference

(I/ITSEC), 2007.

P. Rosenbloom, J. Laird, and A. Newell, The Soar Papers: Research

on Integrated Intelligence. MIT Press, .1993.

[18] A. Henninger, R. Jones, and E. Chown, “Behaviors that Emerge from
Emotion and Cognition: Implementation and Evaluation of a Sym-
bolic-Connectionist Architecture,” in Proceedings from the 2003 In-
ternational Joint Conference on Autonomous Agents and Multiagent
Systems, 2003, pp. 321 — 328.

[19] M. Yannakakis “Hierarchical State Machines”, in Theoretical Com-
puter Science: Exploring New Frontiers of Theoretical Informatics,

[10

[t

[17

—



[20

[t

[21]

[22

—

(23]

[25

=

[26

—

[27]

(28]

Lecture Notes on Computer Science 1872. Springer-Verlag, 2000, pp.
315 -330.

M. Wooldridge. An Introduction to Multiagent Systems. John Wiley
& Sons, LTD, 2002.

R. Marinier IIT and J. Laird. “, Toward a Comprehensive Computa-
tional Model of Emotions and Feelings”, in Proceedings of the Sixth
International Conference on Cognitive Modeling, 2004, pp. 172 —
178.

C. Forsythe & C. A. Wenner. “Surety of human elements of high
consequence systems: An organic model”, in Proceedings of the IEA
2000/ HFES 2000 Congress, 2000, pp. 3-839 — 3-842.

J. R. Anderson & C. Lebiere. The atomic components of thought,
Lawrence Erlbaum Associates, Inc., 1998.

C. Forsythe, M. Bernard, P. Xavier, R. Abbott, A. Speed , and N.
Brannon. “Using Psychologically Plausible Operator Cognitive Mod-
els to Enhance Operator Performance”, Human Factors and Ergonom-
ics Society 47" Annual Meeting, Denver, CO, October 2003.

C. Forsythe, P. Xavier & A. Speed. “Dynamic model of human con-
text recognition and understanding”, presentation at Cognitive Sys-
tems: Human Cognitive Models in System Design, Santa Fe, NM,
2004.

E. J. Gottlieb, M. J. McDonald, F. J. Oppel, J. B. Rigdon, and P. G.
Xavier. “The Umbra Simulation Framework as Applied to Building
HLA Federates”, in Proceedings of the 2002 Winter Simulation Con-
ference, San Diego, CA, 2002, pp. 981-989.

J. Basilico, Z. Benz, and K. R. Dixon. “The Cognitive Foundry: a
Flexible Platform for Intelligent Agent Modeling”, in Proceedings of
the 17th Conference on Behavior Representation in Modeling and
Simulation, Providence, RI, 2008.

S. Verzi, S. Taylor, T. Caudell, M. Bernard, and D. Morrow. “An
adaptive resonance theory based computational model of the hippo-
campus”, in preparation, 2008.



