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MHCoE Objectives

Research, develop and validate reversible 

on-board metal hydride storage materials 

and systems that meet the 2010 DOE 

system targets for hydrogen storage, 

with a credible path forward for meeting 

the 2015 DOE storage targets
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Approach to Technical Targets

H Capacity:    2010 System Targets:  6 wt. %,  45gH2/L vol. density

– Synthesize and characterize hydride materials with high hydrogen
capacity and favorable thermodynamics.  Use state-of-the-art
theory to guide materials discovery effort.

Charge/Discharge Rates: 2010 Sys. Target:  3 min. system fill (5kg)

– Develop materials that are fully reversible, catalysts that aid 
reversibility, assess nanoengineering promotion of kinetics, and 
investigate role of contamination on reaction rates

Hydrogen Purity (from Storage) :  2010 Target:  99.99% pure

– Assess release of NH3, B2H6 and other volatile 
species from metal hydrides during desorption and cycling

Cycle Life:  2010 Target:  1000 Desorption/Adsorption Cycles

– Investigate durability of materials, cycling behavior, effects 
of contaminants, structural stability, release of volatiles
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Discovering New Complex 
Hydride Materials

 Established a synthesis route that combines high-energy
milling followed by hot-sintering under high H2-pressures: 

Metal + Binary Hydride + H2 → Complex Hydride

Boride + Binary Hydride + H2 → Metal Borohydride
(Normal run: P < 700bar, T < 450C)

 The Prototype Electrostatic Ground State (PEGS) 
technique for structure determination and ΔH estimates

Experimental

Theory

6 sample

HP-autoclave

 New Start (7/1/2007): Improving kinetics, cycling life and 
desorption properties by incorporation of hydride materials in 
nanoframeworks.  Collaboration with UTRC (lead)

MC 
Structure



6

Contents

 Mixed transition metal borohydrides

 Re-hydriding low-temperature borohydrides utilizing Sandia’s 
high-pressure capability. Teaming with Craig Jensen (UH)

 Incorporation of hydride materials in nanoframeworks

 Synthesis of PEGS-predicted bialkali borohydrides

 Ca(BH4)2 as H-storage material
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Ca(BH4)2 as H-storage Material

Motivation: In FY06, theory predicts Ca(BH4)2 has nearly ideal 
thermodynamics   (∆H ~ 40 kJ/mol H2), 9.6 wt. %

 Starting with anticipated decomposition products implies reversibility
-- Ewa Rönnebro and Eric Majzoub, J. Phys. Chem. B, 111 12045 (2007)

CaB6 + 2CaH2 + 10 H2 → 3Ca(BH4)2 @700bar, 400C, 48hours

What is the decomposition reaction mechanism?

Can Ca(BH4)2 be re-hydrided at lower pressures and temperatures?

 Partial reversibility observed during in situ synchrotron studies at Brookhaven by Job 
Rijssenbeek, Yan Gao, Ewa Rönnebro, J.-C. Zhao, unpublished data (2007)

In 2006:

 Partial reversibility of 3.8 wt% at 350C and 90 bar reported from TGA by J.H. Kim et al, 
Scripta Materialia, 58, 481 (2008)

In 2007:

Ozolins, Majzoub and Wolverton, in preparation
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Crystal Structures For Materials Discovery 
Using PEGS or Database Searching

*Majzoub & Ozolins, Phys. Rev. B, 77, 104115 (2008)

PEGS* - Prototype Electrostatic Ground States

 Global optimization of electrostatic energy

 Potential energy smoothing

 Model anions as rigid units

Database searching
• Few hits for some compounds
• A new material may have a new 
crystal structure

PEGS provides high-quality structures using the basic physical 
principles governing atomic interactions in complex hydrides 

First-principles density functional theory 
(DFT) is used for accurate energies and 

thermodynamics calculations  
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PEGS Ca(BH4)2 Search Explains 
Experimental Observations

PEGS-structure of -Ca(BH4)2 

Confirmed by Rietveld refinements

Temperature dependence 
of  and  polymorphs

 PEGS finds four high-symmetry 
structures for Ca(BH4)2

 All appear to be observed in X-ray 
diffraction – new polymorphs!

 Rietveld refinements indicate we have 
found the correct beta phase structure

Te
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
(F2dd)

X1

X2

Preliminary 
calculation 

shows α-to-β
transition α stable

β stable

E. Majzoub and E. Rönnebro, manuscript submitted

β
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(α , β) (', β) 

β-phase does not
transform into ', and 
decomposes at 350C  to 
release H2

'-phase forms above 
160C. Decomposes at 
350C to release H2

Y. Filinchuk, E. Rönnebro, D. Chandra, submitted

Ca

BH4

Crystal Structures of 
α , ', β Ca(BH4)2 Polymorphs

α

In-situ synchrotron data from ESRF,  Ca(BH4)2 made by desolvating an Aldrich sample

-H2

160 C 350 C

desorption products

The polymorphs have different stability depending on temperature, 
and can be manipulated with additives

'
β

α → ' at ~160C
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11B MAS-NMR Reveals Ca(BH4)2

Decomposition Products

 Desorption at 320 °C leads to CaB6 and CaH2

 Desorption at 450 °C leads to CaB6 and probably a-B

Hwang, Bowman, 
Kim,  Reiter, Zan, 

Rönnebro

*

Ca(BH4)2 as made (uncatalyzed)

ppm

* likely CaB12H12

Confirmed decomposition products, and found intermediate species
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Investigated Effect of Additives on 
Desorption Kinetics of Ca(BH4)2

Additives change desorption kinetics and released H2

w
t%

 H

Time (min)

No Additive

Desorption curves collected in Sievert’s apparatus

~7 wt. % H rapidly desorbed at 360 °C

C

D

B T
 (

°C
)

A

T ramp

Four different 
additives  A-D of 
2 mol% dopant 
level, compared 
to no additive
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Additives Aid Reversibility of 
Ca(BH4)2 at lower P and T

Re-hydrided at 350°C and 120 bar to ~4.5wt% (A) in 12 hours

~3.5 wt% H       
re-hydrided  
in 1 hour

3x improvement in hydrogenation kinetics with additives

Ewa Rönnebro, Vitalie Stavila, Mutlu Ulutagay-Kartin, manuscript in progress

Time (min)

w
t%

 H

Additive A

Additive B

No Additive
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The STMBMS* is an appropriate tool
to help quantify complex reaction processes

Instrument details:
• Knudsen effusion cell installed within a furnace 

and upon a microbalance
• Simultaneous modulated molecular beam mass 

spectrometer provides time-dependent species 
info

• High accuracy FTMS for species identification

Data:
• Species
• Number density
• Rate of evolution
• Partial pressure
• Temperature

Data is correlated and analyzed to determine 
reaction processes and kinetics

This is an instrument used for measuring thermodynamic properties of 
molecules and studying reaction kinetics of complex systems

[1] Behrens, R., Jr., Review of Scientific Instruments, 1987. 58(3): p. 451-461
[2] Lee, Y.T. et al, Review of Scientific Instruments, 1969. 40(11): P. 1402 - 1408

* Simultaneous thermo-gravimetric modulated-beam mass spectrometer

R. Behrens and D. Dedrick
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Baseline decomposition of calcium borohydride indicates a 
variety of species evolving during hydrogen release

• Samples obtained from SNL (Ronnebro)
• Catalyzed Ca(BH4)2 indicates a shift in hydrogen release
• A variety of compounds are present during 

decomposition, these will be identified with FTICR mass 
spec measurements

Fraction of H2

MS Ion signals as a function of temperature

• H2 evolution at low temperature may give 
insight to reversible decomposition 
processes

• Di-borane (B2H6) complexes appear to 
evolve prior to H2 evolution

• Borane (BH3) evolves from the sample
• Differences in each of the species signals 

may provide insight to the role of the 
catalyst

Un-catalyzed Catalyzed
R. Behrens and D. Dedrick
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New LiK(BH4)2 Synthesized

Ball Milled:  LiBH4 + KBH4 → LiK(BH4)2       (10.6  H wt.%)

 XRD shows new phase plus 
~10% KBH4, no LiBH4

 Stable orthorhombic structure 
calculated as low-energy 
structure

Synthesis of LiK(BH4)2 reported by P. Edwards et al, ISHE, Richmond, VA, 2007

Motivation: Improving thermodynamics by changing cationic matrix

-30 -35 -40 -45 -50
ppm

11B MAS NMRMABHB1A

r =12.3 or 13 kHz

LiBH4
Li0.5K0.5BH4
KBH4

 TGA did not show H2 evolution 

below 500C (unlike Edwards et al)

 Do Not Pursue Further

-- Confirms
no LiBH4, in 
agreement
with XRD

Nuclear Magnetic Resonance
(Hwang, Bowman et al)
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PEGS Predicts Weakly Metastable 
NaK(BH4)2

 NaK(BH4)2 synthesized

146

148

156

166 0.0

+76

+80

+110

Space Group E-E0 [meV/f.u.]

NaK(BH4)2 predicted to be 
mildly unstable

(-3kJ/mol at T = 0K) No ZPE included!

PEGS provides several high-
symmetry candidates that may be 

observed as polymorphs
 XRD confirms predicted 
new phase (metastable)

Leo Seballos, Eric Majzoub and Ewa Rönnebro
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XRD Indicates Spontaneous 
Decomposition of NaK(BH4)2

Decomposition 
takes ~ 14 hours

NaK(BH4)2 is 
metastable,

-- consistent 
with PEGS

XRD pattern shows spontaneous 
decomposition: NaK(BH4)2 → NaBH4 + KBH4

Ball Milling: NaBH4 + KBH4 → NaK(BH4)2 (8.8 H wt%)

Time
NaK(BH4)2

14 hrs

10 min

1 hrs

2 hrs

 Do not pursue      
further
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 Synthesis of AkTm(BH4)x (U. Hawai’i)
– Ball milling alkali (Ak) borohydrides with transition metal (Tm) 

chlorides to form high-capacity materials
– Desorption characteristics investigated

– Release hydrogen at low temperatures <150C

 Re-hydriding decomposition products (Sandia)
– Utilizing Sandia’s high-pressure station

– Decomposition products re-hydrided at H2-pressures of 700-
900 bar, and heating to 200-500C

– One material showed partial reversibility

Teaming with U. Hawai’i/ Prof. Craig Jensen

Re-hydriding Alkali Transition 
Metal Borohydrides

Motivation: Alkali transition metal borohydrides may have improved 
properties compared to the alkali borohydrides
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PEGS Finds High-Symmetry 
Candidate for LiSc(BH4)4

 X-ray diffraction inconclusive on structure

 NMR indicates new phase
 ICSD search has very few structure candidates

PEGS applicable to transition metal borohydrides
with some covalent character

Ball milled: ScCl3 + 4LiBH4 → LiSc(BH4)4  + 3LiCl (14.5 H wt. %)

Hwang,
Bowman

Rxn takes place, but:

PEGS
Structure

for
LiSc(BH4)4

PEGS structure stable against several 

decomposition reactions:

LiSc(BH4)4 LiBH4 + Sc(BH4)3

LiSc(BH4)4 LiBH4 + ScH2 + 3B + 5H2

x

x
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Incorporation of Hydrides in Catalyzed 
Nano-framework

Modeling
• Simulations show interfacial NFS (nano-framework structures) 

interactions can alter stability of hydride and discharged 
products (UTRC).

• Dopants balance both NFS lattice stability and electronic 
NFS/hydride interfacial interactions (UTRC).

Framework and Hydride
• Synthesis of NFS: ZrO2, Al2O3, SiO2, TiO2, Carbon (UTRC).

• UTRC / Albemarle focus on ligand stabilized: NaTi(BH4)4*DME

• Sandia focus on stable borohydride: Ca(BH4)2

Improve reversibility of high capacity hydride candidates by developing 
advanced NFS chemistries through combined modeling and experimentation
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 Showed partial reversibility at 

lower P and T: 100 bar and 350C

 Showed drastic improvement in kinetics by 

choosing right additives

 Elucidated crystal structures of 

polymorphs using a combined 

theoretical/experimental approach, i.e. the 

PEGS-method and the Rietveld-method

Summary

Calcium Borohydride

PEGS structure 

for -Ca(BH4)2

No additive

A

B

Time (min)

w
t.

 %
 H

Absorption

Ca(BH4)2

XRD
α-Ca(BH4)2

Desorption

T ramp

w
t.

 %
 H

No additive

A
B

C

D

Ca(BH4)2

Time (min)
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Summary

New Hydrogen Storage Materials

 Showed that PEGS can provide transition metal 
borohydride structures

 Re-hydrided high-capacity material by teaming 
with U. Hawai’i on low-temperature borohydrides, 
utilizing our HP-station

 Synthesized PEGS-predicted NaK(BH4)2, 

do not pursue further due to instability

 Synthesized  LiK(BH4)2, do not 
pursue further due to poor 
thermodynamics

time
NaK(BH4)2

14 hrs

10 min

1 hrs

2 hrs
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Borohydrides
 Determine ΔH, improve kinetics and cycle life of Ca(BH4)2

 Synthesize borohydrides predicted by PEGS method
 Discover new borohydride related materials (teaming with U. Hawai’i, Ohio      
State and U. Utah)

Nano-structured hydrides and catalyzed nanoframeworks
 Incorporate Ca(BH4)2 into catalyzed nanoframeworks (with UTRC)
 Investigate kinetic improvements
 Synthesis of nanostructured complex hydrides

Theory
 Predict new materials with a variety of complex anions (NnHn, BnHn, etc.)
 Resolve xtal structures of polymorphic hydrides (e.g. Mg(BH4)2, Ca(BH4)2 )

Future Work


