

A Discontinuous Galerkin Method for Gradient Plasticity

SAND2009-7645C

J. Ostien¹, K. Garikipati²

¹Sandia National Laboratories, 1524 - Solid Mechanics

²University of Michigan, Mechanical Engineering

Plasticity 2010

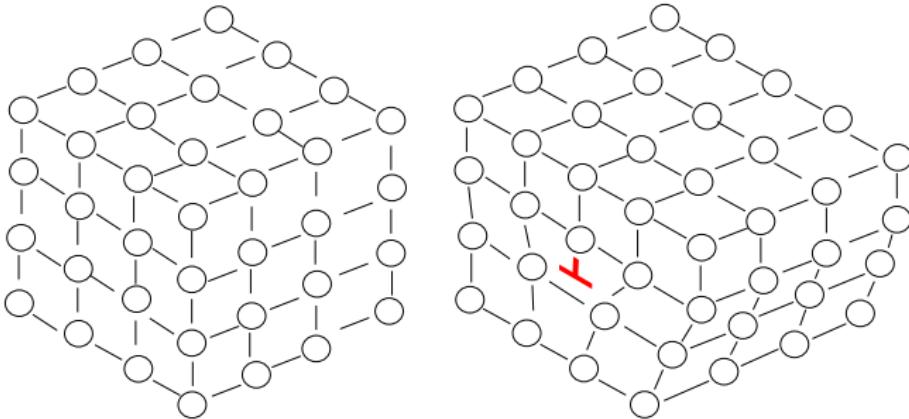
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Gradient Plasticity Model
- Discontinuous Galerkin (DG) Methods
- Results
- Conclusions

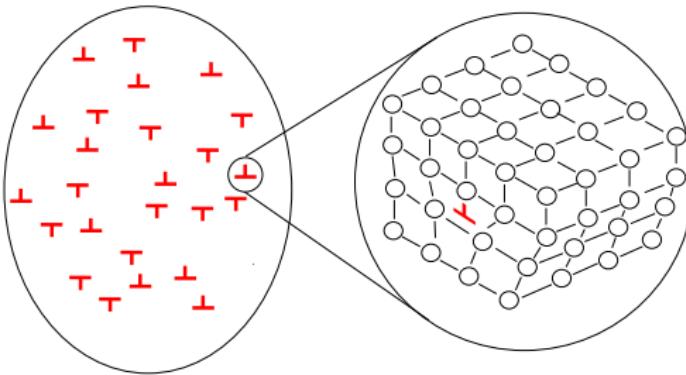
Physical Gradient Plasticity

- Objective: develop a particular version of gradient plasticity
- Physically reasonable
- Motivated by microstructural arguments
- Applicable polycrystalline materials (metals)



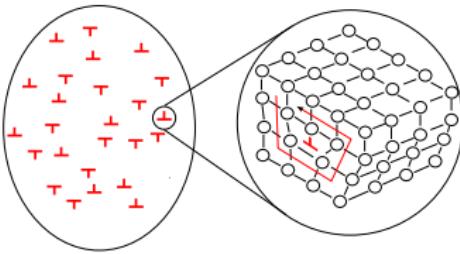
Physical Gradient Plasticity

- Plasticity caused by the motion of dislocations
- Dislocation account for permanent deformation and interactions induce hardening
- Dislocation density influences hardening



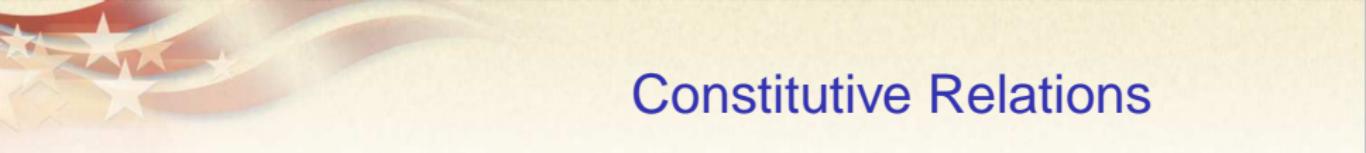
Burger's Tensor

- From Gurin (2001, 2004, 2005)
- Decompose displacement gradient: $\nabla \mathbf{u} = \mathbf{H}^e + \mathbf{H}^p$
- A measure of the distortion in a material is \mathbf{H}^p
 - $\boldsymbol{\varepsilon}^p = \text{sym } \mathbf{H}^p$
- Use Stokes' theorem to obtain tensorial notion of incompatibility
- $\oint_{\partial S} \mathbf{H}^p \, d\mathbf{X} = \int_S (\underbrace{\text{curl } \mathbf{H}^p}_\mathbf{G})^T \mathbf{n} \, dA$
- $\mathbf{G}^T \mathbf{n}$ gives a measure of the Burger's vector, per unit area, for a plane with unit normal, \mathbf{n}



Incompatibility Based Gradient Plasticity

- Build up a theory Gurtin (2004)
- Variationally consistent, numerical methods inherit the variational basis, good for stability
- Introduce stress \mathbf{T}^p , and \mathbb{S} conjugate to $\dot{\mathbf{H}}^p$ and $\dot{\mathbf{G}}$
- $\mathcal{W}_{int} = \int_{\Omega} \boldsymbol{\sigma} : \dot{\mathbf{H}}^e + \mathbf{T}^p : \dot{\mathbf{H}}^p + \mathbb{S} : \dot{\mathbf{G}} \, dV$
- $\mathcal{W}_{ext} = \int_{\Omega} \mathbf{b} \cdot \dot{\mathbf{u}} \, dV + \int_{\partial\Omega} \mathbf{S}(\mathbf{n}) : \dot{\mathbf{H}}^p \, dS$
- Principal of virtual power, $\mathcal{W}_{int} = \mathcal{W}_{ext}$, yields two PDEs
 - Balance of momentum: $\operatorname{div} \boldsymbol{\sigma} + \mathbf{b} = \mathbf{0}$
 - Microforce balance: $\operatorname{dev} \boldsymbol{\sigma} = \mathbf{T}^p + (\operatorname{dev} \operatorname{curl} (\mathbb{S}^T))^T$

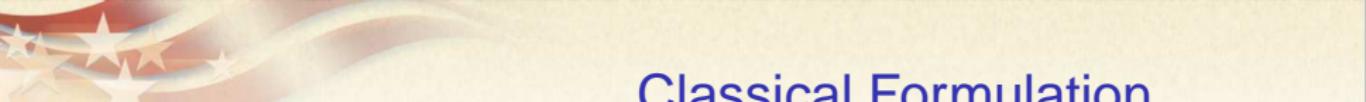


Constitutive Relations

- Derive constitutive equations for stresses from a free energy
 - $\Psi(\boldsymbol{\varepsilon}^e, \mathbf{G}) = \frac{1}{2}\boldsymbol{\varepsilon}^e : \mathbb{C} : \boldsymbol{\varepsilon}^e + \frac{1}{2}k|\mathbf{G}|^2$
- Then the stresses take the forms
 - $\boldsymbol{\sigma} = \frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}^e} = \mathbb{C} : \boldsymbol{\varepsilon}^e$
 - $\mathbb{S} = \frac{\partial \Psi}{\partial \mathbf{G}} = k \mathbf{G} = k \operatorname{curl} \mathbf{H}^p$
- Next the micro-stress is assumed as
 - $\mathbf{T}^p = \frac{\sigma_y}{d^p} \dot{\mathbf{H}}^p, d^p = \|\dot{\mathbf{H}}^p\|$
- Using the constitutive equations for the stresses, we can derive the flow rule from the microforce balance
 - $\operatorname{dev} \boldsymbol{\sigma} - \left(\operatorname{dev} \operatorname{curl} (k \operatorname{curl} \mathbf{H}^p)^T \right)^T = \frac{\sigma_y}{d^p} \dot{\mathbf{H}}^p$

Link to Classical Theory

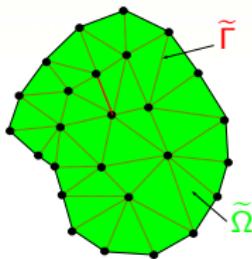
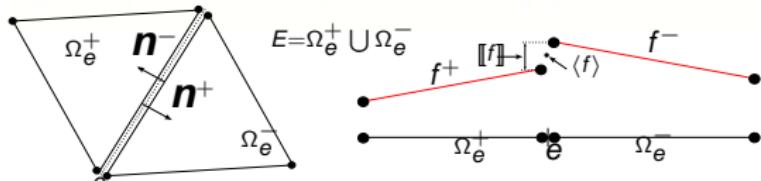
- \mathcal{W}_{int} and \mathcal{W}_{ext} account for additional kinematics
- Another term is obtained
 - $(\text{dev} \operatorname{curl} (\mathbb{S}^T))^T$
- The classical theory does not account for a dependence on \mathbb{S}
- In that case the microforce balance simplifies
 - $\text{dev } \boldsymbol{\sigma} = \mathbf{T}^p = \frac{\sigma_y}{d^p} \dot{\mathbf{H}}^p$
- Under certain assumptions we recover classical theory
 - $\frac{\text{dev } \boldsymbol{\sigma}}{\sigma_y} = \mathbf{n}, \quad d^p = \|\dot{\boldsymbol{\varepsilon}}^p\| = \gamma$
 - $\dot{\boldsymbol{\varepsilon}}^p = \gamma \mathbf{n}$



Classical Formulation

- Equilibrium
 - $\operatorname{div} \boldsymbol{\sigma} + \mathbf{b} = \mathbf{0}$
- Flow rule
 - $\operatorname{dev} \boldsymbol{\sigma} - \left(\operatorname{dev} \operatorname{curl} (k \operatorname{curl} \mathbf{H}^p)^T \right)^T = \frac{\sigma_y}{d^p} \dot{\mathbf{H}}^p$
- Classical Weak Form
 - Find $\{\mathbf{u}, \mathbf{H}^p\} \in \mathcal{S} \times \mathcal{P} \subset H^1(\Omega) \times \operatorname{dev} H^1(\Omega)$ s.t.
 $\forall \{\mathbf{w}, \mathbf{V}\} \in \mathcal{V} \times \mathcal{Q} \subset H^1(\Omega) \times \operatorname{dev} H^1(\Omega) :$
 $(\nabla \mathbf{w}, \boldsymbol{\sigma})_{\Omega} = (\mathbf{w}, \mathbf{b})_{\Omega} + (\mathbf{w}, \mathbf{t}(\mathbf{n}))_{\Gamma_t}$
 $(\mathbf{V}, \mathbf{T}^p - \operatorname{dev} \boldsymbol{\sigma})_{\Omega} + (\operatorname{curl} \mathbf{V}, k \operatorname{curl} \mathbf{H}^p)_{\Omega} = (\mathbf{V}, \mathbf{S}(\mathbf{n}))_{\Gamma_s}$

DG Machinery: Preliminaries



Average operator: $\langle \mathbf{f} \rangle = \frac{1}{2}(\mathbf{f}^+ + \mathbf{f}^-)$

Jump operator for a vector: $[[\mathbf{u}(\mathbf{n})]] = \mathbf{u}^+ \cdot \mathbf{n}^+ + \mathbf{u}^- \cdot \mathbf{n}^-$

Jump operator for a tensor: $[[\sigma(\mathbf{n})]] = \sigma^+ \mathbf{n}^+ + \sigma^- \mathbf{n}^-$

Gradient plasticity jump: $[[\sigma(\mathbf{n} \times)]] = \sigma^+ (\mathbf{n} \times)^+ + \sigma^- (\mathbf{n} \times)^-$

DG Gradient Plasticity

- Consider the symmetric DG IP formulation for gradient plasticity

- Find $\{\mathbf{u}^h, \mathbf{H}^{ph}\} \in \mathcal{S}^h \times \mathcal{P}^h \subset H^1(\Omega) \times \text{dev } L^2(\Omega)$ s.t.

$$\forall \{\mathbf{w}^h, \mathbf{V}^h\} \in \mathcal{V}^h \times \mathcal{Q}^h \subset H^1(\Omega) \times \text{dev } L^2(\Omega)$$

- $\underbrace{(\nabla \mathbf{w}^h, \boldsymbol{\sigma}^h)_\Omega = (\mathbf{w}^h, \mathbf{b})_\Omega,}_{\text{equilibrium}}$

$$\underbrace{(\mathbf{V}^h, \mathbf{T}^{ph} - \boldsymbol{\sigma}^h)_\Omega + (\text{curl } \mathbf{V}^h, k \text{ curl } \mathbf{H}^{ph})_{\tilde{\Omega}}}_{\text{domain}} + \underbrace{(\llbracket \mathbf{V}^h(\mathbf{n} \times) \rrbracket, \langle (k \text{ curl } \mathbf{H}^{ph})^T \rangle)_{\tilde{\Gamma}} + (\langle (k \text{ curl } \mathbf{V}^h)^T \rangle, \llbracket \mathbf{H}^{ph}(\mathbf{n} \times) \rrbracket)_{\tilde{\Gamma}}}_{\text{symmetric}} + \underbrace{\frac{\alpha k}{h} (\llbracket \mathbf{V}^h(\mathbf{n} \times) \rrbracket, \llbracket \mathbf{H}^{ph}(\mathbf{n} \times) \rrbracket)_{\tilde{\Gamma}}}_{\text{penalty}} = (\mathbf{V}^h, \mathbf{S}(\mathbf{n}))_{\Gamma_s}$$

DG Gradient Plasticity

- Euler-Lagrange equations for gradient plasticity

$$\begin{aligned} (\mathbf{w}^h, \operatorname{div} \boldsymbol{\sigma}^h + \mathbf{b})_{\Omega} &= 0 \text{ (equilibrium)} \\ \left(\mathbf{V}^h, \mathbf{T}^{ph} - \boldsymbol{\sigma}^h + (\operatorname{curl}(k \operatorname{curl} \mathbf{H}^{ph})^T)^T \right)_{\tilde{\Omega}} &= 0 \text{ (flow rule)} \\ \left(\langle (k \operatorname{curl} \mathbf{V}^h)^T \rangle, [\![\mathbf{H}^{ph} (\mathbf{n} \times)]\!] \right)_{\tilde{\Gamma}} &= 0 \text{ (continuity of } \mathbf{H}^p(\mathbf{n} \times) \text{)} \\ \left(\langle \mathbf{V}^h \rangle, [\![(k \operatorname{curl} \mathbf{H}^{ph})^T (\mathbf{n} \times)]\!] \right)_{\tilde{\Gamma}} &= 0 \text{ (continuity of } \mathbb{S}(\mathbf{n} \times) \text{)} \\ \left(\mathbf{V}^h, (\mathbb{S}^T (\mathbf{n} \times) - \mathbf{S}(\mathbf{n})) \right)_{\Gamma_s} &= 0 \text{ (micro-traction condition)} \end{aligned}$$

- Recall: $\mathbb{S} = k \operatorname{curl} \mathbf{H}^p$
- Note: important for analysis of method

Yield Condition

- Flow rule: $\mathbf{T}^p - \text{dev } \boldsymbol{\sigma} + (\text{dev curl}(k \text{ curl } \mathbf{H}^p)^T)^T = 0$
- Approximate $\boldsymbol{\beta} \approx (\text{dev curl}(k \text{ curl } \mathbf{H}^p)^T)^T$
- Yield condition $f := \|\text{dev } \boldsymbol{\sigma} - \boldsymbol{\beta}\| - \sqrt{\frac{2}{3}}\sigma_y$
- Two different methods of determining $\boldsymbol{\beta}$
 - ① *lift-lift* evaluation of the back stress
$$(\mathbf{V}, \mathbf{S})_{\Omega} = -(\langle \mathbf{V} \rangle, [\![\mathbf{H}^p (\mathbf{n} \times)]\!])_{\tilde{\Gamma}}$$
$$(\mathbf{V}, \boldsymbol{\beta})_{\Omega} = -(\langle \mathbf{V} \rangle, [\![\mathbf{S} (\mathbf{n} \times)]\!])_{\tilde{\Gamma}}$$
 - ② Exploitation of the flow rule
$$\mathbf{T}^p - \text{dev } \boldsymbol{\sigma} + \boldsymbol{\beta} = \mathbf{0} \rightarrow \boldsymbol{\beta} = -\mathbf{T}^p + \text{dev } \boldsymbol{\sigma}$$
- Method 2) proved to be more robust

DG Gradient Plasticity Implementation

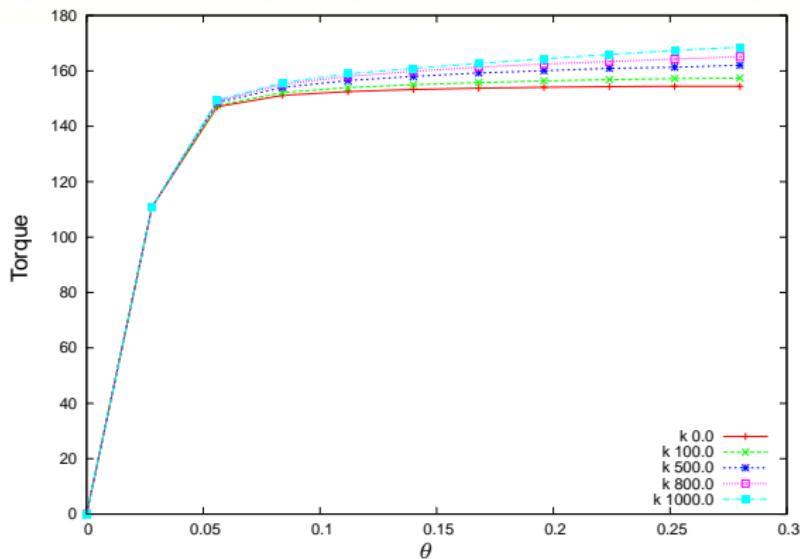
- Implementation of mixed method using symmetric DG IP formulation
- FEniCS: open source finite element code project
 - Variational form → generated C++ code → nonlinear solver
- Newton-Raphson iterative scheme for each PDE
- With the choice of $\mathbf{H}^p \in \mathcal{C}^{-1}$ the flow rule reduces
 - $(\mathbf{V}^h, \mathbf{T}^{ph} - \boldsymbol{\sigma}^h)_\Omega + \frac{\alpha k}{h} ([\![\mathbf{V}^h(\mathbf{n} \times)]\!], [\![\mathbf{H}^{ph}(\mathbf{n} \times)]\!])_{\tilde{\Gamma}} = 0$
- Backward Euler time integration

DG Gradient Plasticity Implementation

- Predictor stage: trial state
 - Evaluate yield condition f
 - IF: $f \geq 0$ Add current element to list of plastic elements
- Corrector stage: flow rule PDE
 - While plastic residual > TOL
 - Compute plastic quantities
 - Assemble plastic stiffness and plastic residual
 - Solve for \mathbf{H}^p
- Assemble and solve equilibrium equation for \mathbf{u}
- Check convergence and advance state $(\cdot)_{n+1} \rightarrow (\cdot)_n$, otherwise return to predictor

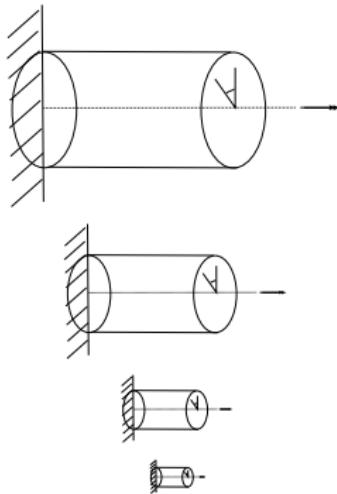
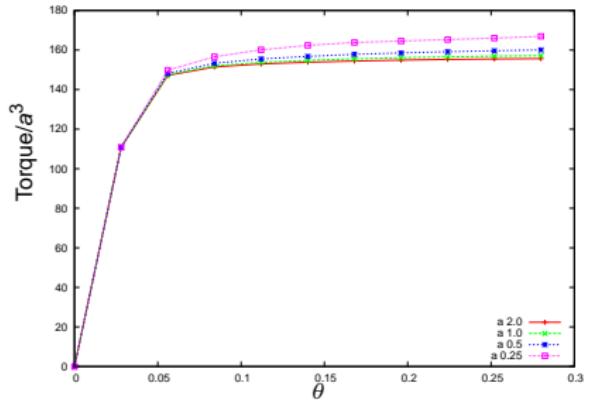
Gradient Hardening

- Hardening increases with k



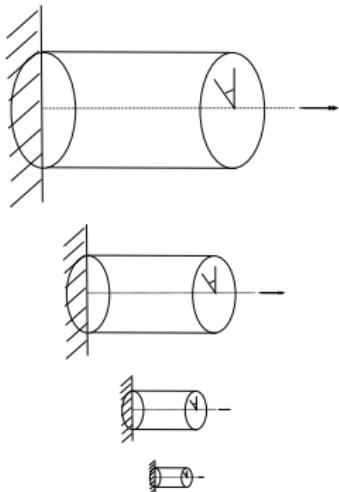
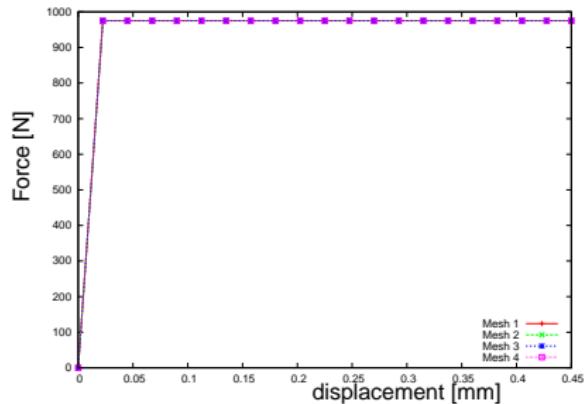
Size Effect

- Size effect for the torsion problem



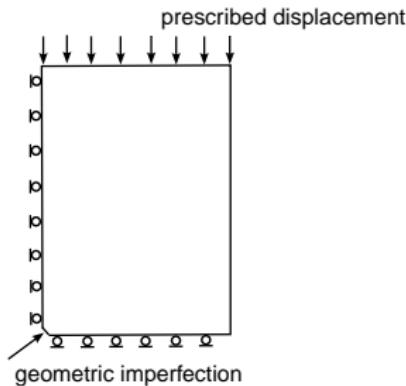
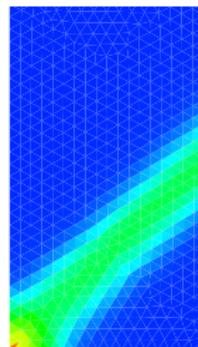
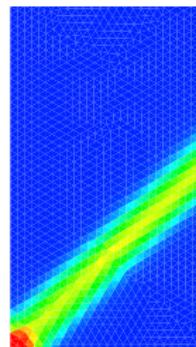
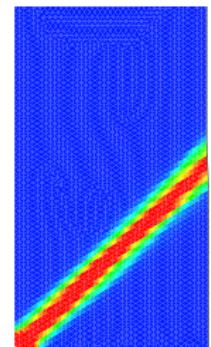
Size Effect

- No size effect for tension
- Representative of a macroscopic problem, gentle gradient



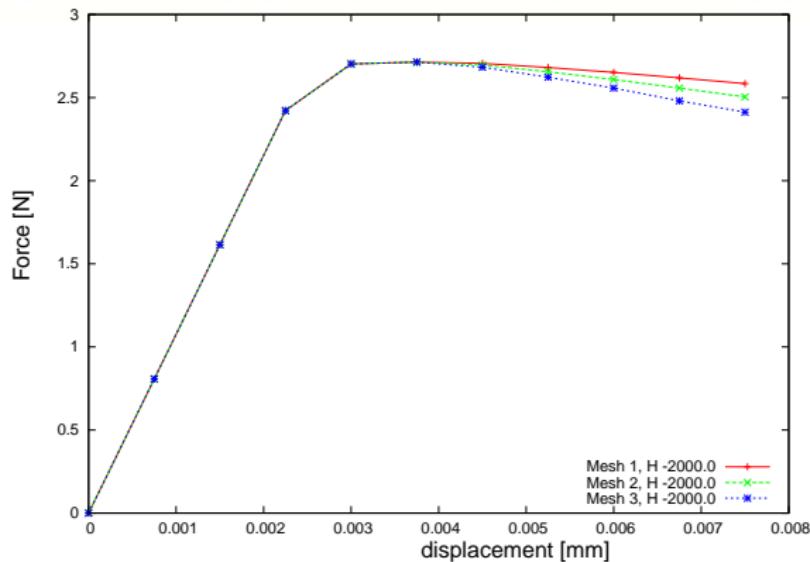
Localization

- Localization for classical softening



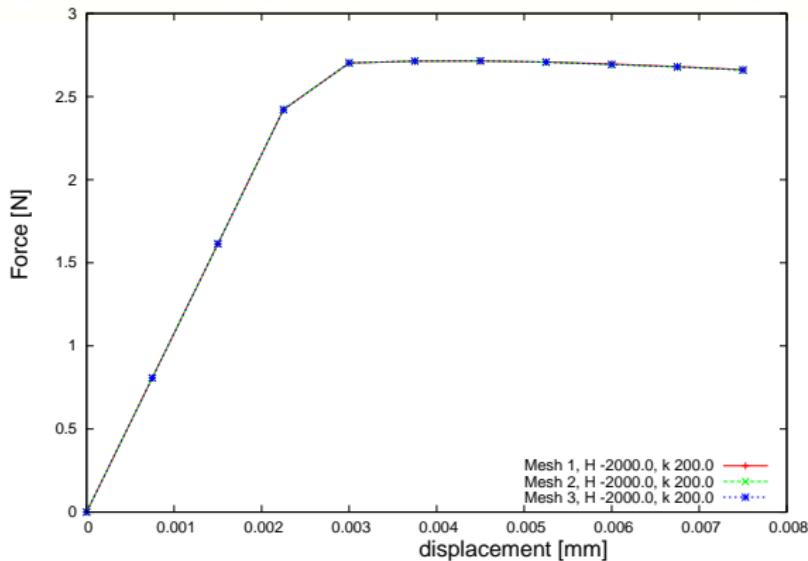
Localization

- Localization for classical softening



Localization

- Localization for classical softening with gradient hardening



Summary

- Summary
 - Developed physically reasonable, incompatibility-based strain gradient plasticity theory
 - Constructed variational formulation using concepts from DG methods
 - Implemented model into nonlinear finite element code
 - Predicted size effect for variable domain dimension to mimic that seen in plasticity at small scales
 - Regularized a softening induced localization
 - Investigated back-stress algorithms for gradient plasticity yield condition
 - Investigated integration algorithms for gradient plasticity