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Physical Gradient Plasticity
• Objective: develop a particular version of gradient plasticity

• Physically reasonable

• Motivated by microstructural arguments

• Applicable polycrystalline materials (metals)

Ostien (Sandia National Laboratories) DG for Strain Gradient Plasticity 3/ 22



Physical Gradient Plasticity

• Plasticity caused by the motion of dislocations

• Dislocation account for permanent deformation and
interactions induce hardening

• Dislocation density influences hardening
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Burger’s Tensor
• From Gurtin (2001, 2004, 2005)
• Decompose displacement gradient: ∇u = He + Hp

• A measure of the distortion in a material is Hp

• εp = sym Hp

• Use Stokes’ theorem to obtain tensorial notion of
incompatibility

•

∮

∂S
Hp dX =

∫

S
(curl Hp
︸ ︷︷ ︸

G

)T n dA

• GT n gives a measure of the Burger’s vector, per unit area,
for a plane with unit normal, n
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Incompatibility Based Gradient
Plasticity

• Build up a theory Gurtin (2004)

• Variationally consistent, numerical methods inherit the
variational basis, good for stability

• Introduce stress T p, and S conjugate to Ḣp and Ġ

• Wint =

∫

Ω
σ : Ḣe + T p : Ḣp + S : Ġ dV

• Wext =

∫

Ω
b · u̇ dV +

∫

∂Ω
S(n) : Ḣp dS

• Principal of virtual power, Wint = Wext , yields two PDEs
• Balance of momentum: div σ + b = 0
• Microforce balance: dev σ = T p + (dev curl (ST ))T
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Constitutive Relations

• Derive constitutive equations for stresses from a free
energy

• Ψ(εe, G) = 1
2εe : C : εe + 1

2 k |G|2

• Then the stresses take the forms

• σ =
∂Ψ

∂εe = C : εe

• S =
∂Ψ

∂G
= k G = k curl Hp

• Next the micro-stress is assumed as
• T p =

σy

dp Ḣ
p
, dp = ‖Ḣp‖

• Using the constitutive equations for the stresses, we can
derive the flow rule from the microforce balance

• dev σ −
(

dev curl
(
k curl Hp)T

)T
=

σy

dp Ḣp
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Link to Classical Theory

• Wint and Wext account for additional kinematics
• Another term is obtained

• (dev curl (ST ))T

• The classical theory does not account for a dependence
on S

• In that case the microforce balance simplifies

• dev σ = T p =
σy

dp Ḣp

• Under certain assumptions we recover classical theory

•

dev σ

σy
= n, dp = ‖ε̇p‖ = γ

• ε̇p = γn
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Classical Formulation

• Equilibrium
• div σ + b = 0

• Flow rule

• dev σ −
(

dev curl
(
k curl Hp)T

)T
=

σy

dp Ḣp

• Classical Weak Form
• Find {u, Hp} ∈ S × P ⊂ H1(Ω) × dev H1(Ω) s.t.

∀ {w , V} ∈ V × Q ⊂ H1(Ω) × dev H1(Ω) :
(∇w ,σ)Ω = (w , b)Ω + (w , t(n))Γt

(V , T p − dev σ)Ω + (curl V , k curl Hp)Ω = (V , S(n))ΓS
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DG Machinery: Preliminaries

eΓ

eΩ

Ω+
e

Ω−
e

e

n+

n− E=Ω+
e

S

Ω−
e [[f ]] 〈f〉

Ω−
eΩ+

e e

f +
f−

Average operator: 〈f 〉 = 1
2(f + + f−)

Jump operator for a vector: [[u(n)]] = u+ · n+ + u− · n−

Jump operator for a tensor: [[σ(n)]] = σ+n+ + σ−n−

Gradient plasticity jump: [[σ(n×)]] = σ+(n×)+ + σ−(n×)−
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DG Gradient Plasticity

• Consider the symmetric DG IP formulation for gradient
plasticity

• Find {uh, Hph
} ∈ S h × Ph ⊂ H1(Ω) × dev L2(Ω) s.t.

∀{wh, V h} ∈ V h × Qh ⊂ H1(Ω) × dev L2(Ω)
• (∇wh,σh)Ω = (wh, b)Ω,

︸ ︷︷ ︸

equilibrium

(V h, T ph
− σh)Ω + (curl V h, k curl Hph

)
eΩ

︸ ︷︷ ︸

domain

+([[V h(n×)]], 〈(k curl Hph
)T 〉)

eΓ + (〈(k curl V h)T 〉, [[Hph
(n×)]])

eΓ
︸ ︷︷ ︸

symmetric

+
α k
h

([[V h(n×)]], [[Hph
(n×)]])

eΓ
︸ ︷︷ ︸

penalty

= (V h, S(n))ΓS
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DG Gradient Plasticity

• Euler-Lagrange equations for gradient plasticity
(
wh, div σh + b

)

Ω
= 0 (equilibrium)

(

V h, T ph
− σh + (curl(k curl Hph

)T )T
)

eΩ
= 0 (flow rule)

(

〈(k curl V h)T 〉, [[Hph
(n×)]]

)

eΓ
= 0 (continuity of Hp(n×))

(

〈V h〉, [[(k curl Hph
)T (n×)]]

)

eΓ
= 0 (continuity of S(n×))

(

V h, (ST (n×) − S(n))
)

ΓS

= 0 (micro-traction condition)

• Recall: S = k curl Hp

• Note: important for analysis of method
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Yield Condition

• Flow rule: T p − dev σ + (dev curl(k curl Hp)T )T = 0

• Approximate β ≈ (dev curl(k curl Hp)T )T

• Yield condition f := ‖dev σ − β‖ −
√

2
3σy

• Two different methods of determining β

1 lift-lift evaluation of the back stress
(V , S)Ω = −(〈V 〉, [[Hp (n×)]])

eΓ
(V ,β)Ω = −(〈V 〉, [[S (n×)]])

eΓ
2 Exploitation of the flow rule

T p − dev σ + β = 0 → β = −T p + dev σ

• Method 2) proved to be more robust
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DG Gradient Plasticity Implementation

• Implementation of mixed method using symmetric DG IP
formulation

• FEniCS: open source finite element code project
• Variational form → generated C++ code → nonlinear solver

• Newton-Raphson iterative scheme for each PDE
• With the choice of Hp ∈ C−1 the flow rule reduces

• (V h, T ph
− σh)Ω + α k

h ([[V h(n×)]], [[Hph
(n×)]])

eΓ = 0

• Backward Euler time integration
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DG Gradient Plasticity Implementation

• Predictor stage: trial state
• Evaluate yield condition f
• IF: f ≥ 0 Add current element to list of plastic elements

• Corrector stage: flow rule PDE
• While plastic residual > TOL
• Compute plastic quantities
• Assemble plastic stiffness and plastic residual
• Solve for Hp

• Assemble and solve equilibrium equation for u
• Check convergence and advance state (·)n+1 → (·)n,

otherwise return to predictor
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Gradient Hardening

• Hardening increases with k
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Size Effect

• Size effect for the torsion problem
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Size Effect

• No size effect for tension

• Representative of a macroscopic problem, gentle gradient
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Localization

• Localization for classical softening

prescribed displacement

geometric imperfection
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Localization

• Localization for classical softening

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008

Mesh 1, H -2000.0
Mesh 2, H -2000.0
Mesh 3, H -2000.0

displacement [mm]

F
or

ce
[N

]

Ostien (Sandia National Laboratories) DG for Strain Gradient Plasticity 20/ 22



Localization

• Localization for classical softening with gradient hardening
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Summary

• Summary
• Developed physically reasonable, incompatibility-based

strain gradient plasticity theory
• Constructed variational formulation using concepts from

DG methods
• Implemented model into nonlinear finite element code
• Predicted size effect for variable domain dimension to

mimic that seen in plasticity at small scales
• Regularized a softening induced localization
• Investigated back-stress algorithms for gradient plasticity

yield condition
• Investigated integration algorithms for gradient plasticity
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