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* High-level view of Zoltan

* Requirements, data models, and interface
- Dynamic Load Balancing and Partitioning
« Matrix Ordering

« Graph Coloring

 Utilities

* Alternate Interfaces

* Future Directions
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The Zoltan Toolkit ) =

» Library of data management services for unstructured, dynamic
and/or adaptive computations.
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» Assume distributed memory model.

- Data decomposition + “Owner computes”:
— The data is distributed among the processors.
— The owner performs all computation on its data.
— Data distribution defines work assignment.

— Data dependencies among data items owned by different
processors incur communication.

* Requirements:
— MPI
— C compiler
— GNU Make (gmake)
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- Different applications, requirements, data structures.
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Particle methods

ﬁ @ Adaptive mesh refinement

Crash simulations

Multiphysics simulations
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« Common interface to each class of tools.
* Tool/method specified with user parameters.

- Data-structure neutral design.
— Supports wide range of applications and data structures.
— Imposes no restrictions on application’s data structures.

— Application does not have to build Zoltan’s data
structures.
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Zoltan Interface () =,

* Simple, easy-to-use interface.

— Small number of callable Zoltan functions.
— Callable from C, C++, Fortran.

* Requirement: Unique global IDs for objects to

be partitioned/ordered/colored. For example:

— Global element number.

— Global matrix row number.

— (Processor number, local element number)
— (Processor number, local particle number)
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« Application interface:
— Zoltan queries the application for needed info.
 IDs of objects, coordinates, relationships to other objects.
— Application provides simple functions to answer queries.
— Small extra costs in memory and function-call overhead.
* Query mechanism supports...
— Geometric algorithms
* Queries for dimensions, coordinates, etc.
— Hypergraph- and graph-based algorithms
* Queries for edge lists, edge weights, etc.

— Tree-based algorithms
* Queries for parent/child relationships, etc.

* Once query functions are implemented, application can
access all Zoltan functionality.
— Can switch between algorithms by setting parameters.
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APPLICATION ZOLTAN
Initialize Zoltan —
(Zoltan_lnitialize, Zoltan_LB_Partition:
Zoltan_Create) « Call query functions.
~ —> COMPUTE - Build data structures.
‘ ‘ « Compute new
Select Method and v decomposition.
Parameters Re-partition ‘ . I-Return import/export
(ZoItan_Sit_Params) (Zoltan_LB_Partition) lists.
Register i Zoltan_Migrate:
query functions | Move data e Call packing query
(Zoltan_Set_Fn) (Zoltan_Migrate) \ functions for exports.
1 - Send exports.
* Receive imports.
Clean up « Call unpacking query
(Zoltan_Destroy) functions for imports.




Slide 10

Zoltan Query Functions 0

Sandia
National
Laboratories

General Query Functions

ZOLTAN NUM OBJ FN

Number of items on processor

ZOLTAN OBJ LIST FN

List of item IDs and weights.

Geometric Query Functions

ZOLTAN NUM GEOM_FN

Dimensionality of domain.

ZOLTAN GEOM_FN

Coordinates of items.

Hypergraph Query Functions

ZOLTAN HG SIZE CS_FN

Number of hyperedge pins.

ZOLTAN HG CS_FN

List of hyperedge pins.

ZOLTAN HG SIZE EDGE_WTS_FN

Number of hyperedge weights.

ZOLTAN HG EDGE_WTS_ FN

List of hyperedge weights.

Graph Query Functions

ZOLTAN NUM EDGE_FN

Number of graph edges.

ZOLTAN EDGE_LIST FN

List of graph edges and weights.




ZOLTAN OBJ LIST FN @i

void exGetObjectList(void *userDefinedData,
int numGlobalIds, int numLocallds,
ZOLTAN ID PTR gids, ZOLTAN ID PTR lids,
int wgt dim, float *obj wgts,
int *err)

f\g.' Example zoltanSimple.c: Stae 11

/* ZOLTAN OBJ LIST FN callback function.

** Returns list of objects owned by this processor.
** 1ids[1i] = local index of object in array.

*/

int i;

for (i=0; i<NumPoints; i++)

{
gids[i] = GlobalIds[i];
lids[i] = 1i;

}

*err = 0;

return;
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ZOLTAN_GEOM_MULTI_FN @i

void exGetObjectCoords(void *userDefinedData,
int numGlobalIds, int numLocalIds, int numObjs,
ZOLTAN ID PTR gids, ZOLTAN ID PTR lids,
int numDim, double *pts, int *err)

{
/* ZOLTAN GEOM MULTI FN callback.

** Returns coordinates of objects listed in gids and 1lids.
* /
int i, id, id3, next = 0;
if (numDim != 3) {
*err = 1; return;
}
for (i=0; i<numObjs; i++){
id = lids[i];

if ((id < 0) || (id >= NumPoints)) {
*err = 1; return;

}

id3 = lids[i] * 3;

pts[next++] = (double) (Points[id3]);

pts[next++] = (double) (Points[id3 + 1]);

pts[next++] = (double) (Points[id3 + 2]);
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More Details on Query Functions ) .

S

« void* data pointer allows user data structures to be used in all
query functions.
— To use, cast the pointer to the application data type.
* Local IDs provided by application are returned by Zoltan to
simplify access of application data.
— E.g. Indices into local arrays of coordinates.
- ZOLTAN ID PTR is pointer to array of unsigned integers,
allowing IDs to be more than one integer long.

— E.g., (processor number, local element number) pair.
— and are lengths of each ID.

* All memory for query-function arguments is allocated in Zoltan.

void ZOLTAN GET GEOM MULTI FN(void *userDefinedData,
int , int , int numObjs,
ZOLTAN ID PTR gids, ZOLTAN ID PTR lids,
int numDim, double *pts, int *err)
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Using Zoltan in Your Application@mbmwﬂes

1. Decide what your objects are.
= Elements? Grid points? Matrix rows? Particles?
2. Decide which tools (partitioning/ordering/coloring/utilities)
and class of method (geometric/graph/hypergraph) to use.
3. Download Zoltan.
= http://www.cs.sandia.gov/Zoltan
4. Write required query functions for your application.

= Required functions are listed with each method in Zoltan
User’s Guide.

Call Zoltan from your application.

#include “zoltan.h” in files calling Zoltan.

Edit Zoltan configuration file and build Zoltan.
Compile application; link with libzoltan.a.

= mpicc application.c -lzoltan

O N O
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Zoltan computes the difference (A) from current distribution
Choose between:

a) Import lists (data to import from other procs)

b) Export lists (data to export to other procs)

c) Both (the default)

err

= Zoltan LB Partition(zz,

&changes, /* Flag indicating whether partition changed */
&numGidEntries, &numLidEntries,

&numImport, /* objects to be imported to new part */
&importGlobalGids, &importLocalGids, &importProcs, &importToPart,
&numExport, /* # objects to be exported from old part */
&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart);
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>

Initialize Partition Distribute Compute Output
Application Data | °| Data | | Solutions & End

 Static partitioning in an application:
— Data partition is computed.
— Data are distributed according to partition map.
— Application computes.

* Ideal partition:
— Processor idle time is minimized.
— Inter-processor communication costs are kept low.

» Zoltan_Set_Param(zz, “LB_APPROACH”, “PARTITION”);
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(a.k.a. Dynamic Load Balancing) ) .

Initialize Partition Redistribute Compute Output
Application Data > Data > Solutions > & End
& Adapt

- Dynamic repartitioning (load balancing) in an application:
— Data partition is computed.
— Data are distributed according to partition map.
— Application computes and, perhaps, adapts.
— Process repeats until the application is done.

* Ideal partition:
— Processor idle time is minimized.
— Inter-processor communication costs are kept low.
— Cost to redistribute data is also kept low.

» Zoltan_Set_Param(zz, “LB_APPROACH”, “REPARTITION”);
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* No single partitioner works best for all applications.

— Trade-offs:
* Quality vs. speed.
* Geometric locality vs. data dependencies.
* High-data movement costs vs. tolerance for remapping.

« Application developers may not know which partitioner
is best for application.

« Zoltan contains suite of partitioning methods.
— Application changes only one parameter to switch
methods.
» Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);

— Allows experimentation/comparisons to find most
effective partitioner for application.
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Geometric (coordinate-based) methods

\
LT

—11

Recursive Coordinate Bisection (Berger, Bokhari)
: ® Recursive Inertial Bisection (Taylor, Nour-Omid) e
e . = ° Space Filling Curve Partitioning
° e %o - (Warren&Salmon, et al.)

Refinement-tree Partitioning (Mitchell) &5

Combinatorial (topology-based) methods

Hypergraph Partitioning
Hypergraph Repartitioning
PaToH (Catalyurek & Aykanat)

Zoltan Graph Partitioning
ParMETIS (U. Minnesota)
Jostle (U. Greenwich)
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Recursive Coordinate Bisection )

« Zoltan_Set Param(zz, “LB_METHOD”, “RCB”’);
- Berger & Bokhari (1987).
* ldea:

1st cut

_ Divide work into two 3rd
equal parts using a -
cutting plane 3rd ®
orthogonal to a ®
coordinate axis. ° e ® -

— Recursively cut the ° - ® ond
resulting ®
subdomains. ® *® -

2nd
@® ® ) ®
[
® ® { ° |‘
1 I
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 Implicitly achieves low data redistribution
costs.

* For small changes in data, cuts move only
slightly, resulting in little data redistribution.

‘e — o |-
0,..0 o o ‘..
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Applications of Geometric Method@mbﬂm

Particle Simulations

Crash Simulations
and Contact Detection

Parallel Volume Rendering



= \/ Sandia
"/BT{CB Advantages and Disadvantage@ Gl

- Advantages:
— Conceptually simple; fast and inexpensive.

— All processors can inexpensively know entire partition (e.g.,
for global search in contact detection).

— No connectivity info needed (e.g., particle methods).
— Good on specialized geometries.

“fffdq1t11i11111111080t+eebrbrbbet PP o R s st 1l il lliyrr1r1r3101012 0131130101030

SLAC’S 55-cell Linear Accelerator with couplers:
One-dimensional RCB partition reduced runtime up
to 68% on 512 processor IBM SP3. (Wolf, Ko)

- Disadvantages:
— No explicit control of communication costs.
— Mediocre partition quality.

— Can generate disconnected subdomains for complex
geometries.

— Need coordinate information.
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« Zoltan_Set_Param(zz, “LB_METHOD”, “RIB”);

- Simon, Taylor, et al., 1991

- Cutting planes orthogonal to principle axes of
geometry.

* Not incremental.
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-~ Partitioning (SFC) ) .
« Zoltan_Set_Param(zz, “LB_METHOD”, “HSFC”);
- Space-Filling Curve (Peano, 1890):
— Mapping between R? to R’ that completely fills a domain.
— Applied recursively to obtain desired granularity.
- Used for partitioning by ...

— Warren and Salmon, 1993, gravitational simulations.

— Pilkington and Baden, 1994, smoothed particle
hydrodynamics.

— Patra and Oden, 1995, adaptive mesh refinement.
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* Run space-filling curve through domain.
* Order objects according to position on curve.
* Perform 1-D partition of curve.
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SFC Advantages
and Disadvantages
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- Advantages:

— Simple, fast, inexpensive.

— Maintains geometric locality of objects in processors.

— Implicitly incremental for repartitioning.
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- Disadvantages:

— No explicit control of communication costs.
— Can generate disconnected subdomains.
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— Often lower quality partitions than RCB.
— Geometric coordinates needed.
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- Adaptive hp-refinement finite element methods.

— Assigns physically close elements to same processor.
— Inexpensive; incremental; fast.

— Linear ordering can be used
to order elements for
efficient memory access. B pu

— b o B W

hp-refinement mesh; 8 processors. [
Patra, et al. (SUNY-Buffalo) als
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(RCB, RIB, HSFC), use ... G

Hypergraph Query Functions
ZOLTAN HG SIZE CS_FN Number of hyperedge pins.
ZOLTAN HG CS_FN List of hyperedge pins.
ZOLTAN_HG_SIZE_EDGE_WTS_FN | Number of hyperedge weights.
ZOLTAN HG EDGE_ WTS_ FN List of hyperedge weights.
Graph Query Functions
ZOLTAN NUM_EDGE_FN Number of graph edges.
ZOLTAN EDGE_LIST FN List of graph edges and weights.
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. Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”);
- Zoltan_Set_Param(zz, “GRAPH_PACKAGE?”, “ZOLTAN"); or
Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PARMETIS”);

* Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon,
Hendrickson, Leland, Kumar, Karypis, et al.

* Represent problem as a weighted graph.

— Vertices = objects to be partitioned.

— Edges = dependencies between two
objects.

— Weights = work load or amount of
dependency.

- Partition graph so that ...
— Parts have equal vertex weight.

— Weight of edges cut by part boundaries is
small.
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Graph Repartitioning e

* Diffusive strategies (Cybenko, Hu,
Blake, Walshaw, Schloegel, et al.)

— Shift work from highly loaded
processors to less loaded neighbors.

— Local communication keeps data
redistribution costs low.

* Multilevel partitioners that account for data redistribution
costs in refining partitions (Schloegel, Karypis)

— Parameter weights application communication vs.
redistribution communication.

Coarsen graph ' W Refine partition

Partition accounting for

' —p .p current part assignment

coarse graph
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Finite Element &’
Analysis

A X

b

i

Multiphysics and
multiphase simulations

Linear solvers & preconditioners
(square, structurally symmetric systems)
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Advantages and Disadvantages )

L

- Advantages:

— Highly successful model for mesh-based PDE problems.

— Explicit control of communication volume gives higher
partition quality than geometric methods.

— Excellent software available.

* Serial: Chaco (SNL)
Jostle (U. Greenwich)
METIS (U. Minn.)
Party (U. Paderborn)
Scotch (U. Bordeaux)

 Parallel: Zoltan (SNL)
ParMETIS (U. Minn.)
PJostle (U. Greenwich)

- Disadvantages:

— More expensive than geometric methods.
— Edge-cut model only approximates communication volume.
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coloring & ordering, use ...
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Geometric Query Functions

ZOLTAN NUM GEOM_FN

Dimensionality of domain.

ZOLTAN GEOM_FN

Coordinates of items.

Hypergraph Query Functions

ZOLTAN HG SIZE CS_FN

Number of hyperedge pins.

ZOLTAN HG_CS_FN

List of hyperedge pins.

ZOLTAN HG SIZE EDGE_WTS_FN

Number of hyperedge weights.

ZOLTAN HG EDGE_WTS_FN

List of hyperedge weights.
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« Zoltan_Set_Param(zz, “LB_METHOD”, “HYPERGRAPH”);
» Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “ZOLTAN”); or
Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “PATOH”);

Hypergraph Partitioning () .

- Alpert, Kahng, Hauck, Borriello, Catalyurek, Aykanat, Karypis, et al.
* Hypergraph model:

— Vertices = objects to be partitioned.

— Hyperedges = dependencies between two or more objects.
 Partitioning goal: Assign equal vertex weight while minimizing

hyperedge cut weight.
\ \

N
a
N
N—A—
7/

Graph Partitioning Model Hypergraph Partitioning Model
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Hypergraph Repartitioning ) .

- Augment hypergraph with data redistribution costs.

— Account for data’s current processor assignments.

— Weight dependencies by their size and frequency of use.
 Partitioning then tries to minimize total communication volume:

Data redistribution volume
+ Application communication volume
Total communication volume

- Data redistribution volume: callback returns data sizes.

— Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_MULTI_FN, myObjSizeFn, 0);
* Application communication volume = Hyperedge cuts * Number of

times the communication is done between repartitionings.
— Zoltan_Set_Param(zz, “PHG_REPART_MULTIPLIER”, “1007”);

Best Algorithms Paper Award at IPDPS07
“Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations”
Catalyurek, Boman, Devine, Bozdag, Heaphy, & Riesen
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R Multiphysics and

I e e R multiphase simulations
Linear programming

for sensor placement

Finite Element @

-
Analysis
EN
1] Ll ]
i R0 coz c2 7 Rg2
;t/m INDUCTOR R _—
. S‘{DSU_ RCE_VOLTAGE . i} . -
*; <1 cmotz2 JRLT emrz ]
3 Rs ——
~| R L1 . R1
J o INDUCTOR R - 1 B = o=
Sl T of X — b Data Mining

Linear solvers & preconditioners

Circuit Simulations - . .
(no restrictions on matrix structure)



V‘_',// Hypergraph Partitioning: ot 5
v Advantages and Disadvantages )

- Advantages:
— Communication volume reduced 30-38% on average

over graph partitioning (Catalyurek & Aykanat).
* 5-15% reduction for mesh-based applications.
— More accurate communication model than graph
partitioning.
- Better representation of highly connected and/or
non-homogeneous systems.

— Greater applicability than graph model.

- Can represent rectangular systems and non-symmetric
dependencies.

* Disadvantages:
— More expensive than graph partitioning.



Wor hypergraph partitioning S’Z;:O
and repartitioning, use ... () .

Geometric Query Functions
ZOLTAN NUM GEOM_FN Dimensionality of domain.
ZOLTAN GEOM_FN Coordinates of items.

Graph Query Functions

ZOLTAN NUM_EDGE_FN Number of graph edges.
ZOLTAN EDGE_LIST FN List of graph edges and weights.
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to build hypergraph.
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Geometric Query Functions

ZOLTAN NUM GEOM_FN

Dimensionality of domain.

ZOLTAN GEOM_FN

Coordinates of items.

Hypergraph Query Functions

ZOLTAN HG SIZE CS_FN

Number of hyperedge pins.

ZOLTAN HG_CS_FN

List of hyperedge pins.

ZOLTAN HG SIZE EDGE_WTS_FN

Number of hyperedge weights.

ZOLTAN HG EDGE_WTS_FN

List of hyperedge weights.
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Multi-criteria Load-balancing () .

« Multiple constraints or objectives
— Compute a single partition that is good
with respect to multiple factors.

« Balance both computation and memory.
- Balance meshes in loosely coupled physics.
- Balance multi-phase simulations.

— Extend algorithms to multiple weights
« Difficult. No guarantee good solution exists.

» Zoltan_Set_Param(zz, “OBJ_WEIGHT_DIM”, “2%);

— With RCB, RIB and ParMETIS
graph partitioning.

m Computation
m Memory
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* Clusters may have different types of processors.
- Assign “capacity” weights to processors.

— E.g., Compute power (speed).

— Zoltan_LB_Set Part_Sizes(...);
- Balance with respect to processor capacity.

 Hierarchical partitioning: Allows different partitioners
at different architecture levels.
— Zoltan_Set_Param(zz, “LB_METHOD”, “HIER”);

Entire System

Processor | :-- Processor
| |

—

Core ... Core Core |-.. Core
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Sparse Matrix Ordering problem@labvratoﬂes

* When solving sparse linear systems with
direct methods, non-zero terms are created
during the factorization process (A—LL!,
A—-LDL!or A—LU).

* Fill-in depends on the order of the unknowns.

— Need to provide fill-reducing orderings.
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- Combinatorial problem, depending on only the

structure of the matrix A:
— We can work on the graph associated with A.
* NP-Complete, thus we deal only with

heuristics.

* Most popular heuristics:

— Minimum Degree algorithms (AMD, MMD, AMF ...)
— Nested Dissection
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Nested dissection (1) pit

* Principle [George 1973]

— Find a vertex separator S in graph.
— Order vertices of S with highest available indices.

— Recursively apply the algorithm to the two
separated subgraphs A and B.




— é / Slide 47

-~ : : e
Nested dissection (2) () .

- Advantages:

—Induces high quality block decompositions.
 Suitable for block BLAS 3 computations.

—Increases the concurrency of
computations.
« Compared to minimum degree algorithms.
* Very suitable for parallel factorization.

— It’s the scope here: parallel ordering is for
parallel factorization.
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Matrix ordering within Zoltan )

- Computed by third party libraries:

— ParMETIS
— Scotch (more specifically PT-Scotch, the parallel
part)
— Easy to add another one.
* The calls to the external ordering library are
transparent for the user, and thus Zoltan’s call

can be a standard way to compute ordering.
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' Zoltan ordering architecture = ===

User

Zoltan

third Party Library interface

el T

Parmetis PT-Scotch S

Ordering Ordering

Partitioning when

Partitioning available
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 Compute ordering with one function:
Zoltan Order

* Output provided:

—New order of the unknowns (direct
permutation), available in two forms:
* one is the new number in the interval [0,N-1];
* the other is the new order of Global IDs.

—Access to elimination tree, “block” view of
the ordering.
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Experimental results (1)
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* Metric is OPC, the operation count of Cholesky
factorization.
- Largest matrix ordered by PT-Scotch: 83
millions of unknowns on 256 processors

Yy

(CEA/CESTA).
- Some of our largest test graphs.
Size (10) |Average .
O

Graph ™ El  degree Ss Description
audikw 944 38354 81.285.48E+138D mechanics mesh, Pa
cagel5 5154 47022 18.244.06E+16 DNA electrophoresis,
quimondaO?7 8613 29143 6.768.92E+10ircuit simulation, Quimor
23 millions 23114175686 7.6 1.29E+14 CEA/CESTA
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Test Number of processes
case 2 4 8 16 32 64
audikw
O J 5.73E+125.65E+125.54E+125.45E+125.45E+125.45E+]
O, 5.82E+126.37E+127.78E+128.88E+128.91E+121.07E+]
Grs 73.11 53.19 45.19 33.83 24.74 18.1
44 < 2
PTScotch mmmmmm e PTScotch s
42 ParMetis mm— S ParMetis mm—
Seq. Scotch n Seq. Scotch
£ 15
< 5
3 g
< .1
< 0
g 05
9
O o

4

8
Number of p

16 32
rocessors

64

2

4 8

16 32 64

Number of processors
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Experimental results (3) ) ..

Test Number of processes
case 2 4 38 16 32 64
cagel5

O.;s 4.58E+165.01E+164.64E+164.94E+164.58E+164.50E+]
O, 4.47E+166.64E+16 ¢ 7.36E+167.03E+166.64E+
Gors 540.46 427.38 371.70 340.78 351.38 380.¢
L 195.93 117.77 ¢ 40.30 22.56 17.8
6200 2

PTScotch mmam
ParMetis

PTScotch mmmam
6000 ParMetis
5800 Seq. Scotch

5600
5400
5200
5000
4800
4600
4400
4200

NNZ(L)/NNZ(A)
=

OPC, base 1.0 for sequential Scotch
o
o

o

2 4 8 16 32 64 2 4 8 16 32 64
Number of processors Number of processors
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- ParMETIS crashes for all other graphs.

Test Number of processes

case 2 4 38 16 32 04
quimonda07

Orrs . i 5.80E+106.38E+106.94E+107.70E+1

b - - 34.68 2223 1730  16.6:
2 3millions

Ost 1.45E+142.91E+143.99E+142.71E+141.94E+142.45E+1

brs 671.60 416.45 295.38 211.68 147.35 103.7.
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Summary of Matrix Ordering )

« Zoltan provides access to efficient parallel
ordering for sparse matrices (especially with
Scotch).

- Zoltan provides a standard way to call parallel
ordering.

- Zoltan will provide also its own ordering tool in
the future, dealing with ordering for non-
symmetric problems.
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ol Zoltan Graph Coloring ) ..

Parallel distance-1 and distance-2 graph coloring.
Graph built using same application interface and code
as graph partitioners.

Generic coloring interface; easy to add new coloring
algorithms.

Algorithms

— Distance-1 coloring: Bozdag, Gebremedhin, Manne,
Boman, Catalyurek, EuroPar’05, JPDC’08.

— Distance-2 coloring: Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, Ozguner, HPCC’05, SISC’08 (in

submission).
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* Problem (NP-hard)
Color the vertices of a graph with as few colors as
possible such that no two adjacent vertices
receive the same color.

* Applications
— lterative solution of sparse linear systems
— Preconditioners
— Sparse tiling
— Eigenvalue computation
— Parallel graph partitioning
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* Problem (NP-hard)
Color the vertices of a graph with as few colors as possible
such that a pair of vertices connected by a path on two or
less edges receives different colors.

* Applications
— Derivative matrix computation in numerical optimization
— Channel assignment
— Facility location

* Related problems

— Partial distance-2 coloring
— Star coloring
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A Parallel Coloring Framework )

* Color vertices iteratively in rounds using a first
fit strategy

« Each round is broken into supersteps

— Color a certain number of vertices
— Exchange recent color information

* Detect conflicts at the end of each round
* Repeat until all vertices receive consistent
colors
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Coloring Interface in Zoltan )

—”
S

* Both distance-1 and distance-2 coloring
routines can be invoked by Zoltan Color
function.

* The colors assigned to the objects are

returned in an array.
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* Tools needed when doing dynamic load balancing:
— Data Migration
— Unstructured Communication Primitives
— Distributed Data Directories

* All functionality described in Zoltan User’s Guide.

— http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
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Zoltan Data Migration Tools ) .

« After partition is computed, data must be moved to new
decomposition.
— Depends strongly on application data structures.
— Complicated communication patterns.
« Zoltan can help!
— Application supplies query functions to pack/unpack data.
— Zoltan does all communication to new processors.
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. Data Migration Tools () .

* Required migration query functions:
— ZOLTAN_OBJ_SIZE_MULTI_FN:

* Returns size of data (in bytes) for each object to be exported to a new
processor.

— ZOLTAN_PACK_MULTI_FN:

 Remove data from application data structure on old processor;
« Copy data to Zoltan communication buffer.

— ZOLTAN_UNPACK_MULTI_FN:

« Copy data from Zoltan communication buffer into data structure on new
processor.

- int Zoltan Migrate(struct Zoltan_Struct *zz,
int num_import, ZOLTAN_ID PTR import_global_ids,
ZOLTAN_ID PTR import_local_ids, int *import_procs,
int *import_ to part,
int num_export, ZOLTAN_ID PTR export_global_ids,
ZOLTAN_ID PTR export_local_ids, int *export_procs,
int *export_ to part);
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Communication Package ) .

« Simple primitives for efficient irregular communication.

— Zoltan_Comm_Create: Generates communication plan.
* Processors and amount of data to send and receive.

— Zoltan_Comm_Do: Send data using plan.
« Can reuse plan. (Same plan, different data.)

— Zoltan Comm_ Do Reverse: Inverse communication.
* Used for most communication in Zoltan.

Zoltan_Comm_Do

—
'\/

Zoltan Comm_ Do _Reverse

RCB
decomposition

Graph-based
decomposition
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Crash Simulations .

*Multiphase simulation:

— Graph-based decomposition of elements for finite element calculation.

— Dynamic geometric decomposition of surfaces for contact detection.

— Migration tools and Unstructured Communication package map
between decompositions.

Graph-based RCB mapped totime 0 RCB mapped to time 0
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* Helps applications locate off-processor data.

* Rendezvous algorithm (Pinar, 2001).
— Directory distributed in known way (hashing) across

processors.
— Requests for object location Processor 2
sent to processor storing
P 1
the object’s directory entry. rocessor mh

Processor 0

Directory Index > D E|F G| H|I
Location - 21110 11211

Processor 0 Processor 1 Processor 2
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> Alternate Interfaces to Zoltan () .

* Isorropia package in Trilinos solver toolkit.
— Epetra Matrix interface to Zoltan partitioning.
B = Isorropia::Epetra::create_balanced_copy(A, params);

— Trilinos v9 will also include ordering and coloring
interfaces in Isorropia.

— SciDAC TOPS-2 CET.
* ITAPS iMesh interface to Zoltan.

— New iMeshP parallel mesh interface to be
incorporated in FY09.

— SciDAC ITAPS CET.
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- Two-dimensional matrix partitioning interfaces
in Isorropia.

- Performance improvements for hypergraph
partitioning.

* Multi-criteria hypergraph partitioning.

* Non-symmetric matrix ordering.
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s#

- Zoltan Home Page

— http://lwww.cs.sandia.gov/Zoltan
— User’s and Developer’s Guides
— Download Zoltan software under GNU LGPL.

Sandia
FOr More Information... @Pzﬁmrattljries

- Email:
— {kddevin,ccheval,egboman}@sandia.gov
— umit@bmi.osu.edu
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Configuring and Building Zoltan ) .

* Create and enter the Zoltan directory:

— gunzip zoltan_distrib_v3.0.tar.gz
— tar xf zoltan_distrib_v3.0.tar
— cd Zoltan

« Configure and make Zoltan library

— Not autotooled; uses manual configuration file.

— “make zoltan” attempts a generic build;
library libzoltan.a is in directory Obj generic.
— To customize your build:
 cd Utilities/Config; cp Config.linux Config.your_system
» Edit Config.your_system
*cd..l.
» setenv ZOLTAN_ARCH your_system
* make zoltan
 Library libzoltan.a is in Obj_your_system



Config file
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)

DEFS
RANLIB
AR

cc

CPPC
INCLUDE_PATH
DBG_FLAGS
OPT_FLAGS
CFLAGS

F90

LOCAL F90
F90CFLAGS

FFLAGS

SPPR_HEAD

F90 MODULE PREFIX
FARG

MPI LIB
MPI_LIBPATH

PARMETIS LIBPATH
PARMETIS INCPATH
#PATOH_ LIBPATH
#PATOH_ INCPATH

ranlib
ar r

mpicc -Wall
mpic++

-9

= -0

$ (DBG_FLAGS)

mpif90

= £90
= -DFMANGLE=UNDERSCORE -DNO MPI2

= spprinc.most

-1
farg typical

= -L/Users/kddevin/code/ParMETIS3 1

= -I/Users/kddevin/code/ParMETIS3 1

= -L/Users/kddevin/code/PaToH

-I/Users/kddevin/code/PaToH

Sandia
National
Laboratories
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» Example Graph Callbacks ) .

void ZOLTAN NUM EDGES MULTI FN(void *data,
int num gid entries, int num lid entries,

int num obj, ZOLTAN ID PTR global id, ZOLTAN ID PTR local id,
int *num edges, int *ierr);

Proc 0 Input from Zoltan:

num_obj = 3
global_id = {A,C,B}
local_id = {0,1,2}

Output from Application on Proc O:
num_edges = {2,4,3}

(i.e., degrees of vertices A, C, B)
ierr = ZOLTAN_OK Proc 0

Proc 1
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void ZOLTAN EDGE LIST MULTI FN(void *data,
int num gid entries, int num lid entries,
int num obj, ZOLTAN ID PTR global ids, ZOLTAN ID PTR local ids,
int *num edges,
ZOLTAN ID PTR nbor global id, int *nbor procs,
int wdim, float *nbor ewgts,
int *ierr);

Proc 0 Input from Zoltan:
num_obj = 3

global_ids = {A, C, B}
local_ids = {0, 1, 2}
num_edges = {2, 4, 3}

wdim = 0 or EDGE_WEIGHT_DIM parameter value

Output from Application on Proc O:
nbor_global_id {B, C, A, B, E, D
nbor_procs {0, 0, 0, O, 1, 1
nbor_ewgts 1if wdim then

{7! 8! 8! 9! 1! 3! 7! 9! 5}
ierr = ZOLTAN_OK
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void ZOLTAN HG SIZE CS FN(void *data, int *num lists, int *num pins,
int *format, int *ierr);

Output from Application on Proc O: Vertices
num_1lists = 2
num_pins = 6 Proc 0 | Proc 1
format = ZOLTAN_COMPRESSED_VERTEX
(owned non-zeros per vertex) A ‘ B|C ‘ D
ierr = ZOLTAN_OK
X X
OR
X

Output from Application on Proc O:
num_lists = 5
num_pins = 6
format = ZOLTAN_COMPRESSED_EDGE
(owned non-zeros per edge)
ierr = ZOLTAN_OK

Hyperedges

X X
X X X

-4a‘CD ‘CL ‘C) ‘CT ‘QJ

X
X
X X
X
X
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void ZOLTAN HG CS FN(void *data, int num gid entries,
int nvtxedge, int npins, int format,

ZOLTAN ID PTR vtxedge GID, int *vtxedge ptr, ZOLTAN ID PTR pin GID,
int *ierr);

Proc 0 Input from Zoltan: Vertices
nvixedge = 2 or 5 Proc 0 | Proc 1
hpins = 6
format = ZOLTAN_COMPRESSED_VERTEX or

ZOLTAN_COMPRESSED_EDGE AlB|C|D
Output from Application on Proc O: a| X X
if (format = ZOLTAN_COMPRESSED_VERTEX) 3
vtxedge_GID = {A, B} & b X X
vtxedge_ptr = {0, 3} O
pin_GID = {a, e, f, b, d, f} ¢ c X X
if (format = ZOLTAN_COMPRESSED_EDGE) 8_
vtxedge_GID = {a, b, d, e, f} > d X X
vtxedge_ptr = {0, 1, 2, 3, 4} L
pin_GID = {A, B, B, A, A, B} e | X X X
ierr = ZOLTAN_OK
fI X X X X
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« Zoltan/examples/C/zoltanSimple.c

* Application data structure:

— int MyNumPts;

* Number of points on processor.
— int *Gids;

- array of Global ID numbers of points on processor.
— float *Pts;

* Array of 3D coordinates of points on processor (in same
order as Gids array).
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/* Initialize MPI */

MPI Init(&argc, &argv);

MPI Comm rank(MPI COMM WORLD, &me);

MPI Comm size(MPI COMM WORLD, &nprocs);

/*
** Initialize application data. In this example,
** create a small test mesh and divide it across processors

*/
exSetDivisions(32); /* rectilinear mesh is div X div X div */
MyNumPts = exInitializePoints(&Pts, &Gids, me, nprocs);

/* Initialize Zoltan */
rc = Zoltan Initialize(argc, argv, &ver);

if (rc != ZOLTAN OK)({
printf("sorry...\n");
free(Pts); free(Gids);
exit(0);

}
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/* Allocate and initialize memory for Zoltan structure */
zz = Zoltan Create(MPI COMM WORLD) ;

/* Set general parameters */
Zoltan Set Param(zz, "DEBUG LEVEL", "0");
Zoltan Set Param(zz, "LB METHOD", "RCB");
Zoltan Set Param(zz, "NUM GID ENTRIES", "1");
Zoltan Set Param(zz, "NUM LID ENTRIES", "1");
Zoltan Set Param(zz, "RETURN LISTS", "ALL");
/* Set RCB parameters */
Zoltan Set Param(zz, "KEEP CUTS", "1");
Zoltan Set Param(zz, "RCB_OUTPUT LEVEL", "0");

Zoltan Set Param(zz, "RCB RECTILINEAR BLOCKS", "1");

/* Register call-back query functions. */

Zoltan Set Num Obj Fn(zz, exGetNumberOfAssignedObjects, NULL);
Zoltan Set Obj List Fn(zz, exGetObjectList, NULL);

Zoltan Set Num Geom Fn(zz, exGetObjectSize, NULL);

Zoltan Set Geom Multi Fn(zz, exGetObject, NULL);
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Partitioning () .

Zoltan computes the difference (A) from current distribution
Choose between:

a) Import lists (data to import from other procs)

b) Export lists (data to export to other procs)

c) Both (the default)

/* Perform partitioning */
rc = Zoltan LB Partition(zz,
&changes, /* Flag indicating whether partition changed */
&numGidEntries, &numLidEntries,
&numImport, /* objects to be imported to new part */
&importGlobalGids, &importLocalGids,
&importProcs, &importToPart,
&numExport, /* # objects to be exported from old part */
&exportGlobalGids, &exportLocalGids,
&exportProcs, &exportToPart);
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/* Process partitioning results;
** in this case, print information;
** in a "real" application, migrate data here.
*/
if (!lrc){
exPrintGlobalResult ("Recursive Coordinate Bisection",
nprocs, me,
MyNumPts, numImport, numExport, changes);
}
else{
free(Pts);
free(Gids);
Zoltan Destroy(&zz);
MPI Finalize();
exit(0);
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/* Free Zoltan memory allocated by Zoltan LB Partition. */

Zoltan LB Free Part(&importGlobalGids, &importLocalGids,
&importProcs, &importToPart);

Zoltan LB Free Part(&exportGlobalGids, &exportLocalGids,
&exportProcs, &exportToPart);

/* Free Zoltan memory allocated by Zoltan Create. */
Zoltan Destroy(&zz);

/* Free Application memory */
free(Pts); free(Gids);

[hhkkkkhkhhhkhkhhhhkhkhkhhkk
** 3]l done ***kkkkkkk*k

**********************/

MPI Finalize();
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* Experiments on Sandia’s Thunderbird cluster.

— Dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
— Infiniband network.

-« Compare RCB, HSFC, graph and hypergraph
methods.

- Measure ...

— Amount of communication induced by the partition.
— Partitioning time.
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- SLAC 6.0M LCLS

1024 parts.
Varying number
of processors.
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Repartitioning Experiments [ e

 Experiments with 64 parts on 64 processors.

* Dynamically adjust weights in data to simulate,
say, adaptive mesh refinement.

* Repartition.

- Measure repartitioning time and
total communication volume:
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