
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Tutorial: The Zoltan Toolkit

Karen Devine and Cedric Chevalier
Sandia National Laboratories, NM

Umit Catalyurek
Ohio State University

CSCAPES Workshop, June 2008

SAND2008-4024C

Slide 2

Outline
• High-level view of Zoltan
• Requirements, data models, and interface
• Dynamic Load Balancing and Partitioning
• Matrix Ordering
• Graph Coloring
• Utilities
• Alternate Interfaces
• Future Directions

Slide 3

The Zoltan Toolkit

Unstructured Communication

Data Migration Matrix Ordering

Dynamic Load
Balancing

Distributed Data Directories

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

• Library of data management services for unstructured, dynamic
and/or adaptive computations.

Graph Coloring

Slide 4

Zoltan System Assumptions
• Assume distributed memory model.
• Data decomposition + “Owner computes”:

– The data is distributed among the processors.
– The owner performs all computation on its data.
– Data distribution defines work assignment.
– Data dependencies among data items owned by different

processors incur communication.

• Requirements:
– MPI
– C compiler
– GNU Make (gmake)

Slide 5Zoltan Supports
Many Applications

• Different applications, requirements, data structures.

Multiphysics simulations

x bA

=

Linear solvers &
preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks

1
2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1
2

Rg01
R

1
2 C01

C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1
2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Slide 6

Zoltan Interface Design
• Common interface to each class of tools.
• Tool/method specified with user parameters.

• Data-structure neutral design.
– Supports wide range of applications and data structures.
– Imposes no restrictions on application’s data structures.
– Application does not have to build Zoltan’s data

structures.

Slide 7

Zoltan Interface
• Simple, easy-to-use interface.

– Small number of callable Zoltan functions.
– Callable from C, C++, Fortran.

• Requirement: Unique global IDs for objects to
be partitioned/ordered/colored. For example:

– Global element number.
– Global matrix row number.
– (Processor number, local element number)
– (Processor number, local particle number)

Slide 8

Zoltan Application Interface
• Application interface:

– Zoltan queries the application for needed info.
• IDs of objects, coordinates, relationships to other objects.

– Application provides simple functions to answer queries.
– Small extra costs in memory and function-call overhead.

• Query mechanism supports…
– Geometric algorithms

• Queries for dimensions, coordinates, etc.
– Hypergraph- and graph-based algorithms

• Queries for edge lists, edge weights, etc.
– Tree-based algorithms

• Queries for parent/child relationships, etc.
• Once query functions are implemented, application can

access all Zoltan functionality.
– Can switch between algorithms by setting parameters.

Slide 9

Zoltan Application Interface

Initialize Zoltan
(Zoltan_Initialize,
Zoltan_Create)

Select Method and
Parameters

(Zoltan_Set_Params)

Register
query functions
(Zoltan_Set_Fn)

Re-partition
(Zoltan_LB_Partition)

COMPUTE

Move data
(Zoltan_Migrate)

Clean up
(Zoltan_Destroy)

APPLICATION

Zoltan_LB_Partition:
• Call query functions.
• Build data structures.
• Compute new

decomposition.
• Return import/export

lists.

Zoltan_Migrate:
• Call packing query

functions for exports.
• Send exports.
• Receive imports.
• Call unpacking query

functions for imports.

ZOLTAN

Slide 10

Zoltan Query Functions

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 11Example zoltanSimple.c:
ZOLTAN_OBJ_LIST_FN

void exGetObjectList(void *userDefinedData,
 int numGlobalIds, int numLocalIds,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int wgt_dim, float *obj_wgts,
 int *err)
{
/* ZOLTAN_OBJ_LIST_FN callback function.
** Returns list of objects owned by this processor.
** lids[i] = local index of object in array.
*/
 int i;

 for (i=0; i<NumPoints; i++)
 {
 gids[i] = GlobalIds[i];
 lids[i] = i;
 }

 *err = 0;

 return;
}

Slide 12Example zoltanSimple.c:
ZOLTAN_GEOM_MULTI_FN

void exGetObjectCoords(void *userDefinedData,
 int numGlobalIds, int numLocalIds, int numObjs,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int numDim, double *pts, int *err)
{
/* ZOLTAN_GEOM_MULTI_FN callback.
** Returns coordinates of objects listed in gids and lids.
*/
 int i, id, id3, next = 0;
 if (numDim != 3) {
 *err = 1; return;
 }
 for (i=0; i<numObjs; i++){
 id = lids[i];
 if ((id < 0) || (id >= NumPoints)) {
 *err = 1; return;
 }
 id3 = lids[i] * 3;
 pts[next++] = (double)(Points[id3]);
 pts[next++] = (double)(Points[id3 + 1]);
 pts[next++] = (double)(Points[id3 + 2]);
 }
}

Slide 13

More Details on Query Functions
• void* data pointer allows user data structures to be used in all

query functions.
– To use, cast the pointer to the application data type.

• Local IDs provided by application are returned by Zoltan to
simplify access of application data.

– E.g. Indices into local arrays of coordinates.
•ZOLTAN_ID_PTR is pointer to array of unsigned integers,

allowing IDs to be more than one integer long.
– E.g., (processor number, local element number) pair.
– numGlobalIds and numLocalIds are lengths of each ID.

• All memory for query-function arguments is allocated in Zoltan.

void ZOLTAN_GET_GEOM_MULTI_FN(void *userDefinedData,
 int numGlobalIds, int numLocalIds, int numObjs,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int numDim, double *pts, int *err)

Slide 14

Using Zoltan in Your Application

1. Decide what your objects are.
 Elements? Grid points? Matrix rows? Particles?

2. Decide which tools (partitioning/ordering/coloring/utilities)
and class of method (geometric/graph/hypergraph) to use.

3. Download Zoltan.
 http://www.cs.sandia.gov/Zoltan

4. Write required query functions for your application.
 Required functions are listed with each method in Zoltan

User’s Guide.
5. Call Zoltan from your application.
6. #include “zoltan.h” in files calling Zoltan.
7. Edit Zoltan configuration file and build Zoltan.
8. Compile application; link with libzoltan.a.

 mpicc application.c -lzoltan

Slide 15

Partitioning and Load Balancing
• Assignment of application data to processors for parallel

computation.
• Applied to grid points, elements, matrix rows, particles, ….

Slide 16

Partitioning Interface

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

err = Zoltan_LB_Partition(zz,
&changes, /* Flag indicating whether partition changed */
&numGidEntries, &numLidEntries,
&numImport, /* objects to be imported to new part */
&importGlobalGids, &importLocalGids, &importProcs, &importToPart,
&numExport, /* # objects to be exported from old part */
&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart);

Slide 17

Static Partitioning

• Static partitioning in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “PARTITION”);

Initialize
Application

Partition
Data

Distribute
Data

Compute
Solutions

Output
& End

Slide 18Dynamic Repartitioning
(a.k.a. Dynamic Load Balancing)

Initialize
Application

Partition
Data

Redistribute
Data

Compute
Solutions
& Adapt

Output
& End

• Dynamic repartitioning (load balancing) in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes and, perhaps, adapts.
– Process repeats until the application is done.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.
– Cost to redistribute data is also kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “REPARTITION”);

Slide 19Zoltan Toolkit:
Suite of Partitioners

• No single partitioner works best for all applications.
– Trade-offs:

• Quality vs. speed.
• Geometric locality vs. data dependencies.
• High-data movement costs vs. tolerance for remapping.

• Application developers may not know which partitioner
is best for application.

• Zoltan contains suite of partitioning methods.
– Application changes only one parameter to switch

methods.
• Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);

– Allows experimentation/comparisons to find most
effective partitioner for application.

Slide 20Partitioning Algorithms
in the Zoltan Toolkit

Recursive Coordinate Bisection (Berger, Bokhari)
Recursive Inertial Bisection (Taylor, Nour-Omid)

Zoltan Graph Partitioning
ParMETIS (U. Minnesota)

Jostle (U. Greenwich)

Hypergraph Partitioning
Hypergraph Repartitioning
PaToH (Catalyurek & Aykanat)

Geometric (coordinate-based) methods

Combinatorial (topology-based) methods

Space Filling Curve Partitioning
 (Warren&Salmon, et al.)

Refinement-tree Partitioning (Mitchell)

Slide 21

1st cut

2nd

2nd

3rd

3rd3rd

3rd

Recursive Coordinate Bisection
• Zoltan_Set_Param(zz, “LB_METHOD”, “RCB”);
• Berger & Bokhari (1987).
• Idea:

– Divide work into two
equal parts using a
cutting plane
orthogonal to a
coordinate axis.

– Recursively cut the
resulting
subdomains.

Slide 22

Geometric Repartitioning
• Implicitly achieves low data redistribution

costs.
• For small changes in data, cuts move only

slightly, resulting in little data redistribution.

Slide 23

Applications of Geometric Methods

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations

Slide 24

RCB Advantages and Disadvantages
• Advantages:

– Conceptually simple; fast and inexpensive.
– All processors can inexpensively know entire partition (e.g.,

for global search in contact detection).
– No connectivity info needed (e.g., particle methods).
– Good on specialized geometries.

• Disadvantages:
– No explicit control of communication costs.
– Mediocre partition quality.
– Can generate disconnected subdomains for complex

geometries.
– Need coordinate information.

SLAC’S 55-cell Linear Accelerator with couplers:
One-dimensional RCB partition reduced runtime up
to 68% on 512 processor IBM SP3. (Wolf, Ko)

Slide 25Variations on RCB :
Recursive Inertial Bisection

• Zoltan_Set_Param(zz, “LB_METHOD”, “RIB”);
• Simon, Taylor, et al., 1991
• Cutting planes orthogonal to principle axes of

geometry.
• Not incremental.

Slide 26Space-Filling Curve
Partitioning (SFC)

• Zoltan_Set_Param(zz, “LB_METHOD”, “HSFC”);
• Space-Filling Curve (Peano, 1890):

– Mapping between R3 to R1 that completely fills a domain.
– Applied recursively to obtain desired granularity.

• Used for partitioning by …
– Warren and Salmon, 1993, gravitational simulations.
– Pilkington and Baden, 1994, smoothed particle

hydrodynamics.
– Patra and Oden, 1995, adaptive mesh refinement.

Slide 27

9

20

19

18

17

16

15

14

1312

1110

8

7

6 5

4

321

9

20

19

18

17

16

15

14

1312

1110

8

7

6 5

4

321

9

20

19

18

17

16

15

14

1312

1110

8

7

6 5

4

321

SFC Algorithm
• Run space-filling curve through domain.
• Order objects according to position on curve.
• Perform 1-D partition of curve.

Slide 28SFC Advantages
and Disadvantages

• Advantages:
– Simple, fast, inexpensive.
– Maintains geometric locality of objects in processors.
– Implicitly incremental for repartitioning.

• Disadvantages:
– No explicit control of communication costs.
– Can generate disconnected subdomains.
– Often lower quality partitions than RCB.
– Geometric coordinates needed.

Slide 29

hp-refinement mesh; 8 processors.
Patra, et al. (SUNY-Buffalo)

Applications using SFC
• Adaptive hp-refinement finite element methods.

– Assigns physically close elements to same processor.
– Inexpensive; incremental; fast.
– Linear ordering can be used

to order elements for
efficient memory access.

Slide 30For geometric partitioning
(RCB, RIB, HSFC), use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 31

Graph Partitioning

• Represent problem as a weighted graph.
– Vertices = objects to be partitioned.
– Edges = dependencies between two

objects.
– Weights = work load or amount of

dependency.
• Partition graph so that …

– Parts have equal vertex weight.
– Weight of edges cut by part boundaries is

small.

• Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”);
• Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “ZOLTAN”); or
 Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PARMETIS”);

• Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon,
Hendrickson, Leland, Kumar, Karypis, et al.

Slide 32

Graph Repartitioning
• Diffusive strategies (Cybenko, Hu,

Blake, Walshaw, Schloegel, et al.)
– Shift work from highly loaded

processors to less loaded neighbors.
– Local communication keeps data

redistribution costs low.

• Multilevel partitioners that account for data redistribution
costs in refining partitions (Schloegel, Karypis)
– Parameter weights application communication vs.

redistribution communication.

10
1010

10

20
30

30

10

10

20

20
20

20

Partition

coarse graph

Refine partition
accounting for

current part assignment

Coarsen graph

Slide 33Applications using Graph
Partitioning

x bA

=

Linear solvers & preconditioners
(square, structurally symmetric systems)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Slide 34Graph Partitioning:
Advantages and Disadvantages

• Advantages:
– Highly successful model for mesh-based PDE problems.
– Explicit control of communication volume gives higher

partition quality than geometric methods.
– Excellent software available.

• Serial: Chaco (SNL)
Jostle (U. Greenwich)
METIS (U. Minn.)
Party (U. Paderborn)
Scotch (U. Bordeaux)

• Parallel: Zoltan (SNL)
ParMETIS (U. Minn.)
PJostle (U. Greenwich)

• Disadvantages:
– More expensive than geometric methods.
– Edge-cut model only approximates communication volume.

Slide 35For graph partitioning,
coloring & ordering, use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 36

A

Graph Partitioning Model

A

Hypergraph Partitioning Model

Hypergraph Partitioning
• Zoltan_Set_Param(zz, “LB_METHOD”, “HYPERGRAPH”);
• Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “ZOLTAN”); or

Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “PATOH”);

• Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat, Karypis, et al.
• Hypergraph model:

– Vertices = objects to be partitioned.
– Hyperedges = dependencies between two or more objects.

• Partitioning goal: Assign equal vertex weight while minimizing
hyperedge cut weight.

Slide 37

Best Algorithms Paper Award at IPDPS07
“Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations”

Catalyurek, Boman, Devine, Bozdag, Heaphy, & Riesen

Hypergraph Repartitioning
• Augment hypergraph with data redistribution costs.

– Account for data’s current processor assignments.
– Weight dependencies by their size and frequency of use.

• Partitioning then tries to minimize total communication volume:
 Data redistribution volume
 + Application communication volume
 Total communication volume

• Data redistribution volume: callback returns data sizes.
– Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_MULTI_FN, myObjSizeFn, 0);

• Application communication volume = Hyperedge cuts * Number of
times the communication is done between repartitionings.

– Zoltan_Set_Param(zz, “PHG_REPART_MULTIPLIER”, “100”);

Slide 38

Hypergraph Applications

Circuit Simulations

1

2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1

2

Rg01
R

1
2 C01

C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1

2

Rl
R

1

2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Linear programming
 for sensor placement

x bA

=

Linear solvers & preconditioners
(no restrictions on matrix structure)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Data Mining

Slide 39Hypergraph Partitioning:
Advantages and Disadvantages

• Advantages:
– Communication volume reduced 30-38% on average

over graph partitioning (Catalyurek & Aykanat).
• 5-15% reduction for mesh-based applications.

– More accurate communication model than graph
partitioning.

• Better representation of highly connected and/or
non-homogeneous systems.

– Greater applicability than graph model.
• Can represent rectangular systems and non-symmetric

dependencies.
• Disadvantages:

– More expensive than graph partitioning.

Slide 40For hypergraph partitioning
and repartitioning, use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 41Or can use graph queries
to build hypergraph.

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 42

Computation
Memory

Multi-criteria Load-balancing
• Multiple constraints or objectives

– Compute a single partition that is good
with respect to multiple factors.

• Balance both computation and memory.
• Balance meshes in loosely coupled physics.
• Balance multi-phase simulations.

– Extend algorithms to multiple weights
• Difficult. No guarantee good solution exists.

• Zoltan_Set_Param(zz, “OBJ_WEIGHT_DIM”, “2”);
– With RCB, RIB and ParMETIS

graph partitioning.

Slide 43

Heterogeneous Architectures
• Clusters may have different types of processors.
• Assign “capacity” weights to processors.

– E.g., Compute power (speed).
– Zoltan_LB_Set_Part_Sizes(…);

• Balance with respect to processor capacity.

• Hierarchical partitioning: Allows different partitioners
at different architecture levels.

– Zoltan_Set_Param(zz, “LB_METHOD”, “HIER”);

Entire System

...Processor Processor

Core Core...Core Core...

Slide 44

Sparse Matrix Ordering problem
• When solving sparse linear systems with

direct methods, non-zero terms are created
during the factorization process (A→LLt ,
A→LDLt or A→LU) .‏

• Fill-in depends on the order of the unknowns.
– Need to provide fill-reducing orderings.

Slide 45

Fill Reducing ordering
• Combinatorial problem, depending on only the

structure of the matrix A:
– We can work on the graph associated with A.

• NP-Complete, thus we deal only with
heuristics.

• Most popular heuristics:
– Minimum Degree algorithms (AMD, MMD, AMF …) ‏
– Nested Dissection

Slide 46

A

S
BA S B

Nested dissection (1) ‏
• Principle [George 1973]

– Find a vertex separator S in graph.
– Order vertices of S with highest available indices.
– Recursively apply the algorithm to the two

separated subgraphs A and B.

Slide 47

Nested dissection (2) ‏
•Advantages:

– Induces high quality block decompositions.
• Suitable for block BLAS 3 computations.

– Increases the concurrency of
computations.

• Compared to minimum degree algorithms.
• Very suitable for parallel factorization.

– It’s the scope here: parallel ordering is for
parallel factorization.

Slide 48

Matrix ordering within Zoltan
• Computed by third party libraries:

– ParMETIS
– Scotch (more specifically PT-Scotch, the parallel

part)‏
– Easy to add another one.

• The calls to the external ordering library are
transparent for the user, and thus Zoltan’s call
can be a standard way to compute ordering.

Slide 49

Zoltan ordering architecture

Slide 50

Ordering interface in Zoltan

•Compute ordering with one function:
Zoltan_Order

•Output provided:
–New order of the unknowns (direct

permutation), available in two forms:
• one is the new number in the interval [0,N-1];
• the other is the new order of Global IDs.

–Access to elimination tree, “block” view of
the ordering.

Slide 51

Graph
Average

Description
|V | |E | degree

audikw1 944 38354 81.285.48E+123D mechanics mesh, Parasol

cage15 5154 47022 18.244.06E+16 DNA electrophoresis, UF

quimonda07 8613 29143 6.76 8.92E+10

23millions 23114175686 7.6 1.29E+14 CEA/CESTA

Size (_103)
O

S S

Circuit simulation, Quimonda

Experimental results (1)
• Metric is OPC, the operation count of Cholesky

factorization.
• Largest matrix ordered by PT-Scotch: 83

millions of unknowns on 256 processors
(CEA/CESTA). ‏

• Some of our largest test graphs.

Slide 52

Test Number of processes

case 2 4 8 16 32 64

audikw1

5.73E+125.65E+125.54E+125.45E+12 5.45E+125.45E+12

5.82E+126.37E+127.78E+128.88E+12 8.91E+121.07E+13

73.11 53.19 45.19 33.83 24.74 18.16

O
P T S

O
P M

t
P T S

Experimental results (2)

Slide 53

Test Number of processes

case 2 4 8 16 32 64

cage15

4.58E+165.01E+164.64E+164.94E+16 4.58E+164.50E+16

4.47E+166.64E+16 † 7.36E+16 7.03E+166.64E+16

540.46 427.38 371.70 340.78 351.38 380.69

195.93 117.77 † 40.30 22.56 17.83

O
P T S

O
P M

t
P T S

t
P M

Experimental results (3)

Slide 54

Test Number of processes

case 2 4 8 16 32 64

quimonda07

- - 5.80E+106.38E+106.94E+107.70E+10

- - 34.68 22.23 17.30 16.62

23millions

1.45E+142.91E+143.99E+142.71E+141.94E+142.45E+14

671.60 416.45 295.38 211.68 147.35 103.73

O
PTS

t
PTS

O
PTS

t
PTS

Experimental results (4)
• ParMETIS crashes for all other graphs.

Slide 55

Summary of Matrix Ordering
• Zoltan provides access to efficient parallel

ordering for sparse matrices (especially with
Scotch). ‏

• Zoltan provides a standard way to call parallel
ordering.

• Zoltan will provide also its own ordering tool in
the future, dealing with ordering for non-
symmetric problems.

Slide 56

Zoltan Graph Coloring
• Parallel distance-1 and distance-2 graph coloring.
• Graph built using same application interface and code

as graph partitioners.
• Generic coloring interface; easy to add new coloring

algorithms.
• Algorithms

– Distance-1 coloring: Bozdag, Gebremedhin, Manne,
Boman, Catalyurek, EuroPar’05, JPDC’08.

– Distance-2 coloring: Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, Ozguner, HPCC’05, SISC’08 (in
submission).

Slide 57

Distance-1 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as
possible such that no two adjacent vertices
receive the same color.

• Applications
– Iterative solution of sparse linear systems
– Preconditioners
– Sparse tiling
– Eigenvalue computation
– Parallel graph partitioning

Slide 58

Distance-2 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as possible
such that a pair of vertices connected by a path on two or
less edges receives different colors.

• Applications
– Derivative matrix computation in numerical optimization
– Channel assignment
– Facility location

• Related problems
– Partial distance-2 coloring
– Star coloring

Slide 59

A Parallel Coloring Framework
• Color vertices iteratively in rounds using a first

fit strategy
• Each round is broken into supersteps

– Color a certain number of vertices
– Exchange recent color information

• Detect conflicts at the end of each round
• Repeat until all vertices receive consistent

colors

Slide 60

Coloring Interface in Zoltan

• Both distance-1 and distance-2 coloring

routines can be invoked by Zoltan_Color

function.

• The colors assigned to the objects are

returned in an array.

Slide 61

Experimental Results

Slide 62

Other Zoltan Functionality
• Tools needed when doing dynamic load balancing:

– Data Migration
– Unstructured Communication Primitives
– Distributed Data Directories

• All functionality described in Zoltan User’s Guide.
– http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

Slide 63

Zoltan Data Migration Tools
• After partition is computed, data must be moved to new

decomposition.
– Depends strongly on application data structures.
– Complicated communication patterns.

• Zoltan can help!
– Application supplies query functions to pack/unpack data.
– Zoltan does all communication to new processors.

Slide 64Using Zoltan’s
Data Migration Tools

• Required migration query functions:
– ZOLTAN_OBJ_SIZE_MULTI_FN:

• Returns size of data (in bytes) for each object to be exported to a new
processor.

– ZOLTAN_PACK_MULTI_FN:
• Remove data from application data structure on old processor;
• Copy data to Zoltan communication buffer.

– ZOLTAN_UNPACK_MULTI_FN:
• Copy data from Zoltan communication buffer into data structure on new

processor.

• int Zoltan_Migrate(struct Zoltan_Struct *zz,
 int num_import, ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids, int *import_procs,
 int *import_to_part,
 int num_export, ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids, int *export_procs,
 int *export_to_part);

Slide 65

Graph-based
decomposition

RCB
decomposition

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Zoltan Unstructured
Communication Package

• Simple primitives for efficient irregular communication.
– Zoltan_Comm_Create: Generates communication plan.

• Processors and amount of data to send and receive.
– Zoltan_Comm_Do: Send data using plan.

• Can reuse plan. (Same plan, different data.)
– Zoltan_Comm_Do_Reverse: Inverse communication.

• Used for most communication in Zoltan.

Slide 66Example Application:
Crash Simulations

RCB

Graph-based

RCB

RCB mapped to time 0

1.6 ms

RCB

RCB mapped to time 0

3.2 ms

•Multiphase simulation:
– Graph-based decomposition of elements for finite element calculation.
– Dynamic geometric decomposition of surfaces for contact detection.
– Migration tools and Unstructured Communication package map

between decompositions.

Slide 67

• Helps applications locate off-processor data.
• Rendezvous algorithm (Pinar, 2001).

– Directory distributed in known way (hashing) across
processors.

– Requests for object location
sent to processor storing
the object’s directory entry.

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Processor 0 Processor 1 Processor 2

Directory Index 
 Location 

Zoltan Distributed Data Directory

A F

C

B

E

I

G H
D

Processor 0

Processor 1

Processor 2

Slide 68

Alternate Interfaces to Zoltan
• Isorropia package in Trilinos solver toolkit.

– Epetra Matrix interface to Zoltan partitioning.
• B = Isorropia::Epetra::create_balanced_copy(A, params);

– Trilinos v9 will also include ordering and coloring
interfaces in Isorropia.

– SciDAC TOPS-2 CET.
• ITAPS iMesh interface to Zoltan.

– New iMeshP parallel mesh interface to be
incorporated in FY09.

– SciDAC ITAPS CET.

Slide 69

Future Work
• Two-dimensional matrix partitioning interfaces

in Isorropia.
• Performance improvements for hypergraph

partitioning.
• Multi-criteria hypergraph partitioning.
• Non-symmetric matrix ordering.

Slide 70

For More Information...
• Zoltan Home Page

– http://www.cs.sandia.gov/Zoltan
– User’s and Developer’s Guides
– Download Zoltan software under GNU LGPL.

• Email:
– {kddevin,ccheval,egboman}@sandia.gov
– umit@bmi.osu.edu

Slide 71

The End

Slide 72

Configuring and Building Zoltan
• Create and enter the Zoltan directory:

– gunzip zoltan_distrib_v3.0.tar.gz
– tar xf zoltan_distrib_v3.0.tar
– cd Zoltan

• Configure and make Zoltan library
– Not autotooled; uses manual configuration file.
– “make zoltan” attempts a generic build;

library libzoltan.a is in directory Obj_generic.
– To customize your build:

• cd Utilities/Config; cp Config.linux Config.your_system
• Edit Config.your_system
• cd ../..
• setenv ZOLTAN_ARCH your_system
• make zoltan
• Library libzoltan.a is in Obj_your_system

Slide 73

Config file
DEFS =
RANLIB = ranlib
AR = ar r

CC = mpicc -Wall
CPPC = mpic++
INCLUDE_PATH =
DBG_FLAGS = -g
OPT_FLAGS = -O
CFLAGS = $(DBG_FLAGS)

F90 = mpif90
LOCAL_F90 = f90
F90CFLAGS = -DFMANGLE=UNDERSCORE -DNO_MPI2
FFLAGS =
SPPR_HEAD = spprinc.most
F90_MODULE_PREFIX = -I
FARG = farg_typical

MPI_LIB =
MPI_LIBPATH =

PARMETIS_LIBPATH = -L/Users/kddevin/code/ParMETIS3_1
PARMETIS_INCPATH = -I/Users/kddevin/code/ParMETIS3_1
#PATOH_LIBPATH = -L/Users/kddevin/code/PaToH
#PATOH_INCPATH = -I/Users/kddevin/code/PaToH

Slide 74

Example Graph Callbacks
void ZOLTAN_NUM_EDGES_MULTI_FN(void *data,
 int num_gid_entries, int num_lid_entries,
 int num_obj, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 int *num_edges, int *ierr);

Proc 0 Input from Zoltan:
 num_obj = 3
 global_id = {A,C,B}
 local_id = {0,1,2}

Output from Application on Proc 0:
 num_edges = {2,4,3}
 (i.e., degrees of vertices A, C, B)
 ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

Slide 75

Example Graph Callbacks
void ZOLTAN_EDGE_LIST_MULTI_FN(void *data,
 int num_gid_entries, int num_lid_entries,
 int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
 int *num_edges,
 ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs,
 int wdim, float *nbor_ewgts,
 int *ierr);

Proc 0 Input from Zoltan:
 num_obj = 3
 global_ids = {A, C, B}
 local_ids = {0, 1, 2}
 num_edges = {2, 4, 3}
 wdim = 0 or EDGE_WEIGHT_DIM parameter value

Output from Application on Proc 0:
 nbor_global_id = {B, C, A, B, E, D, A, C, D}
 nbor_procs = {0, 0, 0, 0, 1, 1, 0, 0, 1}
 nbor_ewgts = if wdim then
 {7, 8, 8, 9, 1, 3, 7, 9, 5}
 ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

87

9

5 3 1

2

Slide 76Example Hypergraph
Callbacks

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins,
 int *format, int *ierr);

Output from Application on Proc 0:
 num_lists = 2
 num_pins = 6
 format = ZOLTAN_COMPRESSED_VERTEX
 (owned non-zeros per vertex)
 ierr = ZOLTAN_OK

OR

Output from Application on Proc 0:
 num_lists = 5
 num_pins = 6
 format = ZOLTAN_COMPRESSED_EDGE
 (owned non-zeros per edge)
 ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s

Slide 77Example Hypergraph
Callbacks

 void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries,
 int nvtxedge, int npins, int format,
 ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID,
 int *ierr);

Proc 0 Input from Zoltan:
 nvtxedge = 2 or 5
 npins = 6
 format = ZOLTAN_COMPRESSED_VERTEX or
 ZOLTAN_COMPRESSED_EDGE

Output from Application on Proc 0:
 if (format = ZOLTAN_COMPRESSED_VERTEX)
 vtxedge_GID = {A, B}
 vtxedge_ptr = {0, 3}
 pin_GID = {a, e, f, b, d, f}
 if (format = ZOLTAN_COMPRESSED_EDGE)
 vtxedge_GID = {a, b, d, e, f}
 vtxedge_ptr = {0, 1, 2, 3, 4}
 pin_GID = {A, B, B, A, A, B}
 ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s

Slide 78

Simple Example
• Zoltan/examples/C/zoltanSimple.c
• Application data structure:

– int MyNumPts;
• Number of points on processor.

– int *Gids;
• array of Global ID numbers of points on processor.

– float *Pts;
• Array of 3D coordinates of points on processor (in same

order as Gids array).

Slide 79Example zoltanSimple.c:
Initialization

 /* Initialize MPI */
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

 /*
 ** Initialize application data. In this example,
 ** create a small test mesh and divide it across processors
 */

 exSetDivisions(32); /* rectilinear mesh is div X div X div */

 MyNumPts = exInitializePoints(&Pts, &Gids, me, nprocs);

 /* Initialize Zoltan */
 rc = Zoltan_Initialize(argc, argv, &ver);

 if (rc != ZOLTAN_OK){
 printf("sorry...\n");
 free(Pts); free(Gids);
 exit(0);
 }

Slide 80Example zoltanSimple.c:
Prepare for Partitioning

 /* Allocate and initialize memory for Zoltan structure */
 zz = Zoltan_Create(MPI_COMM_WORLD);

 /* Set general parameters */
 Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0");
 Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");

 /* Set RCB parameters */
 Zoltan_Set_Param(zz, "KEEP_CUTS", "1");
 Zoltan_Set_Param(zz, "RCB_OUTPUT_LEVEL", "0");
 Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS", "1");

 /* Register call-back query functions. */
 Zoltan_Set_Num_Obj_Fn(zz, exGetNumberOfAssignedObjects, NULL);
 Zoltan_Set_Obj_List_Fn(zz, exGetObjectList, NULL);
 Zoltan_Set_Num_Geom_Fn(zz, exGetObjectSize, NULL);
 Zoltan_Set_Geom_Multi_Fn(zz, exGetObject, NULL);

Slide 81Example zoltanSimple.c:
Partitioning

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

 /* Perform partitioning */
 rc = Zoltan_LB_Partition(zz,

 &changes, /* Flag indicating whether partition changed */
 &numGidEntries, &numLidEntries,

 &numImport, /* objects to be imported to new part */
 &importGlobalGids, &importLocalGids,
 &importProcs, &importToPart,

 &numExport, /* # objects to be exported from old part */
 &exportGlobalGids, &exportLocalGids,
 &exportProcs, &exportToPart);

Slide 82Example zoltanSimple.c:
Use the Partition

 /* Process partitioning results;
 ** in this case, print information;
 ** in a "real" application, migrate data here.
 */
 if (!rc){
 exPrintGlobalResult("Recursive Coordinate Bisection",
 nprocs, me,
 MyNumPts, numImport, numExport, changes);
 }
 else{
 free(Pts);
 free(Gids);
 Zoltan_Destroy(&zz);
 MPI_Finalize();
 exit(0);
 }

Slide 83Example zoltanSimple.c:
Cleanup

 /* Free Zoltan memory allocated by Zoltan_LB_Partition. */
 Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids,
 &importProcs, &importToPart);
 Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids,
 &exportProcs, &exportToPart);

 /* Free Zoltan memory allocated by Zoltan_Create. */
 Zoltan_Destroy(&zz);

 /* Free Application memory */
 free(Pts); free(Gids);

 /**********************
 ** all done ***********
 **********************/

 MPI_Finalize();

Slide 84

Performance Results
• Experiments on Sandia’s Thunderbird cluster.

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
– Infiniband network.

• Compare RCB, HSFC, graph and hypergraph
methods.

• Measure …
– Amount of communication induced by the partition.
– Partitioning time.

Slide 85

Test Data

SLAC *LCLS
Radio Frequency Gun

6.0M x 6.0M
23.4M nonzeros

Xyce 680K ASIC Stripped
Circuit Simulation

680K x 680K
2.3M nonzeros

Cage15 DNA
Electrophoresis

5.1M x 5.1M
99M nonzeros

SLAC Linear Accelerator
2.9M x 2.9M

11.4M nonzeros

Slide 86Communication Volume:
Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts
= number of
processors.

RCB

Graph
Hypergraph

HSFC

Slide 87Partitioning Time:
Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.
Varying number
of processors.

RCB

Graph
Hypergraph

HSFC

Slide 88

Repartitioning Experiments
• Experiments with 64 parts on 64 processors.
• Dynamically adjust weights in data to simulate,

say, adaptive mesh refinement.
• Repartition.
• Measure repartitioning time and

total communication volume:
 Data redistribution volume
+ Application communication volume

 Total communication volume

Slide 89Repartitioning Results:
Lower is Better

Xyce 680K circuitSLAC 6.0M LCLS

Repartitioning
Time (secs)

Data
Redistribution
Volume

Application
Communication
Volume

