

What's new in Isorropia ?

Coloring & Ordering

Cédric Chevalier

**Erik Boman, Lee Ann Fisk
(thanks to Karen Devine)**

Sandia National Laboratories, NM, USA
Trilinos User's Group, Oct 21, 2008.

What is Isorropia ?

- « *equilibrium* » in Greek:
 - First goal, providing load balancing in Trilinos
- Now, Isorropia is a toolbox to do combinatoric operations on matrices or graphs:
 - Partitioning and Load Balancing
 - Coloring
 - Sparse matrix ordering
- Mostly built on top of Zoltan

User/Application

Trilinos Package

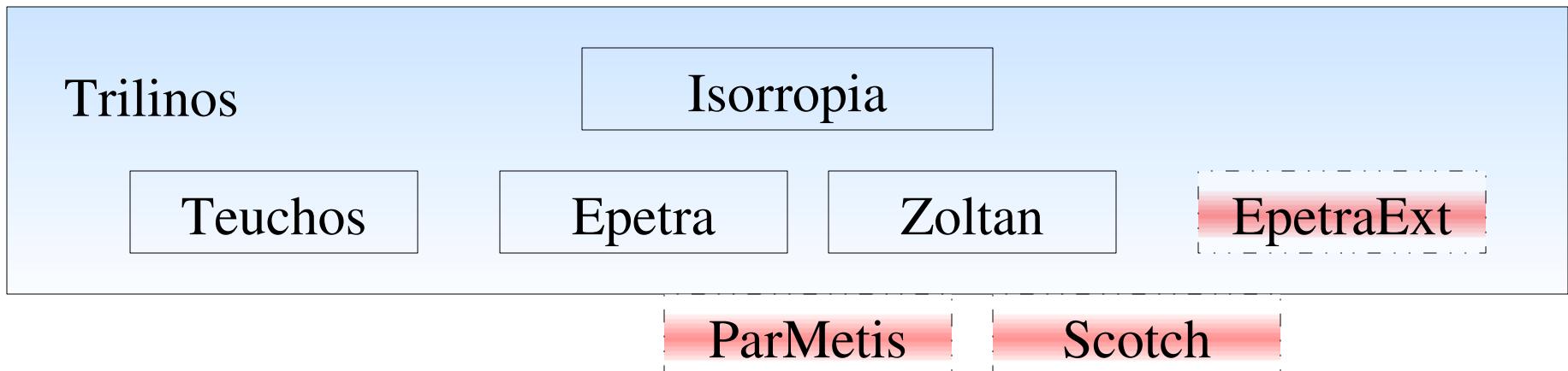
Isorropia

Zoltan

Trilinos

How does it work ?

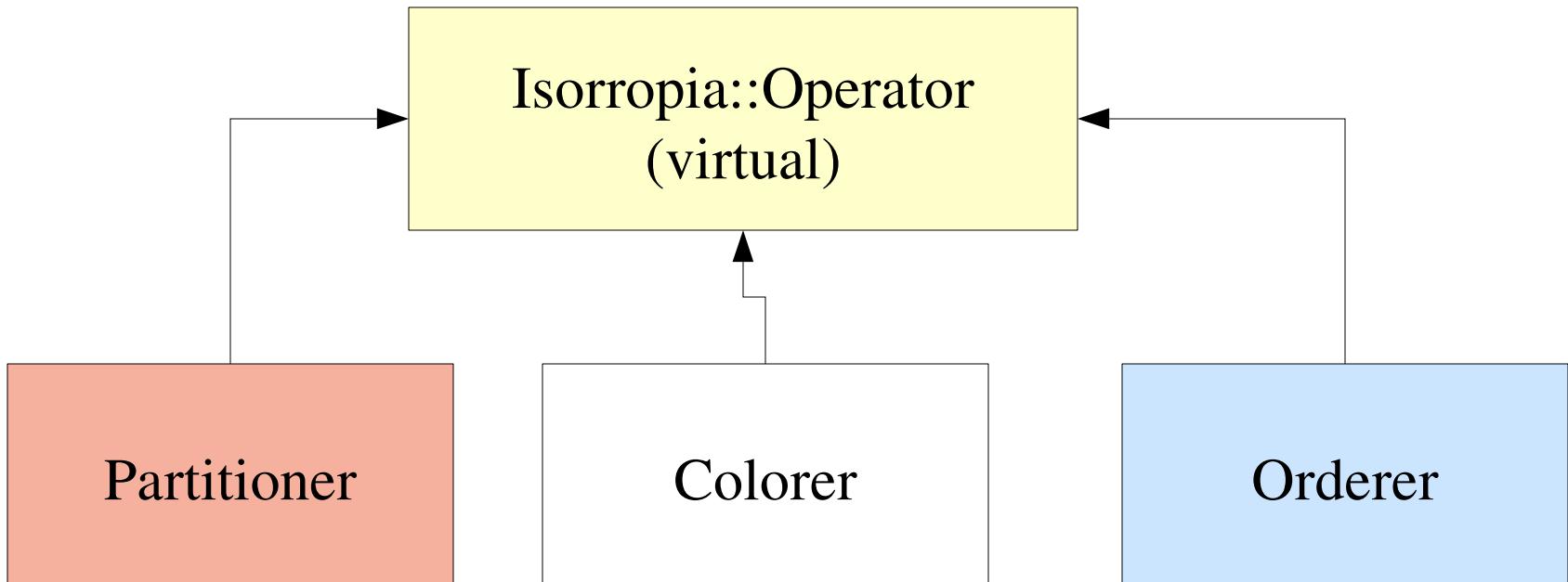
- Dependance on Zoltan, now part of Trilinos
- Dependance on Teuchos
- Some advanced features with EpetraExt



- To compile: `./configure --enable-isorropia`
- Works in parallel and in serial

Software design (1)

- An abstract interface, not dependent of the partitioning software or the input type



An Isorropia::Operator is NOT an Epetra Operator !

Software design (2)

- An implementation of the previous interface:
 - Only Epetra input is supported but the design allows to do the same for other packages
 - Only Zoltan is supported but other software can be easily integrated
- This model will be extended by several partitioner class to do different kind of partitioning

Coloring

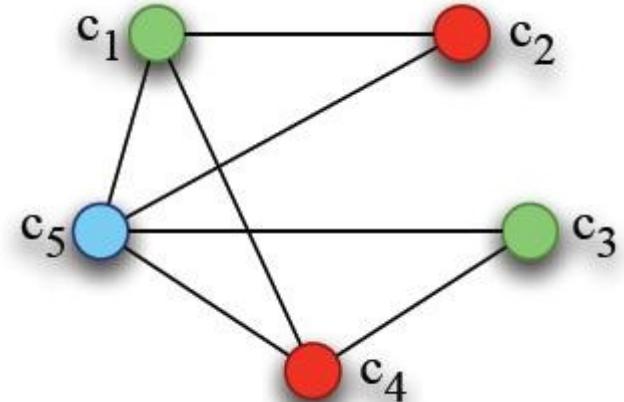
Distance-1 Graph Coloring

- Problem (NP-hard)

Color the vertices of a graph with as few colors as possible such that no two adjacent vertices receive the same color.

- Applications

- Iterative solution of sparse linear systems
- Preconditioners
- Sparse tiling
- Eigenvalue computation
- Parallel graph partitioning



Distance-2 Graph Coloring

- Problem (NP-hard)

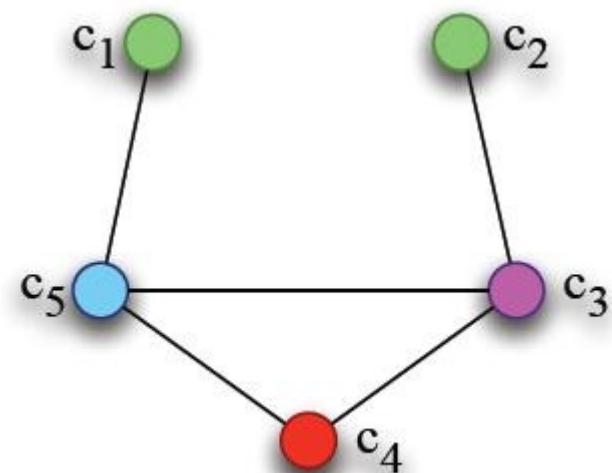
Color the vertices of a graph with as few colors as possible such that a pair of vertices connected by a path on two or less edges receives different colors.

- Applications

- Derivative matrix computation in numerical optimization
- Channel assignment
- Facility location

- Related problems

- Partial distance-2 coloring
- Star coloring



What Isorropia can do ?

- Can compute:
 - Distance-1 coloring
 - Distance-2 coloring
- Deals with:
 - Undirected graphs, distributed or not (Epetra_CrsGraph)
 - Symmetric matrices, distributed or not (Epetra_RowMatrix)
- Isorropia uses Zoltan's coloring capabilities
- Isorropia doesn't implement any coloring algorithms

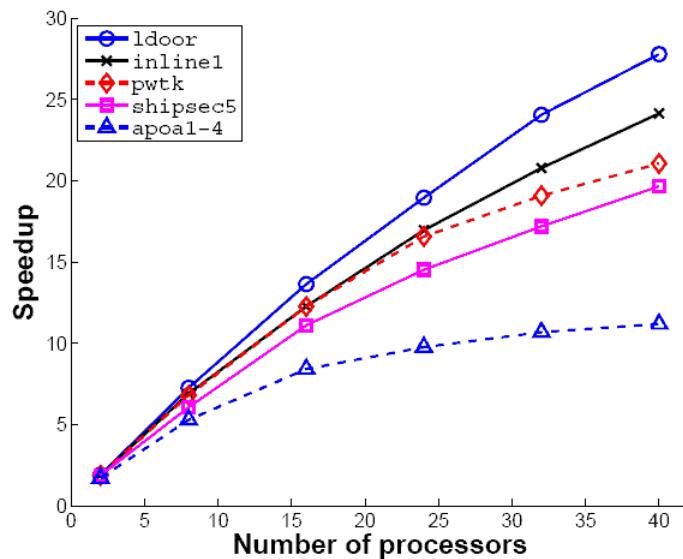
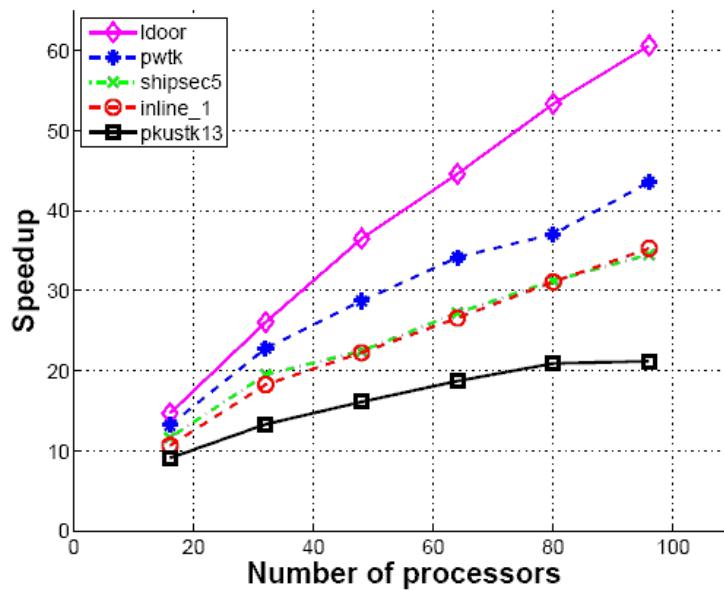
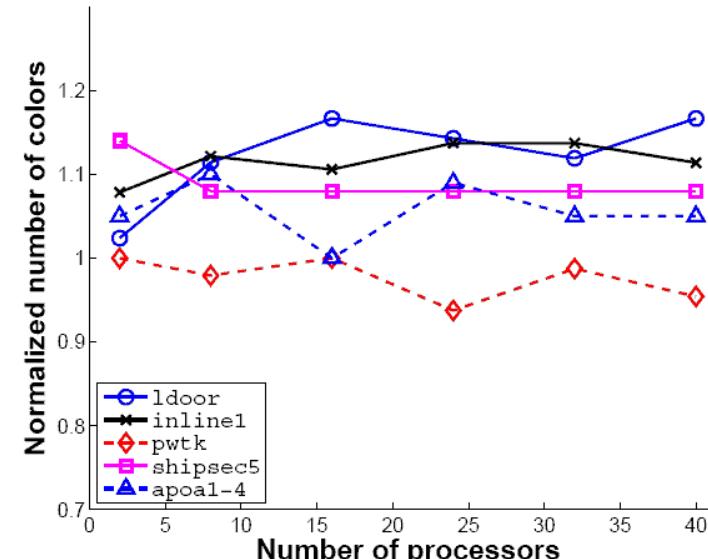
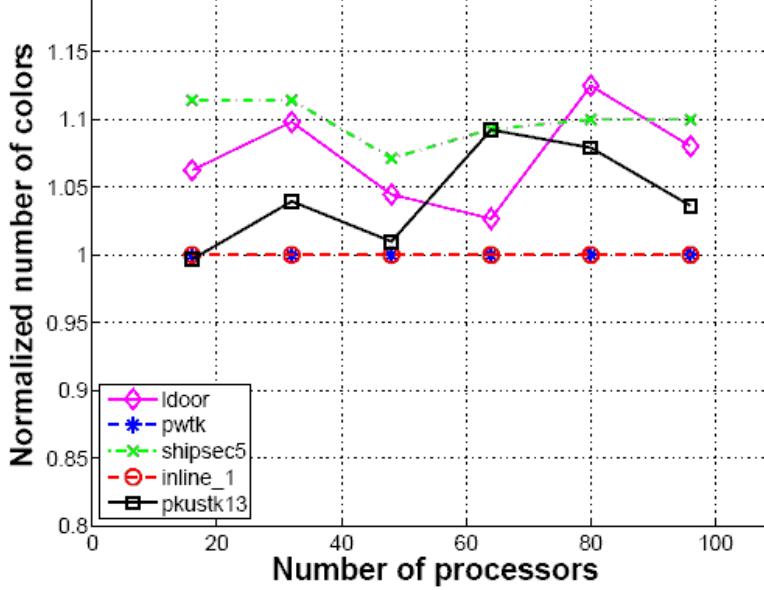
Software interface

- One abstract class: Colorer
- The coloring can be perform by the method
`color()`
- Object Colorer provides different accessors:
 - `operator[]`
 - `numColors()`: global number of colors used
 - `numElemsWithColor()`: number of local elements with the given color
 - `elemsWithColor()`: array of these local elements
 - `generateMapColoring()`: `Epetra_MapColoring` object (requires `EpetraExt`)

Example

```
Epetra_CrsMatrix A;  
...  
Isorropia::Epetra::Colorer colorer(A,paramlist);  
colorer.color(); /* Performs coloring */  
  
/* Parallel loop */  
For (int c=1; c <= colorer.numColors() ; ++c) {  
    int length = colorer.numElemsWithColor(c);  
    int *columns = new int[length];  
    colorer.elemsWithColor(c, columns, length);  
    /* Do some computations of columns of A of  
    color c */  
    ...  
}
```

Experimental Results



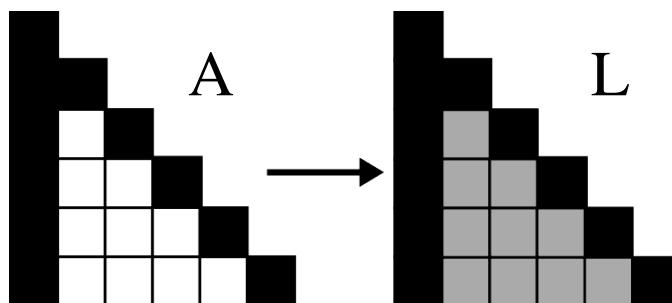
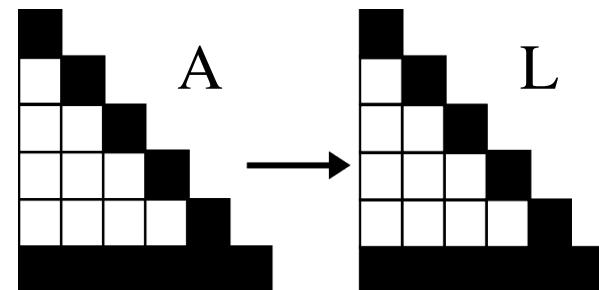
Future work

- May be extended to other colorings to be suitable for:
 - Automatic differentiation
 - Finite differences computations
- Possible interaction with other coloring software like ColPack (CSCAPES)

Sparse Matrix Ordering

Sparse Matrix Ordering problem

- When solving sparse linear systems with direct methods, non-zero terms are created during the factorization process ($A \rightarrow LL^t$, $A \rightarrow LDL^t$ or $A \rightarrow LU$).
- Fill-in depends on the order of the unknowns.
 - Need to provide fill-reducing orderings.

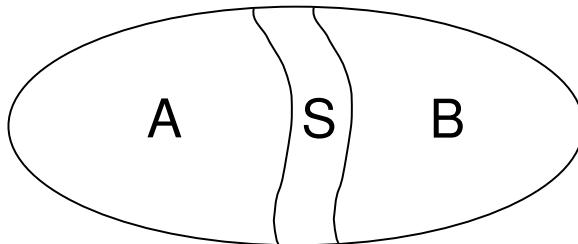
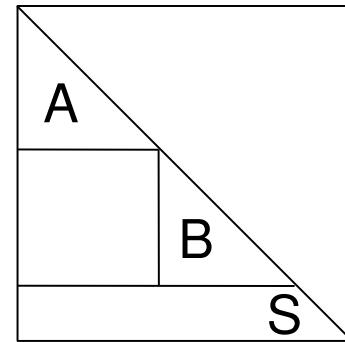
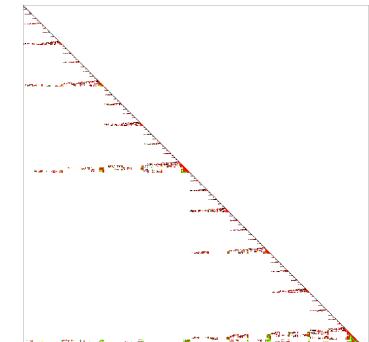


Fill Reducing ordering

- Combinatorial problem, depending on only the structure of the matrix A :
 - We can work on the graph associated with A .
- NP-Complete, thus we deal only with heuristics.
- Most popular heuristics:
 - Minimum Degree algorithms (AMD, MMD, AMF ...)
 - Nested Dissection

Nested dissection (1)

- Principle [George 1973]
 - Find a vertex separator S in graph.
 - Order vertices of S with highest available indices.
 - Recursively apply the algorithm to the two separated subgraphs A and B .



Nested dissection (2)

- Advantages:
 - Induces high quality block decompositions.
 - Suitable for block BLAS 3 computations.
 - Increases the concurrency of computations.
 - Compared to minimum degree algorithms.
 - Very suitable for parallel factorization.
 - It's the scope here: parallel ordering is for parallel factorization.

Isorropia interface

- One abstract class: Orderer
- The coloring can be perform by the method
`order()`
- Input : `Epetra_RowMatrix` or
`Epetra_CrsGraph`
- Object `Orderer` provides different accessors:
 - `Operator[]`: associates to a Local ID the permuted Global ID
 - Only the permutation vector is available (for more advanced uses, Zoltan provides more informations)

How do we compute ordering ?

- Computations are done via Zoltan, but in third party libraries:
 - Metis
 - ParMetis
 - Scotch (PT-Scotch)
 - Easy to add another

Usages

- Focused on Cholesky factorization:
 - Limited to symmetric matrices
 - Can be used for symmetrised matrices (AA^t or $A+A^t$), but not automatically converted
- In the future, can deal with unsymmetric LU factorization:
 - Will be available also directly in Zoltan by using Hypergraph model

Example

```
Epetra_CrsMatrix A;           /* Square Matrix */  
.  
.  
.  
Isorropia::Epetra::Orderer orderer(A,paramlist);  
orderer.order();           /* Performs ordering */  
  
/* orderer[LID] is the new global position of LID  
according to the ordering */  
  
/* Call direct solver:  
SuperLU/Mumps/UMFPack/Pastix ... */
```

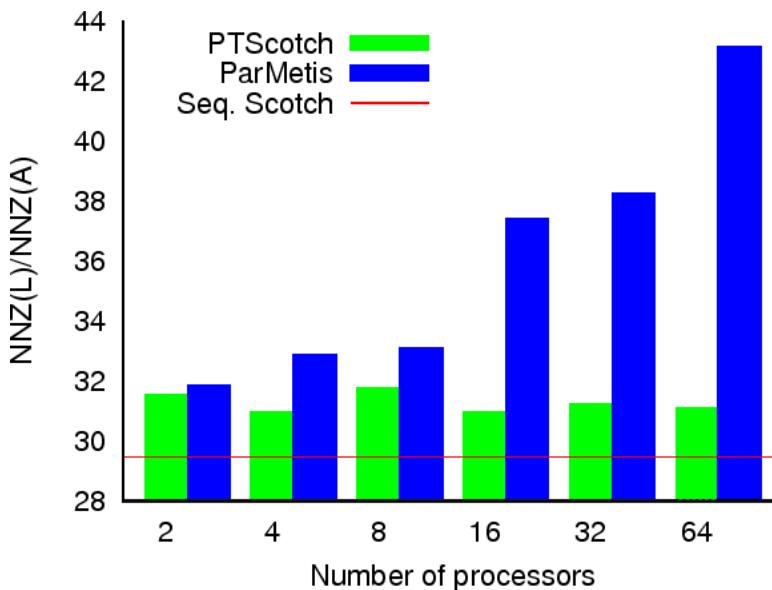
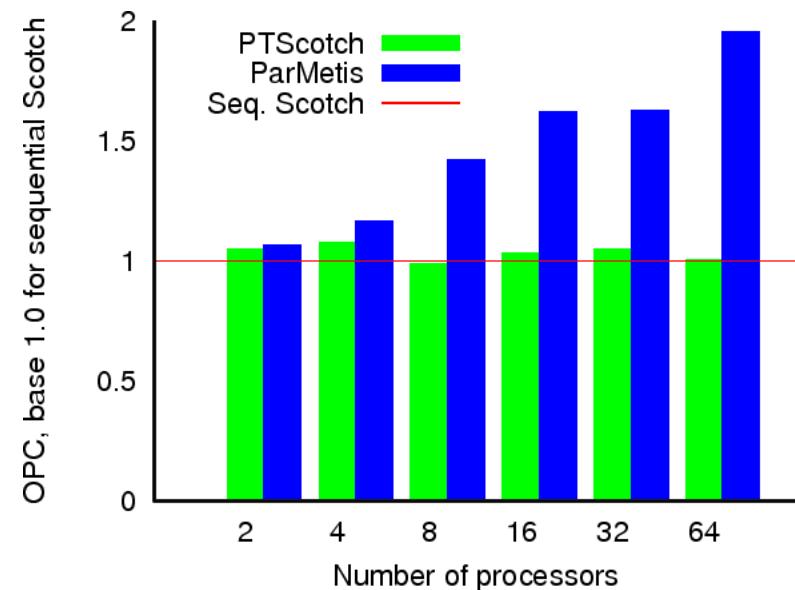
Experimental results (1)

- Metric is OPC, the operation count of Cholesky factorization.
- Largest matrix ordered by PT-Scotch: 83 millions of unknowns on 256 processors (CEA/CESTA).
- Some of our largest test graphs.

Graph	Size (x1000)		Average degree	O_{ss}	Description
	$ V $	$ E $			
audikw1	944	38354	81.28	5.48E+12	3D mechanics mesh, Parasol
qimonda07	8613	29143	6.76	8.92E+10	Circuit simulation, Qimonda
23millions	23114	175686	7.6	1.29E+14	CEA/CESTA

Experimental results (2)

Test case	Number of processes					
	2	4	8	16	32	64
audikw1						
O_{PTS}	5.73E+12	5.65E+12	5.54E+12	5.45E+12	5.45E+12	5.45E+12
O_{PM}	5.82E+12	6.37E+12	7.78E+12	8.88E+12	8.91E+12	1.07E+13
t_{PTS}	73.11	53.19	45.19	33.83	24.74	18.16
t_{PM}	32.69	23.09	17.15	9.80	5.65	3.82



Experimental results (3)

- ParMETIS crashes for all other graphs.

Test case	Number of processes					
	2	4	8	16	32	64
Qimonda07						
O_{PTS}	-	-	5.80E+10	6.38E+10	6.94E+10	7.70E+10
t_{PTS}	-	-	34.68	22.23	17.30	16.62
23millions						
O_{PTS}	1.45E+14	2.91E+14	3.99E+14	2.71E+14	1.94E+14	2.45E+14
t_{PTS}	671.60	416.45	295.38	211.68	147.35	103.73

Future directions

- Add unsymmetric LU ordering (not available elsewhere)
- Direct integration in Amesos ?
 - Current interface is enough for SuperLU (even with the next LU ordering)
 - How it works for other solvers ?
 - Do users call directly their solver ?
- Adaptation to provide other matrix ordering ?
 - Bandwith reduction by RCM or GPS
- Add more powerful interface ? Like in Zoltan ?

General Summary

- Isorropia is ready to be in production
- Isorropia offers some interesting tools for helping/improving parallelisation in solvers
- Isorropia is wider than Partitioning:
 - Access to (at least a big part of) the power of Zoltan with minimal effort
 - See Erik Boman's talk about partitioning

The End

Thank You !