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Johnson’s Combined Stage 
Sintering Model:

L = length,  = relative density

(assume isotropic sintering)

D = diffusion coefficients 

v and b = volume or boundary diffusion

 = width of grain boundary

G = mean grain diameter

 = microstructural scaling parameter

 = surface energy,  = atomic volume

k = Boltzmann constant

T = absolute temperature, - t = time

Assume one dominant       
diffusion mechanism:

Q = activation energy

The Foundation For The MSC Is
The Combined-Stage Sintering Model
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J. Am. Ceram. Soc., 75 [5] 1129-35 (1992)
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The MSC Derives From
The Combined-Stage Sintering Model

Assumptions:

• Isotropic sintering

• A single (or dominant) diffusion mechanism

• G() and () are functions of density only, not the t-T profile

• MSC is unique for a given powder, and green microstructure & density

1

T0

t

 exp(
Q

RT
)dt 

k

Do

(G())n

3()o



 d

Depends on Q and the
t-T sintering profile.

Includes microstructural 
and materials properties.

(t,T(t))  ≡ () ≡ (t,T)

The Master Sintering Curve (MSC) is a plot of (t,T) vs. (t,T(t))

()(t,T(t))

J. Am. Ceram. Soc., 79 [12] 3211-17 (1996)

Rearrange and Integrate:



6

Activation Energy , Q, Is
Determined From The Sintering Data

• From CSS Model assuming a single 
dominant diffusion mechanism:

• Rearrange and take logarithms:

• At same relative density for 
different heating rates:

Plot:                   vs. 1/T

Slope = -Q/R


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J. Am. Ceram. Soc. 79 [12] 3199-210 (1996)
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(t,T) Sintering Data Collapse Onto
A Single “Master” Sintering Curve (MSC)
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MSCs Have Been Constructed For
Numerous Solid State Sintering Systems
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The MSC Concept Was Successfully 
Applied To Nano-Crystalline Ceramics

ZnO Sintering

3.7

4.1

4.5

4.9

5.3

1E-15 1E-14 1E-13 1E-12
Theta (t,T(t))

D
e
n
si

ty
 (

g
/
c
c
)

Nano-crystalline
Q = 268 ± 25 
kJ/mole

3.0

3.5

4.0

4.5

5.0

5.5

10-18 10-16 10-14 10-12

Micro-crystalline
Q = 296 ± 21
kJ/mole

D
e
n
si

ty
 (

g
/
c
c
)

3.5

4.0

4.5

5.0

5.5

500 600 700 800 900 1000 1100

Temperature (°C)

D
e
n
si

ty
 (

g
/
c
c
)

30C/min
20C
10C

3.5

4.0

4.5

5.0

5.5

700 800 900 1000 1100 1200
D

e
n
si

ty
 (

g
/
c
c
)

Temperature (°C)

Nano

Micro

D
e
n
si

ty
 (

g
/
c
c
) 

  
  

 



10

The MSC Concept Was Extended
To Reactive Glass/Ceramic Sintering
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The MSC Concept Was Extended To
Viscous & Anisotropic Sintering
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The MSC Was Applied To Solid-State 
And Liquid-Phase Sintering Composites
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The MSC Can Be Used To Predict & 
Control Densification During Sintering
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The MSC Predicts Sintered
Density For A Given t-T Firing Profile
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The Master Sintering Curve Concept
Can Be Applied To Improve Process Control

Master Sintering Shrinkage Curve
Was Developed To Predict X-Y Shrinkage

DuPont 951 LTCC
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Green Microstructure/Density
Affect Q And The MSC
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The MSC Can Be Used To Assess
Materials & Process Quality Control
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Effects Of Density Gradients
On Sintering Can Be Assessed

55

65

75 

85

10-22 10-20 10-18 10-16 10-14 10-12

D
e
n
si

ty
 (

%
)

 (t,T(t))

7 kpsi
10°C/min

390 kJ/mole

30 kpsi
10°C/min

513 kJ/mole

Alumina OMS
MSCs

55

60

65

70

75

80

85

90

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

800 1200 1600

D
e
n
si

ty
 (

%
)

D
e
n
si

ty
 D

if
f
e
re

n
c
e
 (

%
)

Temperature (°C)

8.3°C/min
3.0

4.0

5.0

6.0

7.0

800 1200 1600

D
e
n
si

ty
 D

if
f
e
re

n
c
e
 (

%
)

Temperature (°C)

8.3°C/min

20°C/min

10°C/min

MSC Predicted
Density Difference

30°C/min



20

Green   

∆ = 

0.12

= 
2.34

G
re

e
n
 D

e
n
si

ty
  

 g
/
c
m

3

2.22

2.34

2.28

2.40

2.46

D
e
n
si

ty
  

 g
/
c
m

3

2.31

2.43

2.37

2.49

2.55

D
e
n
si

ty
  

 g
/
c
m

3

3.70

3.82

3.76

3.88

3.94

D
e
n
si

ty
  

 g
/
c
m

3

2.88

2.99

2.94

3.05

3.11

D
e
n
si

ty
  

 g
/
c
m

3

3.85

3.97

3.91

4.03

4.09

1100° C

∆ = 

0.15

 = 
2.43 g/cc

1300° C

∆ = 

0.24

r = 
3.00 g/cc

1450° C

∆ = 

0.20

 = 
3.82

1600° C

∆ = 

0.08

= 
3.97

T. Rabe, BAM

MSC Predictions Are Consistent
With XRCT Measured Density Gradients

Alumina OMS



21

MSC Predictions Can Reveal
Firing Process Sensitivity

target

MSC prediction
T = 984°C

Experiment, T =  987°C

+20/-30°C/min

target

MSC prediction
T = 984°C

Experiment, T =  987°C

+20/-30°C/min

Modeling varistor firing
reveals process sensitivity

Predictive modeling was used to
design & control varistor firing

ZnO Mixed-Oxide Varistor

The sensitivity of varistor density (and microstructure) to minor deviations
in sintering time & Temperature can contribute to variability in varistor performance.
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The Thermal “Lag” In Experiments 
Must Be considered In The Modeling
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MSC-Based t-T Profiles Predict The
Experimentally Observed Densification 
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MSC t-T Proflies Enable Thermal 
Etching Without Changing Density
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The Master Sintering Curve (MSC)
Links Processing & Microstructure
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Model-derived sintering profiles were used to control processing to systematically 
control the density, microstructure, & electrical properties of ZnO varistors.
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Leakage Current Is Reduced
By Slow Cooling After Fast Firing
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Fast firing increased the leakage current
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Scientific Understanding Can Be
Gleaned From The Master Sintering Curve 
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Master Microstructure-Density
Trajectory Deviations Alter The MSC

Gran Growth
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MSC Deviations May Be Due To 
Heterogeneous Microstructure Evolution

Sintered SrTiO3 Has A
Heterogeneous Microstructure

10 µm

~90% Dense SrTiO3

1°C/min to 600°C, 2H, Air
5°C/min to 1280°C, 2H, Air
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The MSC Provides Insight Into
Process Improvements For Manufacturing
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The C-SS Model Unit Cell Can
Handle Microstructural Hierarchy
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- Mon Nov 17 10:00 - 10:20 AM - New Effective Diffusion Distance for Sintering 
Ceramic Microstructures, Chen, Nettleship, Hinklin, Ewsuk
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Multiple “Sintering” Mechanisms
Have Been Addressed With A Drag Term
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The MSC Links To Other Sintering 
Models Through The Activation Energy
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Summary

I. The MSC Can Be Applied to Many/Most Sintering
A.  Systems Solid-State Sintering

1.  Micro & Nanocrystalline
B.  Liquid-Phase Sintering

1.  Reactive glass, viscous/anisotropic, & reactive LPS
C.  Composite Sintering

• The MSC has Broad Application for Process Understanding/Control
A.  Predicting Density for t-T Profiles and reverse
B.  Process (Sensitivity) Understanding & Control

1.  Green Microstructure/Density, Heating Rate
C.  Materials & Process Quality Control

• The Master Microstructure-Density Curve Enables Fundamental Insight
A.  Controlled Processing-Microstructure- Properties
B.  Deviations from the MSC / Microstructure-Density Curve

1.  Grain Growth
2.  Heterogeneous Microstructure Evolution

a.  Effective Diffusion Distance
b.  Self-Constrained Sintering

3.  Multiple Mechanisms
a. Theta Drag Correction

I. The MSC can be Linked to Other Sintering Models
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The Master Sintering Curve Links 
Processing, Microstructure, &  Properties
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