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vj Thermal boundary conductance

T A
* G, dominant thermal transport

mechanism in nanostructures
with thicknesses less than
carrier mean free path

* Current nanoapplications rely
X on controlling phonon

7 scattering in driving G,
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} Outline

Goal: Develop model that accounts for multiple
phonon processes (inelastic scattering) in G,

* Predicting G, — the diffuse mismatch model
(DMM)

* Assumptions and limitations of the DMM
* n-phonon processes in DMM transmission
* |nelastic DMM compared to data
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Diffuse Mismatch Model (DMM)

E. T. Swartz and R. O. Pohl, Reviews of Modern Physics, 61, 605 (1989)
diffuse scattering phonon “looses memory” when scattered
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} Elastic phonon scattering
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Consequences
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Ref. 6 — Stevens et al., JHT, 127, 315 (2005); Ref. 31 — Hopkins et al., JHT, 130, 022401 (2008)
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When T>0,, Inelastic scattering causes linear trend in G,
DMM predicts constant trend in G,
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} Inelastic vs. elastic scattering
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|Inelastic (n-phonon) processes outweigh elastic (2 phonon) processes —
more significant as 0, ,/0,, , decreases
*DMM accurately predicts elastic contribution when 6,,,/0,, < 10%
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} 3-phonon interface transmission

Principle of detailed balance

Q1200 = 92.020,;

Accounts for # phonons
B remaining after 2-phonon
@ elastic processes
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_' ' “—Iigher order transmission:
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Inelastic G,
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Inelastic G,
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} Conclusions

Goal: Develop model that accounts for multiple phonon
processes (inelastic scattering) in G,

* Only accounting for 2 phonon (elastic) processes in the
DMM does not account for all phonon processes

* By conservation of energy and phonon number, new
diffusive n-phonon transmission is developed

 Effects of n-phonon interfacial processes on G, is
calculated with new n-phonon DMM

* Improved agreement with data using n-phonon DMM
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