
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Multiple phonon processes 
contributing to inelastic scattering 

during phonon transmission in 
thermal boundary conductance at 

solid interfaces

Patrick E. Hopkins

Engineering Sciences Center

Sandia National Laboratories

Albuquerque, NM, USA

SAND2009-2261C



Thermal boundary conductance

TGq K1
GK= Thermal boundary
conductance [Wm-2K-1]

Z

T
• GK dominant thermal transport 

mechanism in nanostructures 
with thicknesses less than 
carrier mean free path

• Current nanoapplications rely 
on controlling phonon 
scattering in driving GK

Li et al., APL 85, 3186 (2003)
Samson et al., Intel technology Journal

9, 75 (2005)
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Outline

Goal: Develop model that accounts for multiple 
phonon processes (inelastic scattering) in GK

• Predicting GK – the diffuse mismatch model 
(DMM)

• Assumptions and limitations of the DMM

• n-phonon processes in DMM transmission

• Inelastic DMM compared to data



Diffuse mismatch model (DMM)
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Diffuse Mismatch Model (DMM) 
E. T. Swartz and R. O. Pohl, Reviews of Modern Physics, 61, 605 (1989)

diffuse scattering – phonon “looses memory” when scattered
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Elastic phonon scattering only in transmission
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Elastic phonon scattering

How do we calculate DMM  elastic 
(2-phonon) transmission?
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Consequences

When T>D, Inelastic scattering causes linear trend in GK

DMM predicts constant trend in GK

Norris and Hopkins, JHT, 131, 043207 (2009)
Ref. 6 – Stevens et al., JHT, 127, 315 (2005); Ref. 31 – Hopkins et al., JHT, 130, 022401 (2008)

Ref. 41 – Stoner and Maris, PRB, 48, 16373 (1993);Ref. 50 – Lyeo and Cahill, PRB, 73, 144301 (2006)

G
K
(m

ea
s)

/G
K
(D

M
M

)

G
K
(m

ea
s)

/G
K
(D

M
M

)



Inelastic vs. elastic scattering

•Inelastic (n-phonon) processes outweigh elastic (2 phonon) processes –
more significant as D,1/D,2 decreases

•DMM accurately predicts elastic contribution when D,1/D,2 < 10% 

Hopkins and Norris, JHT, 141, 022402 (2009)

05.0/ 2,1, DD 

05.0/ 2,1, DD 

07.0/ 2,1, DD 

2.0/ 2,1, DD 



3-phonon interface transmission
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Higher order transmission: 
Pb/diamond
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Inelastic GK
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Hopkins, currently under review

05.0/ 2,1, DD 

Pb/H/diamond data from:
Lyeo and Cahill, PRB
73, 144301 (2006)



Inelastic GK

05.0/ 2,1, DD 

Hopkins, currently under review

07.0/ 2,1, DD 

2.0/ 2,1, DD 

Bi/H/diamond data from:
Lyeo and Cahill, PRB
73, 144301 (2006)

Au/diamond data 
from: Stoner and
Maris, PRB 48, 
16373 (1993)

Pt/AlN data 
from: Hopkins and
Norris, JHT, 130,
022401 (2008)

2.0/ 2,1, DD 

Pt/Al2O3 data 
from: Hopkins and
Norris, JHT, 130,
022401 (2008)



Conclusions

Thanks to financial support from the LDRD
program through the Harry S. Truman
Fellowship Program at Sandia Labs

Goal: Develop model that accounts for multiple phonon 
processes (inelastic scattering) in GK

• Only accounting for 2 phonon (elastic) processes in the 
DMM does not account for all phonon processes

• By conservation of energy and phonon number, new 
diffusive n-phonon transmission is developed

• Effects of n-phonon interfacial processes on GK is 
calculated with new n-phonon DMM

• Improved agreement with data using n-phonon DMM



n-phonon trasmission
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