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Objectives

•Characterize the shrapnel 
from target and 
transmission lines
–Size and velocity

•Better understand threat 
to in-vessel components
–First wall, diagnostics, 

etc.



Shrapnel Modeling Methodology

Circuit Modeling – Smith CTH – Kipp
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CTH Modeling

• RTL modeled as discrete 
cylinders
– Each simulation 

independent
• Uncoupled solutions

– Under equivalent 
mechanical loading

• Argon gas modeled in 
between RTL shells
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Normalized Magnetic
Pressure Histories

• Similarity of curves 
confirmed
– Normalize by peak 

pressure
• Facilitates 2D CTH 

modeling
– Need relationship for 

Pmax
• Pressure decay behavior 

unknown
– Treated parametrically
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P max =  3.38E+7r -1.73

R 2 =  9.92E-01
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Pmax Functionality
• Pmax plotted as f(r)

– Eliminates dependence 
on RTL cone angle

– Still depends on shell 
thickness and gap

• Approximate yield limit 
predicts half of RTL ⇒
shrapnel
– Based on earlier CTH 

results
• ZR-like electrical loading
• Steel shells with 

thickness of 635 μm and 
gap of 3 mmΔz = 
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X-ray Energy Deposition

• Estimate Edep with 
solid angles

• Deposition into first 
band
– For 3 MJ x-rays, 1.5 

MJ x 0.8 = 1.2 MJ
– Occurs at peak 

pressure
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Fragment Size Estimation

• Average fragment 
estimation

–

Where:
• S = Avg. fragment size
• KIC = Fracture toughness
• ρ = Material density
• c = Material speed of sound
• ε = Strain rate at failure
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– Grady, D.E., “The Spall Strength of Condensed Matter”, J. Mech. Phys. Solids, 36, 353- 384, (1988).
– Kipp, M.E., Grady, D.E. and Swegle, J.W., “Experimental and Numerical Studies of High-Velocity Impact Fragmentation”, 
Sandia National Laboratories Report, SAND93-0773, (August 1993). 



CTH Model Results
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CTH Model Displacements

• Failure based on strain of 40%
– Typical for steel

• Fragment size estimated from 
strain rate at failure
– Current estimates near RTL 

tip: 30 mm shards at 
approx. 900 m/s

• Roughly same mass as 
M16 round

• Typical muzzle of M16 is 
930 m/s

• Sound of speed in STP air 
344 m/sP11 level (10 ns pressure decay)



Flat Fragment Edge-On Impact

• Worst case scenario
– Unlikely given curved 

RTL surfaces
• Fragment 30 × 0.45 mm

– Typical of P11
– Velocity = 850 m/s
– Erodes as it penetrates

• Steel target 50 mm thick
– Penetration of 16 mm



Curved Fragment Oblique Impact
• Fragment 30 × 0.45 mm

– Radius of curvature = 
100 mm

– Typical of P11
– Velocity = 850 m/s

• Slight penetration into  
steel target
– Depth = 1 mm



Summary
• Modeling efforts have demonstrated estimates of 
shrapnel threat
– Using simplified geometry and decoupled modeling
– Accounts for induced magnetic pressure, x-ray 

deposition, and material fracture mechanics
• Does not include vaporization

• RTL generates a considerable shrapnel threat
– Shards of up to 30 mm at 900 m/s
– Initial fragment impact studies indicate potential for 

severe pitting



Practical working designs for in-chamber components have been the 
cost-effective choice to date in pulsed power equipment. As overall 
power levels along with the sophistication of chamber and 
instrumentation increase, survivability from target-generated shrapnel 
becomes a driving factor to be considered. Development of a predictive 
capability to diagnose the shrapnel threat would allow future components 
to be designed with much more insight and confidence. This 
multidisciplinary program proposes to advance the current modeling 
campaign, including ALEGRA-HEDP, with an integrated experimental 
program to quantify and understand the shrapnel threat. This model 
development effort would not only benefit the current pulsed power 
program but may also prove to be an important stepping stone in the 
realization of achievable Z-generated inertial fusion energy in the future.

Scalable Shrapnel Model for Pulsed 
Power Transmission Lines
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X-ray 
Target

Saturn Impulse Experiment*

• Also fielded pressure gages and optical impulse 
monitor

• Approximately ½ of can mass deposited “in-plane”
• X-ray energy ⇒ ½ to can ⇒ ½ to debris

Witness 
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* SAND 2002-0600P



* SAND 2002-0600P

“The purpose of this work is to evaluate the potential utility of z-pinch debris as an 
impulse simulation source... [of] external hostile environments on reentry 
systems.” – Harper-Slaboszewicz, et al. SAND2001-1906C

*


