
Judi Doolittle
Sandia National Laboratories

PeopleSoft Development Session

SAND2008-7336C

Speaker Qualifications

• Judi Doolittle, MA, OCP

• Author:

• “PeopleSoft Developer's Guide for PeopleTools & PeopleCode”

• IOUG Board Member:

• Executive Vice President

• Director of RUGs

• PeopleSoft Team Lead:

• Pension Module

• Developer

• Benefits Open Enrollment

• Service Bridging

Agenda

• XML
• Major Components of XML
• SOAP
• XML Publisher for PeopleSoft
• Publisher Security
• Flat File Layout
• Tags
• Basic Setup
• Report Categories
• Data Source Creation
• XML Application Packages
• Register the Data Source
• XML Files in SQL Dev
• Putting it Together

Agenda Continued

• Tips and Tricks

• Helpful Links

• Email from Application Engine

• Open Enrollment Email

• PL/SQL

• PL/SQL in SQR

• SQR Template

• SQC Example

• UTIL_FILE

• How to find bad SubPages

• Finding Hidden Folders

• Where is email value stored?

Agenda Continued

• Tips and Tricks Continued

• How to find Message Catalogs by date

• Find what access a Role gives a User

• Find where the Component is in PeopleSoft Portal and
Permission List

• Find where the Page is in the PeopleSoft Portal System

• Secrets of PSAUTHITEM

• Security Overview of primary table relations

• XLat changes in 8.9

• Implementation of Roth 401(k)

Agenda Continued

• Component Interface Quick Reference

• PeopleCode Example

• Second PeopleCode Example

XML Basics

• Basic file: 12345, John Smith, 0987
• Three pieces are EMPLID, NAME, and DEPTID

• Pieces of information in the flat file coma delimited

<Employees>

<Employees>

<EMPLID>12345</EMPLID>

<NAME>John Smith</NAME>

<DEPTID>0987</DEPTID>

</Employees>

</Employees>

XML Basics Continued

• <> Markup Elements

• Outside brackets is Data

• Each piece of Data has a starting and ending tag
• No limit to tags you can

• Create

• Or Rename

• Example of renaming NAME to ENAME

<Employees>

<Employees>

<EMPLID>12345</EMPLID>

<ENAME>John Smith</ENAME>

<DEPTID>0987</DEPTID>

</Employees>

</Employees>

Major Components of XML:

• Root Element--Encloses all the Information

• Start Tag--XML elements have a start and end tag

• End Tag--XML elements have a start and end tab

• XML Element--The combination of a start and end
tag are collectively a XML Element

• Data--Information between start and end tags

Major Components of XML:

• XML Declaration--the general characteristics of the
document

• DTD Document Type Declaration--the structure of the
document; internal declarations local to the XML
document

• DTD Internal Subset--DTD contains references to
other DTD

• XML Information Set--Document content

SOAP

• Simple Object Access Protocol

• SOAP applications can be developed in separate
unrelated systems

• These separate applications exchange information

• Standards: http://www.w3.org/TR/soap/

• Good Training Site:
http://www.soapuser.com/basics3.html

http://www.w3.org/TR/soap/

SOAP Example

Host: www.widget.com

Content-Type: text/xml: charset=”utf-8”

Content-Length: 560

SOAPAction: “http://www.widgets.com/assemblysearch”

<SOAP-ENV:Envelope—SOAP message’s encoding style

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelop/”

<SOAP-ENV:Body>

<m:GetAssembly xmlns:m=”http://test.widgets.com”>

<assembly_docs>K2</assembly_docs>

<model_number>widget_2</model_number>

</m:GetAssembly>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Response

<SOAP-ENV:Envelope

Xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>

<m:GetAssemblyResponse xmlns :m=”http://test.widgets.com”>

<AssemblyApprove>John Smith</AssemblyApprove>

<m:GetAssemblyResponse>

</SOAP>-ENV Body>

</SOAP-ENV:Envelope>

SOAP Elements

• Complex Elements
• <definitions>

• Related Services

• <types>

• Allows for specification of low-level data-typing

• <message>

• Individual pieces of communication

• <porttype>

• Grouping Element

• <binding>

• Link between physical and logical model

• <soap:operation>

• Transmission method i.e. SMTP

• <Service>

• Physical location of the end-point communication

XMLP

• Java based reporting platform
• XML Publisher

• Or XMLP

• Template Formats

• HTML

• Excel

• PDF

• RTF

XML Publisher Security

• Three Parts to XMLP Security
• Report Definitions

• Report Running

• Report Viewing

• Query Defined Reports
• Underlying Query Security Governs Report

• XML Does Not Provide This Level of Security

• Security is Governed by:
• Query Security

• Application Security

• And Or Process Scheduler Security

XML Publisher Security

• Queries: Query Security is the Deciding Security

• Data Extraction: Component Security Determines
Access

• Processes: Process Security is the Key

Flat File Layout

• Each piece of information is separated by a coma

• Example:
12345, John Smith, 0987

<Employees>

<Employees>

<EMPLID>12345</EMPLID>

<NAME>John Smith</NAME>

<DEPTID>0987</DEPTID>

</Employees>

</Employees>

Tags

• No Limit to the Number of Tags You Can
• Use

• Create

• Or Rename

• Example you want to rename NAME to ENAME
<Employees>

<Employees>

<EMPLID>12345</EMPLID>

<ENAME>John Smith</ENAME>

<DEPTID>0987</DEPTID>

</Employees>

</Employees>

Basic Setup
• Settings are Defined in the xdo.cfg File

• Example:
<config version="1.0.0" xmlns="http://xmlns.oracle.com/oxp/config/">

<properties>

<!-- System level properties -->

<property name="xslt-xdoparser">true</property>

<property name="xslt-scalable">true</property>

<property name="system-temp-dir">CACHE</property>

<property name="system-cachepage-size">50</property>

<!-- PDF compression -->

<property name="pdf-compression">true</property>

<!-- PDF Security -->

<!-- <property name="pdf-security">true</property> -->

<!-- <property name="pdf-open-password">user</property> -->

<!-- <property name="pdf-permissions-password">owner</property> -->

</properties>

</config>

Basic Setup

• <property name="system-temp-dir">CACHE</property>
this setting is the cache of the application server

• for example on my machine that is set up for very simple
location of \\PS\CACHE

• More Complex Example:
[PS_HOME]/appserv/[DOMAIN_NAME]/CACHE

• can also specify the application server or process
scheduler domain in the xdo.cfg you need only update
the JavaVM

Basic Setup

• psappsrv.cfg before change:
;To pass java options to the jvm loaded via JNI, uncomment JavaVM Options=

;and set it equal to the list of parameters you would like to use.

;The options need to be a blank space separated list of valid java options.

;Consult your JRE vendor for valid java options.

;For example, JavaVM Options=-Xmx256m -Xms128m

JavaVM Options=-Xrs -Dxdo.ConfigFile=../xdo.cfg

• New Setting:
JavaVM Options=-Xrs -Dxdo.ConfigFile=xdo.cfg

• Changes will not take effect until you restart the
Application Server

Pages Used in Setup

• Two Pages Used in Set-up of XML Publisher in
PeopleSoft

• PSXPSETUPRPTCAT -- the Report Category Page

Pages Used in Setup Continued

• Second Page in Set-up of XML Publisher in PeopleSoft

• PSXPSETUPDWNLD -- the Design Helper Page

Report Categories Continued

• Set-up Folder
• Contains:

• Report Category

• Design Helpers

Report Categories

• Report Definitions Required

• All Templates Stored in Content Library Including
Sub-Templates

• Set Row Level Security to the level of the Component

Report Categories Continued

• Report Category in Payroll with Two PeopleSoft
Roles Defined

Report Categories Continued

• Key Information in Creating Report Category
• Report Category ID

• Description

• Object Owner ID

• ID Type

• Security ID

• Description

• Read Only

Report Categories Continued

• Report Category

Data Source Creation

• Two Main Pieces to XML Reports
• PeopleSoft Developer usually Does the Data Piece

• Functional Business Team Member does Template

• Different Types of Data Sources:
• PeopleSoft Queries

• Rowsets

• XML Document Objects

• XML Files

• XSD Files

XML Data Source
• RowSet
• Example taken from website http://peoplesofttipster.com/2007/05/24/xml-

publisher-within-peoplesoft/
/*Populating the RowSet */
import PSXP_XMLGEN:*;
/*create rowsets */
&rs_compensation CreateRowSet(Record.COMPENSATION);
&rs_job CreateRowSet(Record.JOB);
/*Fill Parent */
&rs_job.Fill(“where EMPLID like ‘K0G00%’”);
/*Fill Child */
For &I = 1 to &rs_Job.ActiveRowCount

&row = &rs_Job.GetRow(&i);
&rs = &row.GetRowSet(Scroll.COMPENSATION);
&rs.Fill(“WHERE EMPLID = :1”, &row.JOB.EMPLID.Value;

End-For;
/*Output Files */
/*Create XSD */
&rds = create psxp_xmlgen:RowSetDS();
&myschema = &rds.GetXSDSchema(&rs_Job);
&f1 = GetFile(“C:\temp\rpt01.xsd”, “W”, %FilePath_Absolute;
&f1.WriteLine(&myschema);
&f1.Close();
/*Create Sample XML File */
&myXMLFile = &rds.GetXMLData(&rs_Job, “c:\temp\rpt01.xsd”);
&f2 = GetFile(“c:\temp\rpt01.xml”, “W”, %FilePath_Absolute);
&f2.WriteLine(&myXMLFile);
&f2.Close();
/*Code taken from a presentation by Duncan Davies */

http://peoplesofttipster.com/2007/05/24/xml-publisher-within-peoplesoft/
http://peoplesofttipster.com/2007/05/24/xml-publisher-within-peoplesoft/
http://peoplesofttipster.com/2007/05/24/xml-publisher-within-peoplesoft/
http://peoplesofttipster.com/2007/05/24/xml-publisher-within-peoplesoft/
http://peoplesofttipster.com/2007/05/24/xml-publisher-within-peoplesoft/
http://peoplesofttipster.com/2007/05/24/xml-publisher-within-peoplesoft/
http://peoplesofttipster.com/2007/05/24/xml-publisher-within-peoplesoft/

XML Application Packages

• XML Publisher Classes
• import PSXP_RPTDEFNMANAGER:*;

• import PSXP_REPORTMGR:*;

• import PSXP_XMLGEN:*;

• import PSXP_ENGINE:*;

Register the Data Source

• PeopleSoft Query

• Here we will only be looking at populating a Data
Source from a Query

• Data Source Page
• <Reporting Tools<XML Publisher<Setup<Data Source

Register the Data Source Continued
• First Setting is the Data Source Type

• Which Can Be:
• PSQuery

• Rowset

• XML Doc

• XML File

• Next Setting is the Data Source ID
• When working with PSQuery

• PS Pulls the Data Source ID from the Query Manager

• Which is why it is important to have your Query Created before you
register the Data Source

• Next is Description

• Object Owner is Optional
• This is the:

• Product

• Feature or

• Application that Owns the Data Source

Register the Data Source Continued

• Registered Date/Time
• Read Only

• Maintained by the System

• Stores the Date and Time of the Last Update

• Active
• Sets a Data Source to be Actively Chosen when Creating

the Report Definition

• If InActive--You will not see it when you try to Create a
Report

• Registered By
• UserID

• Person who First Registered the Data Source

• Updated by the System to Note Last Person to Update the
Field

Register the Data Source Continued

• Create a Report Definition with the Query

Register the Data Source Continued

• Create a Report Definition with the Query

XML Files in SQL Dev

• In the Highlighted Rows Right Click Export Results as
XML File

• Example it Creates:
<?xml version="1.0" ?>

- <ROWDATA>

- <ROW>

<C0>1</C0>

<FIELDNAME>ABSENT_AFTER</FIELDNAME>

<FIELDVALUE>N</FIELDVALUE>

<EFFDT>1/1/1900</EFFDT>

<EFF_STATUS>A</EFF_STATUS>

<XLATLONGNAME>No</XLATLONGNAME>

<XLATSHORTNAME>No</XLATSHORTNAME>

<LASTUPDDTTM>9/5/1997</LASTUPDDTTM>

<LASTUPDOPRID>PPLSOFT</LASTUPDOPRID>

<SYNCID>26067</SYNCID>

</ROW> ….

XML Files in SQL Dev Continued

• First Step Make your Query

Example--Putting it Together

Example--Putting it Together

Query Continued

Query Continued

XML Data for Query

<?xml version="1.0" ?>
- <query numrows="10" queryname="SL_XML_VISIT_FORM" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="">
- <row rownumber="1">
<EMPLID>EMPLID samp</EMPLID>
<SSN>SSN sample</SSN>
<FULL_NAME>FULL_NAME sample data</FULL_NAME>
<SL_BIRTHDATE>SL_BIRTHDA</SL_BIRTHDATE>
<START_DATE>START_DATE</START_DATE>
<END_DATE>END_DATE s</END_DATE>
<TO>TO</TO>
<CURR_DATE>CURR_DATE</CURR_DATE>
<SIGNITURE>SIGNITURE sample data</SIGNITURE>
<SLASH>S</SLASH>
<HOST_SL_SNLID>HOST_SL_SNL</HOST_SL_SNLID>
<HOST_NAME>HOST_NAME sample data</HOST_NAME>
<HOST_ORG>HOST_ORG s</HOST_ORG>
<HOST_MAILSTOP>HOST</HOST_MAILSTOP>
<HOST_PHONE>HOST_PHONE sample data</HOST_PHONE>
<HOST_FAX>HOST_FAX sample data</HOST_FAX>

http://blog.psftdba.com/
http://blog.psftdba.com/
http://jjmpsj.blogspot.com/
http://jjmpsj.blogspot.com/

XML Data for Query Continued

<LOCATION>LOCATION sample data</LOCATION> --:4
<PURPOSE>PURPOSE sample data</PURPOSE> --:5
<MEETING_ACCESS>MEETING_ACCESS sample data</MEETING_ACCESS>--:6
<SIGMA>SIGMA sample data</SIGMA> --:7
<SITE>SITE sample data</SITE> --:8
<COUNTRY>COU</COUNTRY> --:10
<ADDRESS>ADDRESS sample data</ADDRESS>--:11
<COMP_PHONE>COMP_PHONE s</COMP_PHONE> --:12
<SL_AFFILIATION>SL_AFFILIATION sample data</SL_AFFILIATION> --:13
<T_BADGE_YES>T</T_BADGE_YES> --:15
<T_BADGE_NO>T</T_BADGE_NO> --:16
<COMMENTS>COMMENTS sample data</COMMENTS>--:17
<CO_HOST_EMPLID>CO_HOST_EMP</CO_HOST_EMPLID>--:18
<CO_HOST_PHONE>CO_HOST_PHON</CO_HOST_PHONE> --:19
<CO_HOST_FAX>CO_HOST_FAX</CO_HOST_FAX> --:20
<CO_HOST_NAME>CO_HOST_NAME sample data</CO_HOST_NAME>--:22
<MGR_SL_SNLID>MGR_SL_SNL</MGR_SL_SNLID> --:22
<MGR_NAME>MGR_NAME sample data</MGR_NAME> --:23
<MGR_PHONE>MGR_PHONE sa</MGR_PHONE> --:24
</row>

http://peoplesoftexperts.blogspot.com/

Report Definition

Report Definition Template

Report Definition Output

Report Definition Security

PeopleCode to Generate Report

PeopleCode Cont.

Defining PDF Fields

Helpful PeopleSoft Websites

• Jim’s PeopleSoft Journal: http://jjmpsj.blogspot.com/

• The PeopleSoft DBA Blog: http://blog.psftdba.com/

• PeopleSoft Support and Tips:
http://peoplesoftexperts.blogspot.com/

• Driven by PeopleSoft motivated by Microsoft:
http://psguyblog.blogspot.com/index.html

• Manalang: http://manalang.wordpress.com/2006/02/01/adding-
live-search-to-peoplesoft-enterprise/

• Grey Sparling: http://blog.greysparling.com/

http://blog.greysparling.com/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://manalang.wordpress.com/2006/02/01/adding-live-search-to-peoplesoft-enterprise/
http://psguyblog.blogspot.com/index.html
http://peoplesoftexperts.blogspot.com/
http://blog.psftdba.com/
http://jjmpsj.blogspot.com/

Email from Application Engine
Local string &mail_text1, &to_emailid, &cc_name_list
, &email_subject, &mail_text2, &Mail_text3, &dbname;

&dbname = %DbName;

&RET = Char(13);
&mail_text2 = TC_JCEARN_AET.HR_NP_NOTE_TEXT;
&Mail_text3 = TC_JCEARN_AET.TC_PEN_NOTE_TEXT;

If &dbname = “Production" Then
&to_emailid = "wg-pro@your_company.com";

Else
&to_emailid = "wg-test@your_company.com";

End-If;

&email_subject = &dbname | " " | “Sample";

&mail_text1 = "This email is a system generated email, please do not reply to this email." | &RET;
&mail_text1 = &mail_text1 | &RET | "The following are …: " | &RET;
&mail_text1 = &mail_text1 | &RET | “Header1: ";
&mail_text1 = &mail_text1 | &RET | "If the …" | &RET | &mail_text2 | &RET;
&mail_text1 = &mail_text1 | &RET | “Header2: ";
&mail_text1 = &mail_text1 | &RET | "If the …" | &RET | &Mail_text3 | &RET;

SendMail(0, &to_emailid, &cc_name_list, "", &email_subject, &mail_text1);

Email Added to Open Enrollment

• Added an Email

• Provides Confirmation of Choices with Cost

• Workflow Event not called

• Work around

• Survey

Open Enrollment Email Continued

• Two Submit Buttons

Where to place the Email?

Code

Code Continued

Code Continued

Code Continued

Embedding PL/SQL in your Solutions

• Packages
• See the code on the following four slides—for custom PS

Package to log who, and errors for PL/SQL programs in
PeopleSoft

CREATE OR REPLACE PACKAGE ps_utl_pkg
AS
PROCEDURE log_new_line;
PROCEDURE intialize_log (p_pgm_name IN VARCHAR2, p_log_file_output IN BOOLEAN);

PROCEDURE write_log (p_log_entry IN VARCHAR2);
PROCEDURE write_error (p_error_entry IN VARCHAR2);
END ps_utl_pkg;
/
CREATE OR REPLACE PACKAGE BODY ps_utl_pkg
AS
/***

NAME: ps_utl_pkg
**/
gv_output_type VARCHAR2 (25) := 'LOG';
gv_pgm_name sl_plsql_log.programname%TYPE;
PROCEDURE log_new_line

AS
BEGIN

write_log (' ');
END;

PROCEDURE intialize_log (p_pgm_name IN VARCHAR2, p_log_file_output
IN BOOLEAN)

AS
BEGIN

gv_pgm_name := p_pgm_name;
IF p_log_file_output
THEN

gv_output_type := 'LOG';
ELSE

DBMS_OUTPUT.ENABLE (100000);
gv_output_type := ' ';

END IF;
log_new_line;

write_log ('Log started for '
|| gv_pgm_name
|| ' at '
|| TO_CHAR (SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
);

log_new_line;
END;

PROCEDURE close_log (p_pgm_name IN VARCHAR2)
AS
BEGIN

log_new_line;
write_log ('End of log for ‘ || gv_pgm_name || ' at ' || TO_CHAR (SYSDATE,
'YYYY-MM-DD HH24:MI:SS'));
log_new_line;

END;
PROCEDURE write_log (p_log_entry IN VARCHAR2)

AS
BEGIN

IF gv_output_type = 'LOG'
THEN

INSERT INTO sl_plsql_msg_temp
VALUES (SYSDATE, p_log_entry);

ELSE
DBMS_OUTPUT.put_line (p_log_entry);

END IF;
END;

PROCEDURE write_error (p_error_entry IN VARCHAR2)
AS

PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN

IF gv_output_type = 'LOG'
THEN

INSERT INTO sl_plsql_msg_temp
VALUES (SYSDATE, p_error_entry);

COMMIT;
ELSE

DBMS_OUTPUT.put_line (p_error_entry);
END IF;

END;
END ps_utl_pkg;
/

Executing PL/SQL

• Invoke PL/SQL anonymous blocks straight from
SQL*PLUS

• Run PL/SQL anonymous blocks by embedding the
inside other programs

• Stored procedure or function you can call it in the
following ways:
• SQL*PLUS or iSQL*Plus

• Oracle Development tools (Oracle Forms Developer)

• Another procedure

Executing PL/SQL Example

• Anonymous Block
@scriptname.sql

• From SQL*Plus
EXECUTE execution_one

• Stored Procedure
execution_one;

• From Another Procedure
CREATE OR REPLACE PROCEDURE emp_leave
(p_id IN emp.emp_id%TYPE)
IS
BEGIN

DELETE FROM emp
WHERE emp_id = p_id;

log_execution;
END
leave_emp;

SQR

• See code on the following three slides

• Note: double ;; is required to embed in PL/SQL in
SQR

Example embedded anonymous block::

BEGIN-SQL on-error=Db_Error

DECLARE

V_ERR_CDE PS_UU_RPT_LDGR_ERR.UU_ERR_CODE%TYPE;;

V_ERR_MSG PS_UU_RPT_LDGR_ERR.UU_ERR_MSG%TYPE;;

V_BLOCK_NAME
PS_UU_RPT_LDGR_ERR.UU_BLOCK_NAME%TYPE;;

BEGIN

DBMS_STATS.GATHER_TABLE_STATS('FSPROD','PS_UU_RPT_LE
DGER', NULL, NULL, FALSE, 'FOR ALL COLUMNS SIZE 1', NULL,
'DEFAULT', TRUE, NULL, NULL, NULL);;

EXCEPTION
WHEN OTHERS THEN

V_ERR_MSG := SUBSTR(SQLERRM,1,100);;
V_ERR_CDE := SQLCODE;;
V_BLOCK_NAME := 'ANALYZE STATS ';;

INSERT INTO PS_UU_RPT_LDGR_ERR(UU_BLOCK_NAME
,UU_ERR_CODE
,UU_ERR_MSG
,UU_DATE)

VALUES (V_BLOCK_NAME
,V_ERR_CDE
,V_ERR_MSG
,SYSDATE);;

END;;
END-SQL

Example calling a stored procedure:
BEGIN-SQL
BEGIN EXTCOPY.GW_DOWN_GET_STATUS_W_NUMS

($project-num,
$task-num,
$v_ei_date,
$v_expend_type,
$v_non_labor_resource,
#v_emplid,
#v_quantity,
$status,
$status_desc);;

END;;
END-SQL

SQR Template

• See code on the following nine slides

!* *
#include 'setenv.sqc' !Set environment
!* *
!create a temporary table. if exists, then skip
!* *
begin-procedure intialize-plsql-output
! create a temporary table to be used pl/sql for logging
begin-sql on-error=skip-error
create global temporary table sysadm.sl_plsql_msg_temp (sl_orig_timestamp date,

message_descr long varchar)
on commit preserve rows

end-sql
! do grants on temp table
begin-sql on-error=skip-error
grant select, insert on sl_plsql_msg_temp to psuser, psdeveloper, workflow, payroll
end-sql
end-procedure intialize-plsql-output
!* *

!* *
!SQL to extract and display output
!* *
begin-procedure display-output

let $sql-statement = 'select sl_plsql_msg_temp'
begin-select on-error=sql-error
a.message_descr

print &a.message_descr (+1,3,100)
from sysadm.sl_plsql_msg_temp a
order by sl_orig_timestamp
end-select
end-procedure display-output

!* *
!error processing for pl/sql errors
!* *
begin-procedure plsql-error

display 'PL/SQL Error'
display ' '
display 'SQL Status = ' noline
display #sql-status 99999 noline
display ', SQL Error = ' noline
display $sql-error
display ' '
display ' - SQL Statement = ' noline
display $sql-statement
display ' '
! print log
do display-output
stop

end-procedure plsql-error
!* *

!procedure to skip sql errors
!* *
begin-procedure skip-error
!See Paper for Full Code
!**
! Program Section
!***
begin-program
do Init-Report
display 'DEBUG: calling intialize-plsql-output'
do intialize-plsql-output
do Process-Main
do End-Processing

end-program
!***
! Procedure Init-Report
!**
!Standard Init-Report See Paper for Full Code
begin-procedure Init-Report
end-procedure Init-Report

!***
! Section Heading
!***
!Standard Heading
!***
! Process-Main
!***
!Standard Process-Main
!***
! Invoke stored procedure created by DBA's.
!***
begin-procedure process-ld-pa
let $sql-statement = 'Proc: PAY_FILE_AUDIT_PKG.AUDIT_LD_PA;'

BEGIN-SQL ON-ERROR=plsql-error
BEGIN
SYSADM.PAY_FILE_AUDIT_PKG.AUDIT_LD_PA;;
END;;
END-SQL
end-procedure process-ld-pa

!***
! display log output
!***
begin-procedure select-log

do display-output
end-procedure select-log
!***
begin-procedure END-PROCESSING
!***

do reset
do get-current-datetime
display 'End of Run'
display $AsOfNow
do Stdapi-Term
display 'Successful Completion'

end-procedure END-PROCESSING
!**
!Included SQCs
!**
!Standard includes only exception is the PLSQL.SQC see paper for full code
#Include 'plsql.sqc'

SQC Example

• See code on the following four slides

!***

! Name: PLSQL.SQC *

!***

#include 'setenv.sqc' !Set environment

!***

!create a temporary table. if exists, then skip

!***

begin-procedure intialize-plsql-output

! create a temporary table to be used pl/sql for logging

begin-sql on-error=skip-error

create global temporary table sysadm.sl_plsql_msg_temp (sl_orig_timestamp date,

message_descr long varchar)

on commit preserve rows

end-sql

! do grants on temp table

begin-sql on-error=skip-error

grant select, insert on sl_plsql_msg_temp to psuser, psdeveloper, workflow, payroll

end-sql

end-procedure intialize-plsql-output

!* *

!SQL to extract and display output

!* *

begin-procedure display-output

let $sql-statement = 'select sl_plsql_msg_temp'

begin-select on-error=sql-error

a.message_descr

print &a.message_descr (+1,3,100)

from sysadm.sl_plsql_msg_temp a

order by sl_orig_timestamp

end-select

end-procedure display-output

!* *

!error processing for pl/sql errors

!* *

begin-procedure plsql-error

display 'PL/SQL Error'

display ' '

display 'SQL Status = ' noline

display #sql-status 99999 noline

display ', SQL Error = ' noline

display $sql-error

display ' '

display ' - SQL Statement = ' noline

display $sql-statement

display ' '

! print log

do display-output

stop

end-procedure plsql-error

!* *

!procedure to skip sql errors

!* *

begin-procedure skip-error

! skip error and do nothing

end-procedure skip-error

PL/SQL in PeopleSoft Upgrades

• See Code for Creation of History Table

History Table

History table Creation
CREATE TABLE SOURCE_HIST AS SELECT SYSDATE CHANGE_DATE,

USER_SOURCE.* FROM USER_SOURCE WHERE 1=2;
Trigger to Store and Maintain History
CREATE OR REPLACE TRIGGER CHANGE_HIST AFTER CREATE ON SCHEMA BEGIN

IF DICTIONARY_OBJ_TYPE in ('PROCEDURE', 'FUNCTION', 'PACKAGE',
'PACKAGE BODY', 'TYPE')
THEN
INSERT INTO SOURCE_HIST SELECT sysdate, user_source.* FROM USER_SOURCE

WHERE TYPE = DICTIONARY_OBJ_TYPE
AND NAME = DICTIONARY_OBJ_NAME;
END IF;
EXCEPTION WHEN OTHERS THEN RAISE_APPLICAITON_ERROR(-20000,
SQLERRM); END; Metalink Note:258690.1

UTIL_FILE Example

DECLARE

v_file utl_file.file_type;
v_desc varchar2(4000);
v_host varchar2(40);

cursor c1 is select
name,
text
from user_source

order by line;
r1 c1%rowtype;

BEGIN
select host_name
into v_host
from v$instance;

v_file := utl_file.fopen('c:\oracle\admin\orcl\utl_file', 'plsql_exp.utl', 'W');
utl_file.put_line(v_file, '/*');
utl_file.put_line(v_file, ' +-----------------------------+');
utl_file.put_line(v_file, ' UPDATED: '|| to_char(sysdate, 'MM-DD-YYYY
HH12:MIam'));
utl_file.put_line(v_file, ' SCHEMA: ' || lower(user));
utl_file.put_line(v_file, ' DB SERVER: ' || lower(v_host));
utl_file.put_line(v_file, ' +-----------------------------+');
utl_file.put_line(v_file, '*/');

open c1;
loop
fetch c1 into r1;
exit when c1%notfound;
utl_file.new_line(v_file,2);
v_desc := rtrim(rtrim(r1.name,chr(10)));
utl_file.put_line(v_file, 'CREATE OR REPLACE PROCEDURE ' || v_desc);
utl_file.put_line(v_file, r1.text);
utl_file.put_line(v_file, '/');
end loop;
close c1;
utl_file.fclose(v_file);
END;
/

How to find bad subpages

---Sql to find the subpages on the page

SELECT *

FROM PSPNLDEFN

WHERE PNLNAME LIKE ‘TC%'

AND EXISTS (SELECT 'x' FROM PSPNLFIELD WHERE
SUBPNLNAME = :SUBPNLNAME)

--- example 'PERS_SRCH_SBP'

---fields on page

SELECT * FROM PSPNLFIELD

WHERE SUBPNLNAME = :SUBPNLNAME

Hidden folders and content references

If you do not see a folder or content Reference (Menu Item) in Left hand
side navigation, (Applicable to 8.4x) then you must check to see if the
folder or content reference is not marked as hidden. Other reasons
could be security. Here is a SQL to find out all the objects that are
hidden.

To find all the folders which are hidden from Portal Navigation.

SELECT *
from PSPRSMSYSATTRVL
where portal_name = 'EMPLOYEE'
and PORTAL_ATTR_NAM =

'PORTAL_HIDE_FROM_NAV' and portal_Reftype = 'F'

Hidden Folders Continued

SELECT
a.portal_objname,b
.portal_label
,b.portal_prntobjname
,c.portal_label

from PSPRSMSYSATTRVL a,psprsmdefn b,psprsmdefn c
where a.portal_name = 'EMPLOYEE'

and a.PORTAL_ATTR_NAM = 'PORTAL_HIDE_FROM_NAV'
and b.portal_Reftype = 'F' and a.portal_name = b.portal_name
and a.portal_objname = b.portal_objname
and b.portal_name = c.portal_name
and b.portal_prntobjname = c.portal_objname

Hidden Folders Continued

To find all the content references which are hidden from Portal
Navigation.

SELECT *
from PSPRSMSYSATTRVL
where portal_name = 'EMPLOYEE'
and PORTAL_ATTR_NAM =

'PORTAL_HIDE_FROM_NAV' and portal_Reftype = 'C'

Hidden Folders Continued

SELECT
a.portal_objname
,b.portal_label
,b.portal_prntobjname
,c.portal_label

FROM PSPRSMSYSATTRVL a,psprsmdefn b,psprsmdefn c
WHERE a.portal_name = 'EMPLOYEE'

AND a.PORTAL_ATTR_NAM = 'PORTAL_HIDE_FROM_NAV'
AND b.portal_Reftype = 'C'

AND a.portal_name = b.portal_name
AND a.portal_objname = b.portal_objname
AND b.portal_name = c.portal_name
AND b.portal_prntobjname = c.portal_objname

Hidden Folders Continued

Replace EMPLOYEE with Your portal name.
Some of the Other names are:
CUSTOMER

DEMOSITE
EMPLOYEE
MOBILE
PORTAL
PS_SITETEMPLATE
SUPPLIER

Portal Content Reference/folder Attributes are stored in:
PSPRSMSYSATTR
PSPRSMSYSATTRVL

Where is the email value stored?

• Remember if you are working with emails, workflow, and Oprid tables there
are two tables the email is stored

• Most times it uses PSOPRDEFN but sometimes it uses PS_ROLEXLATOPR
• What is in PSOPRDEFN should reflect in PS_ROLEXLATOPR
• So if you write a script to change one you need to write a script to change the

other

SELECT *
FROM PSOPRDEFN
WHERE OPRID = 'smith'

SELECT *
FROM PS_ROLEXLATOPR
WHERE OPRID = 'smith'

Email Stored Continued

• There is one more table that needs to change as well
• Which is the email that was triggering for workflow for the manager in

Job Opening

SELECT *
FROM PSUSEREMAIL
WHERE OPRID = 'smith'

Find a process scheduler for a process

• How to find if a process has a process Scheduler
• What page it has attached , and type
• Who runs the process even people who are gone
• Who ran what process
--there a process scheduler for a SQR or process app engine
--also descr plus Page

SELECT A.PRCSTYPE, A.PRCSNAME, PNLGRPNAME,
DESCRLONG

FROM PS_PRCSDEFN A, PS_PRCSDEFNPNL B
WHERE A.PRCSTYPE = B.PRCSTYPE
AND A.PRCSNAME = B.PRCSNAME
AND B.PRCSNAME = ‘SHRS104U'

Process Scheduler Continued

--what user ran what process

SELECT *
FROM PS_PMN_PRCSLIST
WHERE RUNCNTLID = 'jsmith'

SELECT *
FROM PS_PMN_PRCSLIST
WHERE RUNCNTLID = :RUNCNTLID

Process Scheduler Continued

--who ran this process

SELECT *
FROM PS_PMN_PRCSLIST
WHERE PRCSNAME = 'SHRS104U'

SELECT *
FROM PS_PMN_PRCSLIST
WHERE PRCSNAME = :PRCSNAME

Process Scheduler Continued

--who and process

SELECT *
FROM PS_PMN_PRCSLIST
WHERE RUNCNTLID = :RUNCNTLID
AND PRCSNAME = :PRCSNAME

SELECT *
FROM PS_PMN_PRCSLIST
WHERE RUNCNTLID = :RUNCNTLID
AND PRCSNAME = :PRCSNAME

How to find a Message Catalog by Date

• Message Catalog are stored in a new record PSMSGCATDEFN the old record
was PS_MESSAGE_CATALOG

--8.3 old should not exist

SELECT *
FROM PS_MESSAGE_CATALOG

--8.9 exist

SELECT *
FROM PSMSGCATDEFN
WHERE MESSAGE_SET_NBR = '20302'

Message Catalog by Date Continued

--This SQL will help you determine what message catalogs have been
changed in 8.9 or added.

SELECT *
FROM PSMSGCATDEFN
WHERE TO_DATE(SUBSTR(LAST_UPDATE_DTTM,1

,10)) '01-Apr-06'

Message Catalog by Date Continued

-- for ones in your message catalog range for eRecruit in house we use
20301 to 20310

SELECT *
FROM PSMSGCATDEFN
WHERE TO_DATE(SUBSTR(LAST_UPDATE_DTTM,1

,10)) '01-Apr-06'
AND (MESSAGE_SET_NBR > 20300
AND MESSAGE_SET_NBR < 20304)

Message Catalog by Date Continued

--metadata record for project Items Item OBJECTTYPE = 25 is for
message catalogs

--if you know your project name and know the amount above the values

SELECT *
FROM PSPROJECTITEM
WHERE PROJECTNAME = ‘TEST'
AND OBJECTTYPE = 25

Message Catalog by Date Continued

-- The 2 sql values should match if I created 6 Message catalogs there should be
in your project

SELECT COUNT(*)
FROM PSMSGCATDEFN
WHERE TO_DATE(SUBSTR(LAST_UPDATE_DTTM,1 ,10)) '01-

Apr-06'
AND (MESSAGE_SET_NBR > 20300
AND MESSAGE_SET_NBR < 20304)

SELECT COUNT(*)
FROM PSPROJECTITEM
WHERE PROJECTNAME = ‘TEST'
AND OBJECTTYPE = 25

Find what Access a Role Gives a User

--the role is TC_EMPLOYEE in this case
--how to tell what role as access to what folder/pages in the portal
---here is the only role that jlstest has and he can or should see all of this

SELECT PORTAL_PERMNAME AS
Permission_list,PORTAL_URI_SEG1 AS Menu ,
PORTAL_URI_SEG2 AS
component,'https://www.testco.com/psp/test/EMPLOYEE/HRMS/' ||
'c/' || PORTAL_URI_SEG1 || '.' || PORTAL_URI_SEG2 ||'.'||
PORTAL_URI_SEG3 AS Address_string

https://www.testco.com/psp/test/EMPLOYEE/HRMS/

Find what access a Role gives a User

FROM PSPRSMPERM A, PSPRSMDEFN B WHERE
A.PORTAL_NAME = B.PORTAL_NAME

AND A.PORTAL_REFTYPE = B.PORTAL_REFTYPE
AND A.PORTAL_OBJNAME = B.PORTAL_OBJNAME

AND PORTAL_PERMNAME = (SELECT CLASSID
FROM PSROLECLASS WHERE Rolename =
'SL_EMPLOYEE' AND A.PORTAL_PERMNAME =
CLASSID)

Find what access a Role gives a User

--sort by menu and no blank menus

SELECT PORTAL_PERMNAME AS
Permission_list,PORTAL_URI_SEG1 AS Menu ,
PORTAL_URI_SEG2 AS
component,'https://www.test.com/psp/test/EMPLOYEE/H
RMS/' || 'c/' || PORTAL_URI_SEG1 || '.' ||
PORTAL_URI_SEG2 ||'.'|| PORTAL_URI_SEG3 AS
Address_string

https://www.test.com/psp/test/EMPLOYEE/HRMS/
https://www.test.com/psp/test/EMPLOYEE/HRMS/

Find what access a Role gives a User

FROM PSPRSMPERM A, PSPRSMDEFN B
WHERE A.PORTAL_NAME = B.PORTAL_NAME AND

A.PORTAL_REFTYPE = B.PORTAL_REFTYPE AND
A.PORTAL_OBJNAME = B.PORTAL_OBJNAME AND
PORTAL_PERMNAME =

(SELECT CLASSID
FROM PSROLECLASS
WHERE Rolename = 'SL_EMPLOYEE'
AND A.PORTAL_PERMNAME = CLASSID)
AND PORTAL_URI_SEG1 <> ' '
ORDER BY PORTAL_URI_SEG1

Find where the Component is in
PeopleSoft Portal and Permission List

-- 1 permission and Address String by component

SELECT PORTAL_PERMNAME AS
Permission_list,'https://www.test.com/psp/test/EMPLOYEE/HRMS/' ||
'c/' || PORTAL_URI_SEG1 || '.' || PORTAL_URI_SEG2 ||'.'||
PORTAL_URI_SEG3

AS Address_string
FROM PSPRSMPERM A, PSPRSMDEFN B
WHERE A.PORTAL_NAME = B.PORTAL_NAME
AND A.PORTAL_REFTYPE = B.PORTAL_REFTYPE AND

A.PORTAL_OBJNAME = B.PORTAL_OBJNAME AND
B.PORTAL_URI_SEG2 = 'HRS_CE'

https://www.test.com/psp/test/EMPLOYEE/HRMS/

Find where the Component is in
PeopleSoft Portal and Permission List

-- 2 permission, menu, component and Address String by component

SELECT PORTAL_PERMNAME AS Permission_list,
PORTAL_URI_SEG1 AS Menu , PORTAL_URI_SEG2 AS
component,'https://www.test.com/psp/test/EMPLOYEE/HRMS/' || 'c/'
|| PORTAL_URI_SEG1 || '.' || PORTAL_URI_SEG2 ||'.'||
PORTAL_URI_SEG3 AS Address_string

FROM PSPRSMPERM A, PSPRSMDEFN B
WHERE A.PORTAL_NAME = B.PORTAL_NAME
AND A.PORTAL_REFTYPE = B.PORTAL_REFTYPE AND

A.PORTAL_OBJNAME = B.PORTAL_OBJNAME AND
B.PORTAL_URI_SEG2 = 'HRS_CE'

https://www.test.com/psp/test/EMPLOYEE/HRMS/

Find where the Component is in
PeopleSoft Portal and Permission List

-- 3 permission, menu, component and Address String by Label name in Portal
name

SELECT PORTAL_PERMNAME AS Permission_list,
PORTAL_URI_SEG1 AS Menu , PORTAL_URI_SEG2 AS
component,'https://www.test.com/psp/pspr3/EMPLOYEE/HRMS/' ||
'c/' || PORTAL_URI_SEG1 || '.' || PORTAL_URI_SEG2 ||'.'||
PORTAL_URI_SEG3 AS Address_string

FROM PSPRSMPERM A, PSPRSMDEFN B
WHERE A.PORTAL_NAME = B.PORTAL_NAME
AND A.PORTAL_REFTYPE = B.PORTAL_REFTYPE AND

A.PORTAL_OBJNAME = B.PORTAL_OBJNAME AND
PORTAL_LABEL = 'Careers'

https://www.test.com/psp/pspr3/EMPLOYEE/HRMS/

Find where the Page is in the
PeopleSoft Portal System

How to find where the page is in PeopleSoft? (portal system)
The data was gathered from the portal information, then you narrow the fields

down to one PORTAL_URLTEXT. Use the component name to retrieve the
Rows for gathering the address

SELECT *
FROM PSPRSMPERM A, PSPRSMDEFN B
WHERE A.PORTAL_NAME = B.PORTAL_NAME
AND A.PORTAL_REFTYPE = B.PORTAL_REFTYPE
AND A.PORTAL_OBJNAME = B.PORTAL_OBJNAME
AND B.PORTAL_URI_SEG2 = 'HR_SSTEXT_LANG'

Find where the Page is in the
PeopleSoft Portal System

Run this SQL too…

SELECT 'https://www.test.com/psp/pspr3/EMPLOYEE/HRMS/' || 'c/' ||
PORTAL_URI_SEG1 || '.' || PORTAL_URI_SEG2 ||'.'||
PORTAL_URI_SEG3 AS Address_string

FROM PSPRSMPERM A, PSPRSMDEFN B
WHERE A.PORTAL_NAME = B.PORTAL_NAME
AND A.PORTAL_REFTYPE = B.PORTAL_REFTYPE
AND A.PORTAL_OBJNAME = B.PORTAL_OBJNAME
AND B.PORTAL_URI_SEG2 = 'HR_SSTEXT_LANG'

https://www.test.com/psp/pspr3/EMPLOYEE/HRMS/

Secrets of PSAUTHITEM

• Excerpts taken from an article written by Bret Martin
April, 2007

• PSAUTHITEM is one of PeopleSoft’s core security tables

• The primary purpose is to track which pages and
authorized actions that each permission list is assigned

• It also tracks web library (iScript) permissions

Secrets of PSAUTHITEM

columns in PSAUTHITEM:
CLASSID

MENUNAME
BARNAME
BARITEMNAME
PNLITEMNAME
DISPLAYONLY
AUTHORIZEDACTIONS

Secrets of PSAUTHITEM

Query that shows everything you need to set up on-line security

Component is the PNLGRPNAME field.

select a.MENUNAME, b.PNLGRPNAME,
a.PNLITEMNAME, a.BARNAME, a.BARITEMNAME,
a.AUTHORIZEDACTIONS

from PSAUTHITEM a, PSMENUITEM b
where a.menuname = b.menuname

and a.barname = b.barname
and a.baritemname = b.itemname
and a.classid = 'ALLPAGES'

Secrets of PSAUTHITEM

Authorized Actions as a 4-bit field with each bit representing an
action. Here’s what the bit positions mean:

Correction Update/DisplayAll Update/Display Add
1 1 1 1 =
2^3 + 2^2 + 2^1 + 2^0 =
8 + 4 + 2 + 1 = 15

So to grant a permission list full access to a page, this value will be
equal to 15

Secrets of PSAUTHITEM

AUTHORIZED ACTIONS return something a little more friendly
SELECT classid, menuname, barname, baritemname, pnlitemname,

displayonly,
case when bitand(authorizedactions,1) > 0 then 'Y' else 'N' END
ADDACTION,
case when bitand(authorizedactions,2) > 0 then 'Y' else 'N' END
UPDATEACTION,
case when bitand(authorizedactions,4) > 0 then 'Y' else 'N' END
UPDATEALLACTION,
case when bitand(authorizedactions,8) > 0 then 'Y' else 'N' END
CORRECTIONACTION,
case when authorizedactions > 15 then 'Y' else 'N' END SPECIAL
FROM psauthitem
where classid = 'ALLPAGES'

• Here is are SQL statements that join the relevant tables to determine
who can access what and what can be accessed by whom.

/* all User IDs */

SELECT OPRID

FROM PSOPRDEFN

ORDER BY OPRID

/* all role names */

SELECT ROLENAME

FROM PSROLEDEFN

ORDER BY ROLENAME

Security Overview of primary
table relations

Security Overview of primary
table relations

/* all permission lists (class names) */

SELECT CLASSID

FROM PSCLASSDEFN

ORDER BY CLASSID

/* users --> roles */

SELECT ROLEUSER, ROLENAME

FROM PSROLEUSER

ORDER BY ROLEUSER, ROLENAME

Security Overview of primary
table relations

/* users --> permission lists (class names) */
SELECT DISTINCT UR.ROLEUSER, RP.CLASSID
FROM PSROLEUSER UR, PSROLECLASS RP
WHERE UR.ROLENAME = RP.ROLENAME
ORDER BY UR.ROLEUSER, RP.CLASSID

/* users --> components */
SELECT DISTINCT UR.ROLEUSER, PC.MENUNAME, PC.BARNAME,
PC.BARITEMNAME, PC.PNLITEMNAME
FROM PSROLEUSER UR, PSROLECLASS RP, PSAUTHITEM PC
WHERE UR.ROLENAME = RP.ROLENAME
AND RP.CLASSID = PC.CLASSID
ORDERY BY UR.ROLEUSER, PC.MENUNAME, PC.BARNAME,
PC.BARITEMNAME, PC.PNLITEMNAME

Security Overview of primary
table relations

/* roles --> permission lists (class names) */

SELECT ROLENAME, CLASSID

FROM PSROLECLASS

ORDER BY ROLENAME, CLASSID

/* roles --> components */

SELECT DISTINCT RP.ROLENAME, PC.MENUNAME

, PC.BARNAME, PC.BARITEMNAME, PC.PNLITEMNAME

FROM PSROLECLASS RP, PSAUTHITEM PC

WHERE RP.CLASSID = PC.CLASSID

XLat changes in 8.9

The xlat table is now it was xlattable
Peoplesoft delivers a view below no PS_ infront of the record

SELECT * FROM PSXLATItem
SELECT * FROM PSXLATdefn
SELECT * FROM XLATtable_VW

Implementation of Roth 401(k)

• Relates only to people that have not installed up to
bundle 10 in version 8.9 HRMS

• Extract COBOL programs:
– PSCDEDT3.CBL

– PSPDEDLD.CBL

– PSPDCLIM.CBL

– PSPDCSAV.CBL

– PSCLMTTB.CBL

• Then re-compile and link all COBOLs in your library

• Run Data Mover Script:
– PSDEDLD.DMS

Limit Type Translate Values

REASON_NOT_TAKEN Translate Values

Sample Limit Table Setup

Quick Reference to CI
Declare Function CheckErrorCodes PeopleCode FUNCLIB_SL_STAF.EMPLID FieldFormula;

Local string &oprid;
Local ApiObject &delete_user_profile;
Local boolean &error;

/* Get values from the AET record */
&oprid = SL_EP_ROLES_AET.OPRID;

/*Get Session*/
&Session = %Session;
%Session.Connect(1, "EXISTING", "", "", 0);

/* Call CI that will delete the user profile information */
&delete_user_profile = %Session.GetCompIntfc(CompIntfc.DELETE_USER_PROFILE);
&delete_user_profile.InteractiveMode = False;
&delete_user_profile.oprID = &oprid;
&error = False;

/* If error with CI send message to log */
If &delete_user_profile = Null Then

CheckErrorCodes(&Session, &oprid);
&error = True;
MessageBox(0, " ", 0, 0, " profile empty" | &oprid);
/* Application Specific Error Processing */

Quick Reference to CI Continued
Else

/* Set Component Interface Standard Properties */
&delete_user_profile.InteractiveMode = True;
&delete_user_profile.GetHistoryItems = False;
&delete_user_profile.EditHistoryItems = False;
&delete_user_profile.GetDummyRows = False;

If &delete_user_profile.Get() Then
If Not &delete_user_profile.save() Then

CheckErrorCodes(&Session, &oprid);
&error = True;
MessageBox(0, " ", 0, 0, " failed for oprid " | &oprid);
rem Error (MsgGet(20200, 15, ""));

Else
MessageBox(0, " ", 0, 0, " successful for oprid " | &oprid);
rem MessageBox(64, MsgGetText(20200, 16, "Success"), 20200, 16, "JOB Data

Success.");
End-If;

End-If;
End-If;

&delete_user_profile.Cancel();

Declare Function CheckErrorCodes PeopleCode FUNCLIB_SL_STAF.EMPLID FieldFormula;
Declare Function GetRandomPassword PeopleCode FUNCLIB_CS.CREATE_USERID

FieldFormula;

Local string &oprid, &sl_oprid, &sl_snlid, &emailid, &sl_email_addr, &sl_rel_sname,
&opraliastype;

Local string &outpassword, &outSymbolicId, &outPrimary, &outData, &outProcess,
&outCurrency, &tmp, &prioremail;

Local ApiObject &user_profile;
Local ApiObject &Session;
Local ApiObject &EmailCol;
Local ApiObject &EmailItm;
Local ApiObject &IDItm;
Local ApiObject &IDCol;
Local boolean &error;

/* Get values from the AET record */
&oprid = SL_EP_ROLES_AET.OPRID;
&sl_oprid = SL_EP_ROLES_AET.SL_OPERID;
&sl_snlid = SL_EP_ROLES_AET.SL_SNLID;
&emailid = SL_EP_ROLES_AET.EMAILID;
&sl_email_addr = SL_EP_ROLES_AET.SL_EMAIL_ADDR;
&sl_rel_sname = SL_EP_ROLES_AET.SL_REL_SNAME;
&opraliastype = SL_EP_ROLES_AET.OPRALIASTYPE;

Quick Reference to CI Continued

Quick Reference to CI Continued

If &sl_rel_sname <> "EMP" Then
&sl_rel_sname = "NEM";

End-If;

If &sl_operid <> &oprid Or
&sl_email_addr <> &emailid Or
&sl_rel_sname <> &opraliastype Then

/* assgin values */
&outSymbolicId = "SYSADM1";
&outPrimary = "PPALL";
&outData = " ";
&outProcess = "XCSYREPT";
&outCurrency = "USD";

Quick Reference to CI Continued
/*Get Session*/
&Session = %Session;
%Session.Connect(1, "EXISTING", "", "", 0);

/* Call CI that will add or change user profile information */
&user_profile = %Session.GetCompIntfc(CompIntfc.USER_PROFILE);
&user_profile.InteractiveMode = False;
&error = False;

If &user_profile = Null Then
CheckErrorCodes(&Session, &oprid);
&error = True;
MessageBox(0, " ", 0, 0, " oprid does not exist" | &oprid);
/* Application Specific Error Processing */

Else
/* Set Component Interface Standard Properties */
&user_profile.InteractiveMode = True;
&user_profile.GetHistoryItems = False;
&user_profile.EditHistoryItems = False;
&user_profile.GetDummyRows = False;

Quick Reference to CI Continued

If RTrim(&oprid) = "" Then

MessageBox(0, " ", 0, 0, " oprid does not exist create new " | &sl_oprid | " emplid " |
&sl_snlid);

/* ***** oprid does not exist create new ********/

/* create a new userid for this emplid */

&user_profile.userID = &sl_oprid;

/* create a random password */

&outpassword = GetRandomPassword();

Quick Reference to CI Continued
If &user_profile.CREATE() Then

&user_profile.emplid = &sl_snlid;

/* set security codes */
&user_profile.SymbolicID = &outSymbolicId;
&user_profile.setpassword(&outpassword, &outpassword);
&user_profile.PrimaryPermissionList = &outPrimary;
&user_profile.RowSecurityPermissionList = &outData;
&user_profile.ProcessProfilePermissionList = &outProcess;
&user_profile.CurrencyCode = &outCurrency;
MessageBox(0, " ", 0, 0, "in create email address " | &sl_email_addr);
If RTrim(&sl_email_addr) = "" Then

&sl_email_addr = " ";
&user_profile.emailuser = "N";
&user_profile.emailaddresses.DeleteItem(1);

Quick Reference to CI Continued

Else
&user_profile.emailuser = "Y";
&user_profile.emailid = &sl_email_addr;
/* Get Email Collection Field Properties -- */
&EmailCol = &user_profile.emailaddresses;
&EmailItm = &EmailCol.InsertItem(1);
&EmailItm.emailtype = "BUS";
&EmailItm.emailaddress = &sl_email_addr;
&EmailItm.primaryEmail = "Y";

End-If;

&user_profile.AccountLocked = 0;

/* Set values for ID Types collection */
/* Get ID types Collection Field Properties -- */
&IDCol = &user_profile.IDTypes;
&IDItm = &IDCol.InsertItem(1);
&IDItm.IDtype = RTrim(&sl_rel_sname);
&IDItm.OPRALIASVALUE = &sl_snlid;
&IDItm.EMPLID = &sl_snlid;

Quick Reference to CI Continued

/* Set values for ID Types Attributes collection */

&IDItm.Attributes.Item(1).AttributeValue = &sl_snlid;

/* invoke SetUserDescription method */

&tmp = &user_profile.SetUserDescription();

If Not &user_profile.save() Then

CheckErrorCodes(&Session, &oprid);

&error = True;

MessageBox(0, " ", 0, 0, " Could not create User ID" | &sl_oprid);

Else

MessageBox(0, " ", 0, 0, " successful for oprid " | &sl_oprid);

End-If;

End-If;

Quick Reference to CI Continued
Else

/* get existing userprofile and update with changes */
&user_profile.userID = &oprid;
If &user_profile.Get() Then

&user_profile.emplid = &sl_snlid;
&user_profile.userID = &sl_oprid;
MessageBox(0, " ", 0, 0, "in change email address " | &sl_email_addr | " " | &emailid);
/* Get Email Collection Field Properties -- */
If RTrim(&sl_email_addr) = "" Then

&sl_email_addr = " ";
&user_profile.emailuser = "N";
&user_profile.emailaddresses.DeleteItem(1);

Else

If RTrim(&emailid) = "" Then
/* Insert email information -- */
&user_profile.emailuser = "Y";
&user_profile.emailid = &sl_email_addr;
&EmailCol = &user_profile.emailaddresses;
&EmailItm = &EmailCol.InsertItem(1);
&EmailItm.emailtype = "BUS";
&EmailItm.emailaddress = &sl_email_addr;
&EmailItm.primaryEmail = "Y";

Else

Quick Reference to CI Continued
/* update current information */

&user_profile.emailuser = "Y";
&user_profile.emailid = &sl_email_addr;
&EmailCol = &user_profile.emailaddresses;
&EmailItm = &EmailCol.item(1);
&EmailItm.emailaddress = &sl_email_addr;

End-If;
End-If;

/* Set values for ID Types collection */
/* Get ID types Collection Field Properties -- */
&IDCol = &user_profile.IDTypes;
&IDItm = &IDCol.Item(1);
&IDItm.IDtype = RTrim(&sl_rel_sname);
&IDItm.OPRALIASVALUE = &sl_snlid;
&IDItm.EMPLID = &sl_snlid;

Quick Reference to CI Continued

/* Set values for ID Types Attributes collection */

&IDItm.Attributes.Item(1).AttributeValue = &sl_snlid;

/* invoke SetUserDescription method */

&tmp = &user_profile.SetUserDescription();

/* Set values for Roles collection */

/* Delete roles that are dynamic */

&rolecollect = &user_profile.Roles;

Quick Reference to CI Continued
If Not &user_profile.save() Then

CheckErrorCodes(&Session, &oprid);
&error = True;
MessageBox(0, " ", 0, 0, " failed for oprid " | &oprid);

Else
MessageBox(0, " ", 0, 0, " successful for oprid " | &oprid);

End-If;
End-If;

End-If;

End-If;

&user_profile.Cancel();

If RTrim(&oprid) <> RTrim(&sl_oprid) And
RTrim(&oprid) <> "" Then

/* Call CI that will delete the user profile information */
&delete_user_profile = %Session.GetCompIntfc(CompIntfc.DELETE_USER_PROFILE);
&delete_user_profile.InteractiveMode = False;
&delete_user_profile.oprID = &oprid;
&error = False;

Quick Reference to CI Continued

/* If error with CI send message to log */
If &delete_user_profile = Null Then

CheckErrorCodes(&Session, &oprid);
&error = True;
MessageBox(0, " ", 0, 0, " profile empty" | &oprid);
/* Application Specific Error Processing */

Else
MessageBox(0, " ", 0, 0, "in delete profile " | &oprid);
/* Set Component Interface Standard Properties */
&delete_user_profile.InteractiveMode = True;
&delete_user_profile.GetHistoryItems = False;
&delete_user_profile.EditHistoryItems = False;
&delete_user_profile.GetDummyRows = False;

Quick Reference to CI Continued

If &delete_user_profile.Get() Then
If Not &delete_user_profile.save() Then

CheckErrorCodes(&Session, &oprid);
&error = True;
MessageBox(0, " ", 0, 0, " failed for oprid " | &oprid);
rem Error (MsgGet(20200, 15, ""));

Else
MessageBox(0, " ", 0, 0, " successful for oprid " | &oprid);
rem MessageBox(64, MsgGetText(20200, 16, "Success"), 20200, 16, "JOB Data

Success.");
End-If;

End-If;
End-If;

&delete_user_profile.Cancel();

End-If;

End-If;

Second CI Example

Declare Function CheckErrorCodes PeopleCode FUNCLIB_SL_STAF.EMPLID FieldFormula;

Local ApiObject &Session;
Local ApiObject &SL_CI_JOB_DATA;

Local ApiObject &JOBCol;
Local ApiObject &JOBItm;
Local ApiObject &COMPENSATIONCol;
Local ApiObject &COMPENSATIONItm;

Local boolean &Error, &success, &Rows_returned;

Local number &baseamt, &currcomp, &newrate, &effseq, &stdhrs, &mult;
Local string &emplid, &fullparttime;
Local string &ACTION, &ACT_REASON, &flsa;
Local date &effdt, &jobeffdt;

&emplid = SL_CHCR_LD_AET.EMPLID;
&effdt = SL_CHCR_LD_AET.EFFDT;
&baseamt = SL_CHCR_LD_AET.SL_PRPINCRT;
&ACTION = "PAY";
&ACT_REASON = "RVW";
&effseq = 0;
rem MessageBox(0, "", 0, 0, "emplid " | &emplid);
&Error = False;
&Session = %Session;
&SL_CI_JOB_DATA = &Session.GetCompIntfc(CompIntfc.CI_JOB_DATA);

Second CI Example Continued

If &SL_CI_JOB_DATA = Null Then
CheckErrorCodes(&Session, &emplid);
&Error = True;
/* Application Specific Error Processing */

Else
/* Set Component Interface Standard Properties */
&SL_CI_JOB_DATA.InteractiveMode = True;
&SL_CI_JOB_DATA.GetHistoryItems = False;
&SL_CI_JOB_DATA.EditHistoryItems = False;
&SL_CI_JOB_DATA.GetDummyRows = False;

/* Set Component Interface Get Keys */
&SL_CI_JOB_DATA.KEYPROP_EMPLID = &emplid;
&SL_CI_JOB_DATA.KEYPROP_EMPL_RCD = 0;

If Not &SL_CI_JOB_DATA.Get() Then
CheckErrorCodes(&Session, &emplid);
&Error = True;

Else

/* Get JOB Collection Field Properties -- Parent: PS_ROOT Collection PER_ORG_ASGN */
&JOBCol = &SL_CI_JOB_DATA.COLL_JOB;
&jobeffdt = &JOBCol.item(1).keyprop_effdt;

/* MessageBox(0, "", 0, 0, "effdt " | &effdt);
MessageBox(0, "", 0, 0, " job effdt " | &jobeffdt);*/

&JOBItm = &JOBCol.InsertItem(1);
/* if effective date of the load is the same as the most current job row get the prior rows effective
sequence to add to */

If &jobeffdt = &effdt Then
&jobcur = &JOBCol.Item(2);
&effseq = &jobcur.KEYPROP_EFFSEQ + 1;
/* MessageBox(0, "", 0, 0, "item effseq " | &jobcur.KEYPROP_EFFSEQ);*/

Else
&effseq = 0;

End-If;

&JOBItm.KEYPROP_EFFDT = &effdt;
&JOBItm.KEYPROP_EFFSEQ = &effseq;

rem MessageBox(0, "", 0, 0, "effseq " | &effseq);

&JOBItm.PROP_ACTION = &ACTION;
&JOBItm.PROP_ACTION_REASON = &ACT_REASON;

Second CI Example Continued

/* get the current comp rate to calculate new rate */
&freq = &JOBItm.prop_comp_frequency;
&currcomp = &JOBItm.prop_comprate;
&flsa = &JOBItm.prop_flsa_status;
&fullparttime = &JOBItm.prop_full_part_time;
&stdhrs = &JOBItm.prop_std_hours;

If &fullparttime = "F" Then
If &flsa = "N" Then

&newrate = Round((&currcomp + &baseamt) / 10, 0) * 10;
Else

&newrate = Round((&currcomp + &baseamt) / 100, 0) * 100;
End-If;

Else
&mult = &stdhrs / 40;
If &flsa = "N" Then

&newrate = Round((&currcomp + (&baseamt * &mult)), 0);
Else

&newrate = Round((&currcomp + (&baseamt * &mult)), 0);
End-If;

End-If;

Second CI Example Continued

&JOBItm.KEYPROP_EFFDT = &effdt;
&JOBItm.KEYPROP_EFFSEQ = &effseq;

&JOBItm.PROP_ACTION = &ACTION;
&JOBItm.PROP_ACTION_REASON = &ACT_REASON;

/* Get COMPENSATION Collection Field Properties -- Parent: JOB Item */
&COMPENSATIONCol = &JOBItm.COLL_COMPENSATION;
&COMPENSATIONItm = &COMPENSATIONCol.Item(1);

&COMPENSATIONItm.PROP_COMPRATE = &newrate;

/* if save does not work write to log */
If Not &SL_CI_JOB_DATA.Save() Then

CheckErrorCodes(&Session, &emplid);
&Error = True;
Error (MsgGet(20200, 15, ""));
MessageBox(0, "Fail", 0, 0, "Failed to insert JOB Data for emplid " | &emplid);

End-If;
End-If;

End-If;

/* Cancel Instance of Component Interface */
&SL_CI_JOB_DATA.Cancel();

Second CI Example Continued

Summary

• XML
• Major Components of XML
• SOAP
• XML Publisher for PeopleSoft
• Publisher Security
• Flat File Layout
• Tags
• Basic Setup
• Report Categories
• Data Source Creation
• XML Application Packages
• Register the Data Source
• XML Files in SQL Dev
• Putting it Together

Summary Continued

• Tips and Tricks

• Helpful Links

• Email from Application Engine

• PL/SQL

• PL/SQL in SQR

• SQR Template

• SQC Example

• UTIL_FILE

• How to find bad SubPages

• Finding Hidden Folders

• Where is email value stored?

Summary Continued

• Tips and Tricks Continued

• How to find Message Catalogs by date

• Find what access a Role gives a User

• Find where the Component is in PeopleSoft Portal and
Permission List

• Find where the Page is in the PeopleSoft Portal System

• Secrets of PSAUTHITEM

• Security Overview of primary table relations

• XLat changes in 8.9

• Implementation of Roth 401(k)

Summary Continued

• Component Interface Quick Reference

• PeopleCode Example

• Second PeopleCode Example

Become a Complete Oracle Technology
and Database Professional

• Join the IOUG online at www.ioug.org and get immediate access
to:

• Member Discounts and Special Offers

• SELECT Journal

• Library of Oracle Knowledge (LoOK)

• Member Directory

• Special Interest Groups

• Discussion Forums:

• Access to Local and Regional Users Groups:

• 5 Minute Briefing: Oracle

• Volunteer Opportunities

Questions/Comments/Discussion?

Save the Date!

May 3-7, 2009

Orange County Convention Center West

Orlando, Florida

Thank You!

Judi Doolittle, jhotsin@sandia.gov

