
Quality of Name Resolution in the Domain Name
System

Casey Deccio
Sandia National Laboratories

ctdecci@sandia.gov

Chao-Chih Chen and Prasant Mohapatra
University of California, Davis

{cchchen,pmohapatra}@ucdavis.edu

Jeff Sedayao and Krishna Kant
Intel Corporation

{jeff.sedayao,krishna.kant}@intel.com

Abstract—The Domain Name System (DNS) is integral to
today’s Internet. Name resolution for a domain is often dependent
on servers well outside the control of the domain’s owner. In
this paper we propose a formal model for analyzing the name
dependencies inherent in DNS, based on protocol specification
and actual implementations. We derive metrics to quantify the
extent to which domain names affect other domain names. It
is found that under certain conditions, the name resolution for
over one-half of the queries exhibits influence of domains not
expressly configured by administrators. This result serves to
quantify the degree of vulnerability of DNS due to dependencies
that administrators are unaware of. The model presented in
the paper also shows that the set of domains whose resolution
affects a given domain name is much smaller than previously
thought. The model also shows that with caching of NS target
addresses, the number of influential domains expands greatly,
thereby making the DNS infrastructure more vulnerable.

I. INTRODUCTION

Nearly all of today’s Internet applications rely on the
Domain Name System (DNS) for proper function. Its major
role of name-to-address translation is especially key to users,
who are largely accustomed to recognizing Internet “locations”
by human-friendly words, titles, and abbreviations, rather
than numeric IP address. DNS is also necessary for email
delivery, service discovery, and host identification. Since DNS
details are often left to the client resolver and abstracted at
the application level, its integrity and security are critical.
While temporary failures due to misconfiguration may cause
inconvenience, targeted attack by malicious parties could be
much less discernible, and the repercussions more severe.
Malicious parties seek to taint DNS responses, redirecting
applications to servers within their control, where sensitive
information can be stolen.

While the concept of name resolution is relatively simple,
the overall system is complex and its effects far-reaching.
Name resolution for a domain is often dependent on servers
well outside the control of the domain’s owner and managed
by third parties. A network of inter-organizational relationships
overlays the DNS infrastructure, and configurations that create
a dependency on peer organizations are in turn affected by
the security and accuracy of namespaces linked through this

This research was supported in part by the National Science Foundation
under the grant CNS-0716741

Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-AC04-94AL85000.

network. An understanding of a domain’s context in the entire
system is integral for reliability, integrity, and security of DNS.

In this work we analyze the network of inter-organization
dependencies comprising DNS. We derive a model to represent
this network, based on DNS behavior in specification and
implementation. Metrics are derived from the model to analyze
the quality of name resolution for a domain name, based on the
other names that affect its resolution. A large sample of recent
DNS name dependency data was collected and analyzed based
on these metrics. The results show how configurable caching
behaviors of name servers affect the size of the namespace that
influences a domain. The amount of influence coming from
namespace not explicitly configured by DNS administrators is
also analyzed.

The primary contributions presented in this research are:
• A formal model for analysis of DNS name dependencies,

based on specification and actual implementations
• Metrics for quantifying the influence domain names have

on other domain names
Previous work in this area is described in Section II. In

Section III we introduce the concept of DNS name dependen-
cies and review pertinent fundamentals of name resolution. In
Section IV we formalize a graph model for analyzing DNS
name dependencies and derive methods for quantifying influ-
ence. We describe methodologies employed for data collection,
an evaluation of the graph model, and an analysis of the
observed quality of name resolution in Section V. We conclude
in Section VI.

II. PREVIOUS WORK

The concept of name dependencies was most recently ana-
lyzed by Ramasubramanian, et al. [1]. Their research identifies
a set of name servers that affect the resolution of a given
domain name and which collectively comprise its trusted
computing base (TCB).

We build on the work presented in [1], performing further
examination of several areas to create a model of name
dependencies in DNS. The metric largely referred to in [1]
is the number of distinct name servers in the TCB—identified
both by IP address and name. In practice, redundant servers are
typically deployed by an organization to provide diversity and
high availability. In such cases, it is likely that versions and
configurations are consistent across the servers maintained by
a single organization. In this research we examine diversity of

SAND2009-2459C

Fig. 1. The zone hierarchy for the the zone data shown in Table I.

the namespace in the TCB, rather than the number of servers.
We also consider the role of glue records and caching.

Pappas, et al. [2] surveyed the DNS infrastructure for
configuration errors that negatively impact DNS robustness.
The authors examined subtle misconfigurations that could
bring about behaviors such as diminished server redundancy,
lame delegation, and cyclic dependency. This research presents
a model that may be used to methodically identify DNS
configuration errors and security vulnerabilities.

Other behavioral studies for DNS robustness and security
have been performed in [3], [4]. Design of next-generation
DNS systems using peer-to-peer overlay networks have been
suggested in [5]–[7] both for security and performance en-
hancement.

The DNS Security Extensions (DNSSEC) are the industry-
accepted standard for securing DNS [8]–[10]. It adds crypto-
graphic signatures to DNS resources, so resolvers can verify
the authenticity of the answers they receive. However, the
effort required to deploy and maintain DNSSEC-signed zones
has made its adoption slow. Our survey of the DNS namespace
showed that only 0.02% of zones are currently signed. While
DNSSEC preserves the integrity of DNS answers, it does not
affect the relationships between the TCB shown in our model,
particularly for metrics like performance and availability.

III. NAME DEPENDENCIES IN DNS
DNS is the system by which domain names are translated

into addresses. The DNS namespace is organized hierarchi-
cally. Zones are pieces of the namespace managed by a single
entity and are delegated to organizations from the top down,
beginning with the root zone. In the resolution process name
servers that are resolvers query authoritative name servers,
which either provide an answer or a referral to a delegated
zone. For example, in Figure 1 adminstration of the sports.net
zone has been delegated by the net zone.

Resolution of a domain name is often dependent on reso-
lution of other domain names. Three specific components in
the DNS protocol lead to such name dependencies:

• Parent zones: Because name resolution is performed by
traversing the name hierarchy from the top down, a name
is always dependent on its parent zone.

• NS targets: The NS (name server) resource record (RR)
type uses names, rather than addresses, for specifying
servers authoritative for a zone, so a resolver must resolve
the names before it can query the authoritative servers.

• Aliases: If a name resolves to an alias (i.e., CNAME RR
type), then to obtain an address, the alias target must also
be resolved.

Domain name u depends on domain name v if resolution
of v may influence resolution of u. Dependence is transitive:
if u depends on v and v depends on w, then u depends on w.
The term trusted computing base (TCB), as used in this work,
refers to zones, which typically correspond to administering
organizations or configurations.

The raw size of the TCB is not enough to measure the
effects of third-party namespace on resolution of a domain
name, as in [1]. In some cases policy or preference may dictate
whether or not the existence of a zone is acceptable in the
TCB (e.g., a government zone that prohibits zones operated
by foreign governments in its TCB). However, a thorough
analysis will show that not all names have equal influence.
In this research we introduce level of influence Iu(v) as a
quantitative measure of v’s influence on u. Level of influence
is formally defined in Section IV.

Influence is categorized into two classes: active and passive.
If domain name u is actively influenced by domain name
v, then with some non-zero probability resolution of v will
be required for resolution of name u. If domain name u is
passively influenced by domain name v, then although v may
not be required for resolution of u, resolution of v may affect
resolution of u with some probability. The conditions for active
and passive influence are described later in this section.

Some discussion of specific aspects of DNS behavior is
required to properly create a well-formed dependency model.
The role of glue and additional records in delegation, the
selection of authoritative name servers, and the trust ranking
of data are discussed in the remainder of this section. Table I is
provided as a reference for this discussion. It contains the data
for several fictitious zones, shown hierarchically in Fig. 1. The
behaviors of two popular DNS server implementations are also
referenced: the Berkeley Internet Name Daemon version 9.5
(BIND) [11] and djbdns [12].

A. Glue and additional records
When a query for a name in zone z reaches name server

s, which is authoritative for Parent(z), s returns the set of
NS RRs corresponding to the name servers authoritative for
z, as a “referral”. The set of NS target names for this set is
denoted NSz . Addresses of the NS targets in NSz are required
for the resolver to subsequently query the servers. If any NS
targets are subdomains of z, then s must also include glue
records for those targets in the response’s additional section
to “bootstrap” the resolution process, so there isn’t a cyclic
dependency between a zone and its descendants [13]. The glue
records are A (address) RRs corresponding to the target names
of the NS RRs for z but maintained in the Parent(z) zone.
The NS RRs and associated glue records for tennis.com are
found on lines 7–11 of the com zone in Table I.

If server s has pertinent non-glue A RRs available locally,
it may send them in the additional section of its response to
expedite the resolution process for the resolver. This could

$ORIGIN soccer.com.
Name Type Value

1 soccer.com. NS ball.soccer.com.
2 soccer.com. NS racket.tennis.com.
3 soccer.com. NS ns1.sports.net.
4 ball.soccer.com. A 10.0.1.1
5 www.soccer.com. CNAME www.tennis.com.

$ORIGIN tennis.com.
Name Type Value

1 tennis.com. NS ns1.tennis.com.
2 tennis.com. NS ball.soccer.com.
3 tennis.com. NS ns1.sports.net.
4 ns1.tennis.com. A 10.0.2.1
5 www.tennis.com. A 10.0.2.2
6 racket A 10.0.2.3

$ORIGIN athletics.com.
Name Type Value

1 athletics.com. NS ns1.athletics.com.
2 ns1.athletics.com. A 10.0.6.1

$ORIGIN com.
Name Type Value

1 com. NS ns1.com.
2 ns1.com. A 10.0.3.1
3 athletics.com. NS ns1.athletics.com.
4 soccer.com. NS ball.soccer.com.
5 soccer.com. NS racket.tennis.com.
6 soccer.com. NS ns1.sports.net.
7 tennis.com. NS ball.soccer.com.
8 tennis.com. NS ns1.tennis.com.
9 tennis.com. NS ns1.sports.net.
10 ball.soccer.com. A 10.0.1.1
11 ns1.tennis.com. A 10.0.2.1
12 ns1.athletics.com. A 10.0.6.1

$ORIGIN sports.net.
Name Type Value

1 sports.net. NS ns1.sports.net.
2 sports.net. NS ns1.athletics.com.
3 ns1.sports.net. A 10.0.4.1

$ORIGIN net.
Name Type Value

1 net. NS ns1.net.
2 ns1.net. A 10.0.5.1
3 sports.net. NS ns1.sports.net.
4 sports.net. NS ns1.athletics.com.
5 ns1.sports.net. A 10.0.4.1

TABLE I
THE ZONE DATA FROM SEVERAL FICTITIOUS ZONES, WHOSE HIERARCHY

IS SHOWN IN FIG. 1. ANY COINCIDENCE WITH ACTUAL ZONES OF THE
SAME NAME IS UNINTENTIONAL.

happen if s is also authoritative for the zones to which
the targets belong or if s has an answer cached from an
authoritative response [13]. However, any such RRs included
in the response for which Parent(z) is not a superdomain
are considered out-of-bailiwick (i.e., outside its jurisdiction).
Thus resolver implementations should independently obtain
an authoritative answer for the out-of-bailiwick target names
before querying such servers.

The resolver is responsible for resolving any names from
NSz which are out-of-bailiwick or not included in the ad-

ditional section of a response from s. Such induced queries
indicate active influence of the resolved names on z, since it
is directly dependent on their resolution.

B. Name server selection
RFC 1035 [14] describes the process by which servers are

selected by a resolver for querying a zone z as part of the
resolution process. The resolver begins with the list of all
server names NSz . The addresses known by the resolver for
target names in NSz initially populate the set of corresponding
addresses, and it initiates requests in parallel to acquire ad-
dresses for any others. The resolver also associates historical
statistics, such as response time and success rate, to each
address. The complete set of addresses corresponding to NS
target names in NSz is denoted NSAz . A resolver will avoid
using an address from NSAz twice until all addresses have
been tried at least once. After that, it prefers the server with
the best performance record, thus fine-tuning the performance
for lookups of z [14].

This behavior is not consistent across implementations. The
djbdns name server selects a server from NSAz uniformly at
random. However, a resolver using BIND, which follows the
performance-based selection guideline, will gravitate toward
preferring a single server or set of servers in NSAz . We make
the assumption that requests for subdomains of z arrive from
resolvers in diverse network and geographic locations, such
that the preference to servers in NSAz is distributed uniformly
among such resolvers. This leads to an equal probability that
any server in NSAz receives a query for subdomains of z.

C. Trust ranking
RFC 2181 [15] outlines a relative ranking of trustworthiness

of data for name servers to consider as part of operation.
Among the total ranking are the following (in decreasing order
of trustworthiness):

• Data from a zone for which the server is authoritative,
other than glue data

• The authoritative data included in the answer section of
an authoritative reply

• The data in the authority section of an authoritative reply
• Glue from a zone for which the server is authoritative
• Data from additional section of a response
This trust ranking has effects on name dependencies with

regard to both the resolver and the authoritative server. The
authoritative set of NS target names for z, NSz , may differ
from those stored in Parent(z), NS′

z . While a resolver must
initially use the set NS′

z provided by a server authoritative for
Parent(z), once it receives an answer for a name in z from a
server authoritative for z, it will use the target names in NSz

(provided in the authority section) in preference to those in
NS′

z . This behavior is consistent with both BIND and djbdns.
Server selection therefore depends not only on the NS targets
in NSz but also on the probability that the set of NS RRs for
z has been cached by the resolver—either from the answer or
authority section of an authoritative reply. This probability is
denoted PNS(z).

If authoritative server s ∈ NSAParent(z) has caching
functionality enabled and has stored the A RR for an NS target
v ∈ NSz from the answer section of an authoritative response,
according to the RFC, it will trust this RR more than a glue
in its own configuration. Ps(v) denotes the probability that s
has in cache and provides such authoritative data for v. This
behavior is configurable in BIND, but it is enabled by default.

If resolver c has cached the address for v ∈ NSz , as the
result of an answer from an authoritative source from a prior
transaction, then c deems the cached data more trustworthy
than any data received in the additional section of a response.
Thus, it will use the previously cached data in preference
to data—whether from glue or s’s cache—returned in the
additional section by s ∈ NSAParent(z). Pc(v) denotes the
probability that c has and uses such authoritative data for v
in its cache. BIND adheres strictly to this, as it will direct
queries to an address received by a more “trustworthy” source
over a server returned in an additional section—unless the
authoritative data is an alias (i.e., a CNAME RR). The djbdns
name server treats the A RRs with equal precedence, but will
always use an authoritative CNAME RR over an additional A
RR of the same name.

Suppose v ∈ NSz is a subdomain of Parent(z),
Parent(v) "= z, and Parent(z) is properly configured with
a glue record for v. If an authoritative answer for v has previ-
ously been resolved and cached by either s ∈ NSAParent(z) or
resolver c, then z is affected by v and its name dependencies.
This behavior describes passive influence of v on z. The
probability of passive influence, P{s,c}(v), is the combined
probability of Ps(v) and Pc(v), the likelihood that either s
or c has and uses a cached authoritative answer for v. Since
the probabilities are independent of one another, P{s,c}(v) is
calculated:

P{s,c}(v) = Ps(v) ∨ Pc(v) = 1 −
(

1 − Ps(v)
)(

1 − Pc(v)
)

IV. DNS DEPENDENCY MODEL

Name dependencies are quantified using level of influence,
which is the probability that one name will be utilized for
resolving another. Let Iu(v) ∈ [0, 1] denote v’s level of
influence on u—i.e., the probability that domain v will be
used in the resolution process for u. Dependencies may be
reciprocated (i.e., Iu(v) > 0 and Iv(u) > 0), though the level
of influence in each direction may differ. The level of influence
of a domain does not necessarily indicate the trustworthiness
of that domain. It will be shown that dependencies of a domain
propagate along dependency paths to domains outside of its
control. In the remainder of this section, a model is defined
for analysis and quantification of DNS name dependencies.

A. Name dependency graph
To derive the values for influence of domain name d a

directed, connected graph, Gd = (Vd, Ad), is used to model
name dependencies. The graph Gd contains a single sink,
r, which is the root zone. Each node in the graph v ∈ Vd

represents a domain name, and each edge, (u, v) ∈ Ad,
signifies that u is directly dependent on v for proper resolution

Term Definition
r The root name “.”

Iu(v) The measure of name v’s influence on name u
Iu(D) The aggregate influence of names in set D on

name u
Parent(d) The nearest ancestor zone of name d
Cname(d) The alias target of name d
NSz , NS′

z The set of NS target names authoritative for zone z,
as configured in z and Parent(z), respectively

NSAz , NSA′
z The set of addresses corresponding to the names in

NSz and NS′
z , respectively

NSA
y
z The set of servers authoritative for zone z but not

for zone y
PNS(z) The probability that the resolver has the set of

NS RRs for z cached from an authoritative source
P{s,c}(v) The probability that either s or c has in cache and

uses NS target name v from an authoritative source
Gd = (Vd, Ad) Name dependency graph for name d
G′

d
= (V ′

d
, A′

d
) Active influence dependency graph for name d

Pq(z, v) The probability that NS target v is used to resolve z
w(u, v) The weight of edge (u, v) in Ad

Su The set of addresses corresponding to name u
U ′

d
⊆ Ud ⊆ Zd The sets of first-order, non-trivial, and all

zones in Vd, respectively

TABLE II
NOTATION USED IN THIS RESEARCH.

Fig. 2. The dependency graph for the domain name www.soccer.com, derived
from the zone data in Table I. The solid lines represent active influence, and
the dashed lines represent passive influence.

of itself and any descendant names. Each edge, (u, v) ∈ Ad,
carries a weight, w(u, v), indicative of the probability that it
will be followed for resolving u. A name dependency graph
for domain name www.soccer.com is shown in Fig. 2, built
from the data in Table I.

Edges are placed on the graph from each domain name
u, u "= r to its parent Parent(u) with w

(

u, Parent(u)
)

= 1;
a domain name is always dependent on its parent. If res-
olution of domain name u yields a CNAME RR, then an

Name Type Value w(z, v)

foo.com. NS ns1.foo.com. 2
3

= 0.67

foo.com. NS ns2.foo.com. 1
3

= 0.33

ns1.foo.com. A 10.10.0.1
ns1.foo.com. A 10.10.0.4
ns2.foo.com. A 10.10.0.2
bar.com. NS ns1.bar.com. 1+0.5

2
= 0.75

bar.com. NS ns2.bar.com. 0.5
2

= 0.25

ns1.bar.com. A 10.20.0.1
ns1.bar.com. A 10.20.0.2
ns2.bar.com. A 10.20.0.1

TABLE IV
EXAMPLE ZONE DATA TO ILLUSTRATE QUERY DISTRIBUTION AMONG NS

TARGET NAMES OF SERVERS AUTHORITATIVE FOR A ZONE.

edge is placed between u and its target name, Cname(u),
with w(u,Cname(u)) = 1; the resolution of an alias is
always dependent on the resolution of its target. Such edges
in Fig. 2 are those between www.soccer.com and its parent,
soccer.com, and between www.soccer.com and its canonical
name, www.tennis.com.

Placement of edges and weights corresponding to NS target
dependencies is somewhat involved and draws from the dis-
cussion in Section III. The considerations are summarized in
Table III.

We first identify the proportion of queries distributed among
each of the NS target names in NSz , which we use as a base
for calculating the weights of edges in Ad stemming from
NS target dependencies. Since resolvers select from addresses
rather than names of authoritative servers, the probability,
Pq(z, v), of querying any NS target v ∈ NSz for resolution of
z will be some fraction of |NSAz| that reflects the proportion
of server addresses attributed to v. Let Sv represent the set
of addresses to which v ∈ NSz resolves. A naı̈ve formula for
determining query probability Pq(z, v) is to simply calculate
the fraction of total server addresses authoritative for z that
correspond to v:

Pq(z, v) =
|Sv|

|NSAz|

The zone data for foo.com in Table IV shows that an NS target
name that resolves to multiple addresses, such as ns1.foo.com,
has a higher probability of being queried for names in the zone
than an NS target name that resolves to only a single address,
such as ns2.foo.com.

It is possible that multiple NS target names in NSz resolve
to the same address, so a single address in Sv may also be
attributed to other names in NSz . A more complete approach
to determining query probability therefore is to evenly divide
the probabilistic weight attributed to a server address among
all the names that resolve to that address:

Pq(z, v) =

∑

s∈Sv
|{u ∈ NSz|s ∈ Su}|

−1

|NSAz|

For example, in Table IV both ns1.bar.com and ns2.bar.com
resolve to 10.20.0.1, so the weight of that server is split

evenly among both names. The result is that ns1.bar.com
queried with with 0.75 probability for bar.com because it also
resolves to 10.20.0.2, and ns2.bar.com is queried with only
0.25 probability.

When NSz "= NS′
z , the query probability of an edge to NS

target v must also factor in to the probability, PNS(z), that
the NS RRset for z is cached from an authoritative source, as
well as v’s membership in NSz and NS′

z:

Pq(z, v) = PNS(z)P
(

v ∈ NSz

)

∑

s∈Sv
|{u∈NSz|s∈Su}|

−1

|NSAz|
+

(

1 − PNS(z)
)

P
(

v ∈ NS′
z

)

∑

s∈Sv
|{u∈NS′

z
|s∈Su}|−1

|NSA′
z
|

For simplicity we assume that NSz = NS′
z unless specified

otherwise.
If NS target v ∈ NSz is not a subdomain of Parent(z),

edge (z, v) is added to Gd with w(z, v) = Pq(z, v). Resolution
of v is required for (i.e., actively influences) resolution of z.
An example is soccer.com’s dependency on ns1.sports.net.

If target name v ∈ NSz is a subdomain of z, the Parent(z)
zone should include a glue record for v. If no glue record exists
for v in the Parent(z) zone, then resolution of v is required
for (i.e., actively influences) resolution of z, and an edge (z, v)
is added to Gd with w(z, v) = Pq(z, v). Such is the case with
soccer.com’s dependency on racket.tennis.com.

If a glue record for v exists in bailiwick, then resolution of
v is not required for resolving z because the resolver will use
the address provided in glue from the Parent(z) authoritative
server. When Parent(v) = z, there is no edge (z, v) in Gd;
all servers authoritative for z have the authoritative data for
v, such as with ball.soccer.com’s relationship to soccer.com.
However, when Parent(v) "= z an edge (z, v) is added with
w(z, v) = P{s,c}(v)Pq(z, v); the name v passively influences
z, dependent on the probability that either the resolver or
the authoritative server has the address for v cached from an
authoritative source. An example is tennis.com’s dependency
on ball.soccer.com.

The active influence dependency graph, G′
d, of domain

name d is the subgraph of Gd produced when P{s,c}(v) =
0,∀v ∈ Vd and nodes with only zero-weight in-edges are
removed from the graph. The active influence dependency
graph for www.soccer.com would be created by eliminating
the ball.soccer.com node in Fig. 2.

B. Level of influence
An analysis of the dependency paths in Gd is necessary to

determine the level of influence of the domain names v ∈ Vd

on d. The dependency paths in Gd are modeled by performing
a depth-first traversal of Gd, beginning with d. This depth-first
traversal produces the exhaustive set of acyclic intermediate
paths of name dependencies for resolving d. The level of
influence is calculated by determining the probability that
paths leading from d will reach v during resolution:

Id(v) = P (d, . . . , v)

To calculate P (d, . . . , v), the probabilities of encountering
v in the dependency paths beginning with each of u’s direct

v subdomain Glue
of Parent(z) exists Parent(v) = z w(z, v) Influence type Example (Table I and Fig. 2)

no Pq(z, v) Active soccer.com → ns1.sports.net
yes no Pq(z, v) Active soccer.com → racket.tennis.com
yes yes no P{s,c}(v)Pq(z, v) Passive tennis.com → ball.soccer.com
yes yes yes 0 None soccer.com → ball.soccer.com

TABLE III
RULES FOR DETERMINING WHETHER OR NOT AND WITH WHAT WEIGHT w(z, v) A EDGE IS PLACED BETWEEN A ZONE z AND AN NS TARGET v ∈ NSAz .

dependencies must first be recursively calculated and aggre-
gated. The probability of encountering v in a path beginning
with edge (u, j) ∈ Ad is calculated by multiplying the
probability, w(u, j), of following edge (u, j) by the probability
of encountering v in a path beginning with j:

P (u, j, . . . , v) =






w(u, j) if j = v (direct dep)
0 if j = r (root)
w(u, j)P (j, . . . , v) otherwise

For a given domain name u ∈ Vd, resolution of u of-
ten requires following multiple branches at an intermediate
node, depending on the relationship between the dependency
types. For NS target dependencies of u at most one address
from NSAu is followed (assuming no server failure). How-
ever, alias and parent dependencies exist independently of
the NS target dependencies. For example, when resolving
names in tennis.com using the zone data from Table I, ei-
ther ns1.tennis.com, ball.soccer.com, or ns1.sports.net will be
selected, each with equal probability. However, its resolution
remains entirely dependent on its parent, com, regardless of
which server in NSAtennis.com is selected for query.

Aggregating the probability of encountering v in paths
beginning with each of u’s direct dependencies is as follows.
First the probability of encountering v through any NS-
type dependencies is determined by calculating the sum of
encountering it in each of the NS-type dependency edges
because the probabilities are dependent on one another:

P (u, [NS dep], . . . , v) =
∑

j∈NSu

w(u, j)P (j, . . . , v)

This probability is then combined independently with the
probability of encountering v in paths beginning with any
alias- or parent-type dependencies:

P (u, . . . , v) = 1 −
(

1 − P
(

u, Parent(u), . . . , v
)

)

(

1 − P
(

u,Cname(u), . . . , v
)

)

(

1 − P
(

u, [NS dep], . . . , v
)

)

Using these expressions, we calculate the level to which
sports.net influences soccer.com:

Iwww.soccer.com(sports.net) =
1 −

(

1 − P (www.soccer.com, soccer.com, . . . , sports.net)
)

(

1 − P (www.soccer.com, www.tennis.com, . . . , sports.net)
)

. . .
= 0.62 + 0.06P{s,c}(ball.soccer.com)

Algorithm 1 NonTrivialZones(d)

Input: Domain name d
Output: Set of non-trivial zones in Vd

1: D ← {Parent(d)}
2: for all (u, v) ∈ Ad do
3: if (u, v) is an NS target or alias dependency then
4: D ← D

⋃

{Parent(v)}
5: end if
6: end for
7: return D

C. Graph properties

Finding the level of influence of a single name on d requires
following all paths between d and r, which is computationally
complex. However, often it may suffice to simply know the set
of names influencing d, or other representative properties of
Gd. This section describes some properties from which metrics
can be derived for quantifying the TCB of d and measuring
the extent to which its resolution is affected by third parties.

1) Influential zones: The set of influential zones Zd ⊆
Vd is a measure of the TCB of d. Although a single or-
ganization may maintain several zones in Zd, it is gen-
erally representative of the diversity of organizations that
influence resolution of d. In Fig. 2 Zwww.soccer.com =
{soccer.com, tennis.com, sports.net, athletics.com, com, net, .}.

2) Non-trivial zones: Non-trivial zones are the result of
explicitly configured inter-zone dependencies. Included in this
set are the parent zones of any NS or alias targets in Ad:
U ⊆ Zd. A non-trivial zone foo.bar.com that influences d may
contribute up to four zones to Zd. However, if no in-edges
resulting from alias- or NS-type dependencies exist for any of
its ancestor zones (bar.com, com, and “.”), then they exist in Zd

only because foo.bar.com is explicitly configured as a depen-
dent zone and are thus trivial. Algorithm 1 identifies non-trivial
zones by iterating the set of edges Ad and adding the parent
zones of NS and alias targets. In Fig. 2 Uwww.soccer.com =
{soccer.com, tennis.com, sports.net, athletics.com}.

3) First-order dependencies: A subset of non-trivial zones
U ′

d ⊆ Ud are explicitly configured by d (or Parent(d), if d
is not a zone) and comprise first-order dependencies. U ′

d also
includes the non-trivial zones in the ancestry of each explicitly
configured zone. Algorithm 2 finds all the alias (lines 5–
7) and NS target (line 11) dependencies for a name d and
then includes the parent zone for each target (line 15) and
each non-trivial zone in its ancestry (lines 16–21). In Fig. 2

Algorithm 2 FirstOrderDeps(d)

Input: Domain name d
Output: Set of first-order dependencies in Vd

1: N ← NonTrivialZones(d)
2: /* M is the set of explicitly configured names for d */
3: M ← {d}
4: if d is not a zone then
5: if d is an alias then
6: M ← M

⋃

{Cname(d)}
7: end if
8: d ← Parent(d)
9: end if

10: /* Add NS target edges for zone d to M */
11: M ← M

⋃

{u ∈ Vd|∃(d, u) ∈ Ad, NS target dep.}
12: D ← {d}
13: /* Add non-trivial zones in M ’s ancestry to D */
14: for all u ∈ M do
15: v ← Parent(u)
16: while v "= r do
17: if v ∈ N then
18: D ← D

⋃

{v}
19: end if
20: v ← Parent(v)
21: end while
22: end for
23: return D

U ′www.soccer.com = {soccer.com, tennis.com, sports.net}.
4) Third-party influence: The computational complexity

of calculating level of influence for all u ∈ Vd renders it
infeasible in a large dependency graph. A less computationally
demanding metric is determining how much domain d is
influenced by names outside of U ′

d, i.e., Id(Ud − U ′
d). We

call this third-party influence (TPI). To do this, two helper
algorithms are utilized: the ControlledAlias algorithm
(Algorithm 3) analyzes a name to determine whether or not
it aliases (directly or indirectly) another name outside of
the set of U ′

d. The ThirdPartyInfluence1 algorithm
(Algorithm 4) determines the probability that resolution of
u will utilize a name outside the set of U ′

d. The latter is
computed by aggregating the probabilities that u will utilize
a name outside of U ′

d from aliasing (lines 3–5) or from NS
target dependencies in its ancestry (lines 10–19).

Algorithm 5 describes the methodology for calculating
third-party influence Id(Ud − U ′

d) of d. The TPI of d’s alias,
if any (line 6), is combined (line 18) with the TPI of its
parent zones (line 11) and that of its collective NS target
dependencies (lines 14–16).

V. DATA COLLECTION AND ANALYSIS

In this section we describe the methodology we employed
for collecting data from the DNS infrastructure, and provide
analysis of the data collected. With a subset of the DNS
data we evaluate how well theoretical influence correlates
with empirical analysis. Using results from the entire data set

Algorithm 3 ControlledAlias(u,D)

Input: Domain name u
Input: Set of first-order dependencies D
Output: False if u directly or indirectly aliases a name outside

explicit dependency; True otherwise
1: H ← {u}
2: while u is an alias do
3: if Parent(Cname(u)) /∈ D then
4: return False
5: else if Cname(u) ∈ H then /* Loop detected */
6: return True
7: end if
8: H ← H

⋃

{u}
9: u ← Cname(u)

10: end while
11: return True

Algorithm 4 ThirdPartyInfluence1(u,D)

Input: Domain name u
Input: Set of first-order dependencies D
Output: Influence on u by names outside of D

1: if u is not a zone then
2: /* u aliases a name outside of D */
3: if ControlledAlias(u,D) = False then
4: return 1.0
5: end if
6: u ← Parent(u)
7: end if
8: P ← 0
9: /* Aggregate influence outside D for u’s ancestors */

10: while u "= r do
11: Pu ← 0
12: for all v ∈ Vd|∃(u, v) ∈ Ad, NS target dep. do
13: if Parent(v) /∈ D or

ControlledAlias(v,D) = False then
14: Pu ← Pu + w(u, v)
15: end if
16: end for
17: P ← 1 − (1 − P)(1 − Pu)
18: u ← Parent(u)
19: end while
20: return P

we analyze several different areas to assess quality of name
resolution.

A. Data collection

We populated a database of name dependencies by crawl-
ing the namespace of known domain names. A set of over
3,000,000 hostnames was extracted from URLs indexed as
part of the Open Directory Project (ODP) at DMOZ [16] dated
April, 2009. These names were combined with over 100,000
names received as queries by the recursive servers at the In-
ternational Conference for High-performance Computing, Net-

Algorithm 5 ThirdPartyInfluence(d)

Input: Domain name d
Output: TPI of d

1: D ← FirstOrderDeps(d)
2: PA ← 0
3: if d is not a zone then
4: /* If d is an alias, calculate the TPI of Cname(d) */
5: if d is an alias then
6: PA ← ThirdPartyInfluence1(Cname(d), D)
7: end if
8: d ← Parent(d)
9: end if

10: /* Calculate the TPI of Parent(d) */
11: PP ← ThirdPartyInfluence1(Parent(d), D)
12: /* Calculate the TPI of each NS target of zone d */
13: PNS ← 0
14: for all u ∈ Vd|∃(d, u) ∈ Ad, NS target dep. do
15: PNS ←

PNS + w(d, u)ThirdPartyInfluence1(u,D)
16: end for
17: /* Aggregate the TPI of all name dependencies */
18: return 1 − (1 − PP)(1 − PA)(1 − PNS)

working, Storage and Analysis (SC08) [17]. The ODP/SC08
names were used to seed the domain name database.

Each name was investigated by first surveying each name in
its ancestry which had not already been surveyed, beginning
with the root. Surveying a domain name consisted of issuing
queries to a recursive server to receive an authoritative answer
for any matching NS, MX (mail exchange) and CNAME RRs.
The relationships between the name and any corresponding
targets returned were recorded and subsequently surveyed.

For each NS RR, we checked the consistency between
parent and child zones by using some extra probing. For zone z
we found the set of servers only authoritative for Parent(z),
NSAz

Parent(z) = NSAParent(z) − NSAz . For each server in
NSAz

Parent(z) we issued an NS query for z, until a response
was received that did not have the authoritative answer (AA)
flag set. Only if the AA flag was not set could we accurately
obtain the set of NS RRs (NS′

z) maintained by Parent(z). If
NSz "= NS′

z an inconsistency is detected.
The time-to-live (TTL) field of additional address records

corresponding to targets of NS RRs in the authority section
of server responses are used to identify the presence of glue
records in the parent zone. When server s returns a non-
authoritative response, a second query is issued to s after
a two-second delay (both without the recursion-desired flag
set). Since TTL is measured in seconds, the two-second delay
between queries will result in a decreasing TTL for additional
records sent from s’s cache. If for an NS target there is no
corresponding address record in the additional section, then it
is indicative that the parent has not been configured with a glue
record. If the TTL of the additional record differs between the
two responses, then it is inferred that the record came from

Measurement Values
ODP/SC08 hostnames 3,167,594
Total domain names collected 8,439,927
Total zones 2,996,460
NS target dependencies 6,855,379
NS targets requiring glue 3,723,203 (54%)
NS targets missing required glue 901 (0.024%)
Additional RRs in-bailiwick from cache (over glue) 8,669
Additional RRs out-of-bailiwick glue 881,126
Additional RRs out-of-bailiwick from cache 24,091
Zones for which NSz $= NS′

z 587,865 (20%)

TABLE V
A SUMMARY OF RESULTS COLLECTED FROM SURVEYING THE DNS

NAMESPACE, SEEDED WITH ODP/SC08 HOSTNAMES.

an authoritative response in s’s cache. Since such a response
would take precedence over any glue record configured in
Parent(d), we optimistically give the zone the benefit of the
doubt that it is configured with a glue record, if the NS target
is in-bailiwick.

If the TTL value of an additional record does not vary
between the two responses from s, it could indicate one of
several things:

• Parent(z) is configured with a glue record for the
additional record;

• s is (also) authoritative for the zone to which the addi-
tional record belongs; or

• s is authoritative for an ancestor of the NS target and has
been configured with a glue record for that NS target.

We assume optimistically in this case that if the NS target is
in-bailiwick Parent(z) is configured with a glue record.

If no non-authoritative answers are returned from querying
the servers in NSAz

Parent(z), then we cannot determine in-
consistencies between NS′

z and NSz , and their corresponding
glue records. However, in practice, if NSAParent(z) ⊆ NSAz ,
then consistency is satisfied implicitly since all servers in
NSAParent(z) will send authoritative records from z over
corresponding records from Parent(z) [15]. For all zones in
our analysis we let PNS(z) = 0.5, so that NS target names in
both NSz and NS′

z were considered for server selection.
Our analysis did not follow dependencies of general top-

level domains (gTLDs), such as com and edu. There were
two reasons for this: all descendants of gTLDs share the same
top-level ancestry and was therefore uninteresting from the top
level up; and the names of many of the gTLD servers are in
the gtld-servers.net zone, so as we increased the probability
(P{s,c}(v)) that NS target names—including the names of the
gTLD servers—were cached as part of our analysis, the third-
party influence of names having non-net gTLDs approached
1, which skewed the results. Our analysis did, however, follow
country-code top-level domains (e.g., us, fr). The results from
the survey are summarized in Table V.

B. Model validation
To validate the name dependency model presented in Sec-

tion IV a random sample of over 600 of the ODP hostnames
was selected, and a corresponding active dependency graph,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-1 -0.5 0 0.5 1

PD
F

Difference in influence

Fig. 3. The distribution of differences between the theoretical and empirical
level of influence for each sample ODP name. Positive values indicate that
the model predicted more influence than was observed.

G′
d, was constructed for each name, d. For each name the

level of influence of each other domain name in the graph
was calculated with PNS(z) = 0.

We deployed BIND [11] as a resolver on more than 100
PlanetLab nodes [18], attempting to create an environment
diverse enough that queries for each name by the collective
resolvers would be uniformly distributed amongst authoritative
servers. On each PlanetLab node a query was issued to the
name daemon 100 times for each name, d. Before the initial
query of each name, the server’s cache was flushed, so the
source of every name resolved during the process could be
identified, rather than relying on existing cached data from
unknown sources. All DNS traffic to and from the server was
monitored. Any address queries issued by the server were
induced because of active influence on d. For every answer
received for a name u during the resolution of d, u was mapped
to the name of the server from which the answer was received.
When the final response was received, containing the address
corresponding to d, the names formed a graph of dependency
paths from d to r representing the path(s) followed to resolve
d, a subgraph of G′

d.
After each iteration, the addresses for any names resolved

by induced queries were flushed from the server’s cache and
explicitly re-queried, before beginning the next iteration. This
is equivalent to speeding up the expiration of the cached
names. Without this action, the server would always respond
with the cached name from the previously acquired source,
and the likelihood of exploring other potential paths to the
root would be diminished. After the 100 iterations of querying
d, the influence of each other name, u, on d is determined by
the calculating the fraction of the iterations in which u was
included in the experimental graph.

We compared the observed dependency graph with the
theoretical active dependency graph for each sample ODP
name. For each name analyzed we verified that the influential
names was a subset of those in Vd. The probability density
function (PDF) of the difference in influence of each is shown

Metric P{s,c}(v) Avg. Max.
Influential zones 0 5.26 72
Influential zones > 0 16.53 180
Non-trivial zones 0 2.26 45
Non-trivial zones > 0 11.65 146
First-order ratio 0 0.92 1.0
First-order ratio > 0 0.63 1.0
Third-party influence 0 0.08 1.0
Third-party influence 0.5 0.38 1.0
Third-party influence 1.0 0.55 1.0

TABLE VI
TCB AND INFLUENCE STATISTICS FOR THE ODP/SC08 HOSTNAMES.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120
CD

F
Trusted Computing Base (Number of zones), PNS(z) = 0.5

All zones, P{s,c}(v) = 0
All zones, P{s,c}(v) > 0

Non-trivial zones, P{s,c}(v) = 0
Non-trivial zones, P{s,c}(v) > 0

Fig. 4. The CDF for the size of the TCB of ODP/SC08 hostnames. Included
are the CDF for the number non-trivial and total zones in the TCB, for
P{s,c}(v) = 0 and P{s,c}(v) > 0.

in Fig. 3. The large peak in the graph demonstrates that 55%
of the observed influence was exactly in line with the influence
predicted by the model.

C. Trusted computing base
The raw size of the TCB for hostnames collected in terms

of influential zones and non-trivial zones is shown in Fig. 4
as a cumulative density function (CDF), and the statistics are
shown in Table VI. Nearly all hostnames have a TCB smaller
than 20 zones when P{s,c}(v) = 0, and the average size of the
TCB was 2.26 non-trivial zones and 5.26 total zones—both of
which are reasonably small. When P{s,c}(v) > 0, the average
size of the TCB increases several times to 11.65 non-trivial
and 16.53 total zones. Only about 80% have fewer than 20
zones; most of the remaining 20% have between 30 and 90
non-trivial and total zones in their TCB. Caching and using
NS target names from authoritative sources, rather than glue,
can increase the size of the TCB of a domain by several times.

D. Controlled influence
The first-order ratio U ′

d

Ud
, shown in Fig. 5, is used to

determine the percentage of non-trivial zones that are expressly
configured by the administrators of d. Values closer to 1
indicate that the administrators are largely in control of the
zones comprising the TCB. The average first-order ratio was
0.92 for P{s,c}(v) = 0 and 0.63 for P{s,c}(v) > 0, indicating

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

CD
F

First-order Ratio (Ud′/Ud), PNS(z) = 0.5

P{s,c}(v) = 0
P{s,c}(v) > 0

Fig. 5. The CDF for the first-order ratio of the ODP/SC08 hostnames.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

CD
F

Third-party Influence, PNS(z) = 0.5

P{s,c}(v) = 0
P{s,c}(v) = 0.5

P{s,c}(v) = 1

Fig. 6. The CDF for the third-party influence of the ODP/SC08 hostnames.

that control of the TCB is lost as caching of NS target names is
introduced. When P{s,c}(v) > 0, third-party zones comprise
more than half of the the non-trivial zones in the TCB of
roughly 40% of the hostnames surveyed.

Fig. 6 shows the third-party influence of the ODP/SC08
hostnames. When P{s,c}(v) = 0, 85% of the hostnames are
not influenced at all by third parties. At P{S,C}(v) = 0.5 only
60% of the hostnames are influenced less than 50% by third
parties. When P{S,C}(v) = 1 nearly half of the hostnames are
influenced almost certainly by third parties. Again the behavior
of caching preference of NS target names from authoritative
sources at the resolver and authoritative servers greatly affects
third-party influence of domain names.

VI. CONCLUSION

In this paper we have presented a graph model for analysis
of name dependencies in DNS, which was based on speci-
fication and behavior of deployed DNS servers. We defined
the trusted computing base (TCB) of a domain name in
terms of namespace, and particularly zones. Methodology for
calculating the level at which domain names influence the
resolution of others was described and used to determine third-
party influence—the probability that resolution of a domain

name will utilize namespace outside the explicit configuration
of domain administrators.

We observed that the TCB of domain names, when mea-
sured by influential zones, is much smaller than previously
thought. On average 92% of the non-trivial zones in the TCB
of a domain name were explicitly configured by the domain
administrators. However, caching of NS targets at the resolver
and authoritative server can increase the size of the TCB
and the influence of third-party namespace significantly, and
should be considered when configuring DNS servers.

ACKNOWLEDGMENTS

We greatly acknowledge the contribution of L. Yuan at
Microsoft Corporation for his expertise and direction in this
work.

REFERENCES

[1] V. Ramasubramanian and E. G. Sirer, “Perils of transitive trust in
the domain name system,” in IMC ‘05: Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement, USENIX Association.
Berkeley, CA, USA: USENIX Association, 2005, pp. 379–384.

[2] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang, “Impact of
configuration errors on DNS robustness,” in SIGCOMM ‘04: Proceed-
ings of the 2004 conference on Applications, technologies, architectures,
and protocols for computer communications, ACM. New York, NY,
USA: ACM, 2004, pp. 319–330.

[3] R. Liston, S. Srinivasan, and E. Zegura, “Diversity in DNS performance
measures,” in Proceedings of the SIGCOMM ‘02 Symposium on Com-
munications Architectures and Protocols. New York, NY, USA: ACM,
2002, pp. 19–31.

[4] J. Pang, J. Hendricks, A. Akella, R. D. Prisco, B. Maggs, and S. Seshan,
“Availability, usage, and deployment characteristics of the domain name
system,” in IMC ‘04: Proceedings of the 4th ACM SIGCOMM confer-
ence on Internet measurement. New York, NY, USA: ACM, 2004, pp.
1–14.

[5] V. Ramasubramanian and E. G. Sirer, “The design and implementation
of a next generation name service for the internet,” in SIGCOMM
‘04: Proceedings of the 2004 conference on Applications, technologies,
architectures, and protocols for computer communications. New York,
NY, USA: ACM, 2004, pp. 331–342.

[6] K. Park, V. S. Pai, L. Peterson, and Z. Wang, “CoDNS: Improving
DNS performance and reliability via cooperative lookups,” in OSDI ‘04:
Proceedings of the 6th conference on Symposium on Operating Systems
Design & Implementation, USENIX Association. Berkeley, CA, USA:
USENIX Association, 2004, pp. 14–14.

[7] L. Yuan, K. Kant, P. Mohapatra, and C.-N. Chuah, “DoX: A peer-
to-peer antidote for DNS cache poisoning attacks,” in ICC ‘06: IEEE
International Conference on Communications.

[8] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “RFC
4033: DNS security introduction and requirements,” 2005. [Online].
Available: http://tools.ietf.org/html/rfc4033

[9] ——, “RFC 4034: Resource records for the DNS security extensions,”
2005. [Online]. Available: http://tools.ietf.org/html/rfc4034

[10] ——, “RFC 4035: Protocol modifications for the DNS security
extensions,” 2005. [Online]. Available: http://tools.ietf.org/html/rfc4035

[11] ISC BIND. [Online]. Available: http://www.isc.org/products/BIND/
[12] djbdns. [Online]. Available: http://cr.yp.to/djbdns.html
[13] P. Mockapetris, “RFC 1034: Domain names - concepts and facilities,”

1987. [Online]. Available: http://tools.ietf.org/html/rfc1034
[14] ——, “RFC 1035: domain names - implementation and specification,”

1987. [Online]. Available: http://tools.ietf.org/html/rfc1035
[15] R. Elz and R. Bush, “RFC 2181 - clarifications to the DNS specification,”

1997. [Online]. Available: http://tools.ietf.org/html/rfc2181
[16] Open Directory Project. [Online]. Available: http://www.dmoz.org/
[17] SC08: The International Conference for High-performance

Computing, Networking, Storage and Analysis. [Online]. Available:
http://sc08.supercomputing.org/

[18] PlanetLab. [Online]. Available: http://www.planet-lab.org/

