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Abstract

This paper presents a sensor selection study for efficient estimation of
wind turbine rotor state and wind-induced load state. Sensor type and
placement is simulated on a finite element model of a turbine blade. The
Kalman filter is utilized to estimate the turbine state and gage the effect
of sensor noise level. Estimation of wind-load state is accomplished with
an extended Kalman filter using only a small set of measurements.

Nomenclature

A continuous-time state matrix
B continuous-time input matrix
C damping matrix
G continuous-time process noise input matrix
H output matrix
I identity matrix
K stiffness matrix or Kalman gain matrix
M mass matrix
P estimate error covariance matrix
Q process noise covariance matrix
q input force vector
R measurement noise covariance matrix
u vector of nodal displacements (both transverse and rotational)
v measurement noise vector
w process noise vector
x state vector
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x̂ estimate state vector
ỹ measured output vector
Φ discrete-time state matrix
Γ discrete-time input matrix
Υ discrete-time process noise input matrix
[ ]T matrix transpose
[ ]−1 matrix inverse
IEC International Electrotechnical Commission
NTM normal turbulence model
RMS root-mean-square

1 Introduction

To enable advanced control schemes for wind energy conversion systems, the tur-
bine state will need to be estimated from a small set of measurements. To make
full use of active aerodynamic devices, it will likely be necessary to estimate
the distributed wind load and full blade state. Both of these advances could
contribute greatly to the efficiency and longevity of future wind turbines. Such
considerations have motivated this investigation of state and input estimation
via the Kalman filter.

The blade model was formulated using simple beam elements from Euler-
Bernoulli beam theory. A number of sensor types, including strain, displace-
ment, and velocity, were simulated with an appropriate transform of the state
vector. In this fashion, various combinations of sensor type, number, and place-
ment were evaluated with regard to the estimation error. In addition, the struc-
ture of the Kalman filter provided a way of gaging the effects of sensor noise
level.

Estimation of the input forces was accomplished by extending the Kalman
filter’s state vector to include the forces themselves. Knowledge of the dynam-
ics governing the input forces is not required. Rather, an accurate structural
dynamics model provides the necessary information to infer the applied forces
from the structural response.

A brief survey of estimation research pertaining to wind turbines and input
estimation is now given. Input estimation of beam structures has been studied
by C.K. Ma [1] using the method of Tuan [2], and estimation of effective wind
speed has been explored by X. Ma [3] and Østergaard [4]. Boukhezzar [5]
uses the Kalman filter to estimate aerodynamic torque from the rotor speed
and also demonstrates its application in an “aerodynamic torque feedforward”
controller and a “nonlinear dynamic state feedback” controller. Ehlers [6] looks
at sensor selection and state estimation of the blade, tower, drive shaft, and
wind speed. The concept of “distance to unobservability” is used to evaluate
sensor combinations.
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2 Model Formulation

A 1.5MW wind turbine blade was selected for study. The WindPACT Baseline
model packaged with FAST [7] provided the property definitions needed to cre-
ate a simple finite-element beam model of the 35 meter long blade. Only the
flapwise (primary) direction of bending was modeled. The system equation is

Mü(t) + Cu̇(t) + Ku(t) = q(t) (1)

where the vector u contains the transverse displacement uyi and rotation θzi at
each node. The mass and stiffness matrices were formed using finite elements
derived from Euler-Bernoulli beam theory, while the damping matrix was de-
fined using modal damping with a damping ratio of 0.04 for each mode. Input
loads q were assumed to consist of transverse loads only and no applied bending
moments.

For a beam element with length h, linear density ρ, and flexural stiffness
property EI, the element mass and stiffness matrices are given by

m =
ρh

420


156 22h 54 −13h
22h 4h2 13h −3h2

54 13h 156 −22h
−13h −3h2 −22h 4h2

 (2)

k =
EI

h3


12 6h −12 6h
6h 4h2 −6h 2h2

−12 −6h 12 −6h
6h 2h2 −6h 4h2

 (3)

where the element degrees-of-freedom are ue =
[
uy1 θz1 uy2 θz2

]T .
Resonant mode frequencies of the beam were calculated using a model with

15 elements of equal length. The first five frequencies are shown in Table 2, and
illustrations of the beam and a few of its mode shapes are given in Figure 1.

To convert the model into state-space form, the state vector was defined to
include the nodal degrees-of-freedom and their time derivatives. It was assumed
that process noise w appears as noise on the input forces. The state-space model

Table 2: Blade flapwise resonant mode frequencies.
Mode Frequency (Hz) Damping ratio

1 1.25 0.04
2 3.75 0.04
3 8.24 0.04
4 15.08 0.04
5 23.42 0.04
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Figure 1: Tapered beam representing a 1.5MW turbine blade. First three reso-
nant modes are given.

is then given by

ẋ(t) =
[

0 I
−M−1K −M−1C

]
x(t) +

[
0

M−1

]
q(t) +

[
0

M−1

]
w(t) (4a)

ỹ(t) = Hx(t) + v(t) (4b)

where x =
[
uT u̇T

]T and the form of H depends on the measurement system.

3 The Kalman Filter

The Kalman filter is a recursive filter that can be used to estimate the complete
state of a dynamic system. The filter definition requires a system model, an
appropriate set of measurements, knowledge of the input, and the covariance
matrices of the process noise and measurement noise. The system model is
expressed in state-space form as a set of first-order differential equations.

ẋ(t) = Ax(t) + Bq(t) + Gw(t) (5a)
ỹ(t) = Hx(t) + v(t) (5b)

In the filter formulation, noise vectors w and v are assumed to be zero-mean
Gaussian white-noise processes, such that

E
{
w(t)wT (τ)

}
= Q(t)δ(t− τ)

E
{
v(t)vT (τ)

}
= R(t)δ(t− τ)

E
{
v(t)wT (τ)

}
= 0

(6)

4



To simplify implementation of the system model and Kalman filter, the
continuous-time system model can be converted to discrete-time. Also, covari-
ance matrices R and Q are assumed to be constant with respect to time.

xk+1 = Φxk + Γqk + Υwk, wk ∼ N(0,Q) (7a)
ỹk = Hxk + vk, vk ∼ N(0,R) (7b)

The discrete-time Kalman filter as presented in [8] is given by

x̂k+1 = Φx̂k + Γqk + ΦKk[ỹk −Hx̂k] (8a)

Kk = PkHT [HPkHT + R]−1 (8b)

Pk+1 = ΦPkΦT −ΦKkHPkΦT + ΥQΥT (8c)

This recursive algorithm produces x̂, the estimate of the state vector at each
time step. The time-varying matrix K is known as the Kalman gain matrix,
and it serves to correct the state estimate based upon the vector of measured
outputs ỹ. The time-varying matrix P is the estimate error covariance.

To estimate the input vector q, one approach is to redesign the Kalman
filter such that the input vector is included in the state vector [5]. However,
the dynamics relating q̇ to the state vector are likely unknown. This lack of
knowledge can be modeled by writing zeros in the state transition matrix and
accounting for the error with a noise vector z having large signal variance.

[
xk+1

qk+1

]
=
[
Φ Γ
0 0

] [
xk

qk

]
+
[
Υ 0
0 I

] [
wk

zk

]
,

[
wk

zk

]
∼ N

(
0,
[
Qw 0
0 Qz

])
(9a)

ỹk =
[
H 0

] [xk

qk

]
+ vk, vk ∼ N(0,R) (9b)

Thus, the extended Kalman filter for input estimation uses the following
alterations to Equation Set 8.

Φnew =
[
Φ Γ
0 0

]
, Γnew = 0, Υnew =

[
Υ 0
0 I

]
,

Qnew =
[
Qw 0
0 Qz

]
, Hnew =

[
H 0

] (10)

4 Simulation Setup and Results

Turbulent wind was selected as the loading condition so that the response would
be similar to that seen in the field. An IEC normal turbulence model with 9
m/s average wind speed was generated using TurbSim [9] and applied to the
WindPACT Baseline 1.5 MW model in FAST [7]. A sample of the resulting
aerodynamic forces normal to the rotor plane are given in Figure 2 (these forces
are approximately in the flapwise direction for most of the blade span). The
mean load and two-standard-deviation bounds are shown in Figure 3.
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Figure 2: Forces resulting from IEC NTM with 9 m/s average wind speed.

Figure 3: The mean nodal loads and 2-σ bounds for a simulation lasting 120
seconds.
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4.1 Sensor Study

The Kalman Filter assumes that the input vector is known at each time step
and any uncertainty is modeled by the noise vector w. In this section, a moving
average zero-phase filter with one of two window sizes was applied to the input
forces to obtain different amounts of uncertainty in the knowledge of the input
vector. A small window results in low uncertainty. The original input was
applied to the system but the filtered input was applied to the Kalman state
observer. Q, the covariance of w, was taken to be the covariance of (q− qfilt).
Figure 4 uses surface plots to visualize Q for window sizes of 20 and 200 (0.1-
and 1-second averages).

Figure 4: Process noise covariance Q with moving average window size 20 (left)
and 200 (center). Right: covariance of q (window size is entire time history).

The definition of percent error given in Equation 11 was used to quantify
the estimation error [1]. It is essentially the RMS error divided by the RMS
true signal. “Blade-average deflection state percent error” was defined as the
average of all nodal transverse displacement errors. “Blade-average velocity
state percent error” was likewise defined for the errors in transverse rate-of-
displacement.

ei =

√∑
all k(x̂i(k)− xi(k))2√∑

all k(xi(k))2
× 100 (11)

The following sensor types and placements were investigated. Sensor signal
variance is R in each case (R = R× I for multiple sensors).

• A single displacement sensor at node 7, 9, 11, or 15. Repeated for velocity
sensor.

• A pair of displacement sensors at nodes 7 and 15. Repeated for velocity
sensor.

• A single strain sensor at node 1 or 7.

• A pair of strain sensors at nodes 1 and 7.
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Figures 5 through 7 present the results with the qfilt window size set to
20. Note that, even with very good knowledge of the force input, the velocity
state-variable estimation error can be as great as 24%. However, the beam’s
deflection state is known with error below 1%. Because deflection and velocity
are higher at the tip, more measurement noise tolerance is seen as these sensors
move toward the tip. Comparing displacement- and velocity-type sensors, the
velocity sensors achieve the same error levels at higher sensor noise levels. Given
that the RMS tip deflection was around 2 meters and the RMS tip velocity was
around 1 m/s, the higher noise tolerance cannot be explained by differences
in signal amplitude. Rather, the filter is better able to utilize the velocity
information. For the most part, the character of strain sensors is similar to that
of displacement sensors.

Figures 8 through 10 present the results with the window size set to 200.
At this level of input uncertainty, deflection state error now extends up to 7%,
which is still a rather good estimate of the beam’s deflection. Velocity state
estimation error has increased to the 40-100% range. The advantage of velocity
measurements over displacement measurements is once again observed.

Comparing the results from the low and high input-uncertainty groups,
curves in the later group are shifted to the right. It should be noted that the
relative size of R to Q tends to control the Kalman filter’s performance. Thus,
it was expected that the shift to the right would occur because the magnitude
of Q has increased with increasing input uncertainty. However, it may be per-
missible to venture a physical interpretation of the effect: as the system model
uncertainty increases, the filter is more willing to utilize noisy measurements.
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Figure 5: Estimation percent error resulting from a displacement sensor at the
specified nodes. Moving average window size is 20.

Figure 6: Estimation percent error resulting from a velocity sensor at the spec-
ified nodes. Moving average window size is 20.
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Figure 7: Estimation percent error resulting from a strain sensor at the specified
nodes. Moving average window size is 20.

Figure 8: Estimation percent error resulting from a displacement sensor at the
specified nodes. Moving average window size is 200.
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Figure 9: Estimation percent error resulting from a velocity sensor at the spec-
ified nodes. Moving average window size is 200.

Figure 10: Estimation percent error resulting from a strain sensor at the speci-
fied nodes. Moving average window size is 200.

11



4.2 Force Estimation

The extended Kalman filter was tested with the following configuration. Process
noise covariance Qw was set equal to the covariance of the entire force time
history, and the covariance of the extended states was chosen to be Qz = 108×I.
The measurement system was defined by displacement sensors at nodes 7 and 15
with sensor noise covariance equal to R = 10−2×I. Force estimation results are
given in Figure 11. Percent error is about 30% at the blade root and decreases
to about 10% for nodes 7 through 15.

To see if more sensors would improve the estimation accuracy, all nodes were
given displacement sensors. With the other filter parameters kept the same, the
result is actually quite opposite from expectations. Maximum percent error is
50%, outer portion of blade is at 15% error, and the force estimate occasionally
takes on strange shapes (see Figure 12). At this point, the main conclusion is
that the choice of sensors and Kalman filter parameters Qw, Qz, and R interact
in complicated ways.

5 Discussion and Conclusions

The relationship of estimation error to sensor type, placement, and noise level
has been investigated. It should be noted that there is not necessarily a one-
to-one correspondence between R and the sensor noise allowed in the physical
system. The Kalman filter is designed to produce minimum-variance optimal
estimates when R is exactly equal to the measurement covariance. In practice,
however, R and Q tend to be used as “tuning knobs” which control the perfor-
mance of the filter. The curves in Figures 5 through 10 do provide a sense of the
required measurement precision (relative to the model uncertainty) and what
improvements are possible with low-noise sensors. In this analysis, velocity-type
measurements show an advantage over displacement-type measurements, but it
is yet to be seen whether this effect also occurs with force estimation. Future
work will also investigate acceleration as a measurement possibility.

An extended Kalman filter was successfully utilized to estimate input forces
using only two displacement sensors. The filter tracks the mean force level
while filtering out high frequency variations. Future work will explore other
measurements sets and determine appropriate selections for the Kalman filter
parameters.
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Figure 11: Displacement sensors at nodes 7 and 15. Black solid lines are true
forces. Red dashed lines are force estimates. Left: snapshot in time. Right:
time histories of a few nodal forces.

Figure 12: Displacement sensors at all nodes. Black solid lines are true forces.
Red dashed lines are force estimates. Left: snapshot in time. Right: time
histories of a few nodal forces.
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