

U.S. Department of Energy
**Energy Efficiency
and Renewable Energy**

Bringing you a prosperous future where energy
is clean, abundant, reliable, and affordable

SAND2009-0911C

DOE Solar Energy Technologies Program Peer Review

Technical Track: Concentrating Solar Power (CSP)

**Project Name: HTF/Thermal Storage Systems and
Components**

Principal Investigator: Nathan P. Siegel (SNL)

Denver, Colorado

March 9-10, 2009

- Heat transfer fluid development
 - New molten salt formulations and qualification
 - Enables higher performance, lower cost parabolic trough systems
- Storage systems and components
 - Pump and Valve upgrade design
 - Supports the development of salt-service components
 - Freeze/thaw testing of heat collection elements
 - Freeze recovery is an essential part of an advanced trough system
- Modeling
 - Investigated advanced parabolic trough concepts
 - Helps define the technology development needed to further reduce CSP costs
- FOA Support
 - Began working with Solar Millennium and Hamilton Sunstrand
- **Budget:**

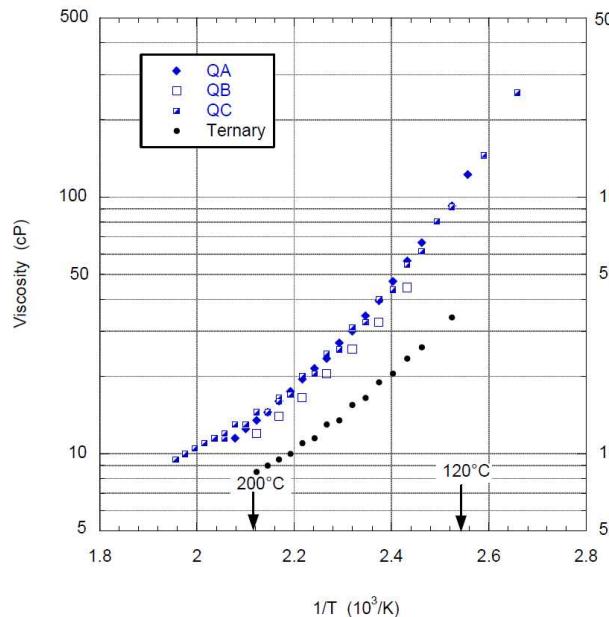
Agreement Title	FY 2008 Budget (\$K)
Storage components (freeze recovery, facility design)	93
Storage systems (modeling)	130
Advanced HT fluid development	56
FOA support	100

Thermal Storage R&D Team

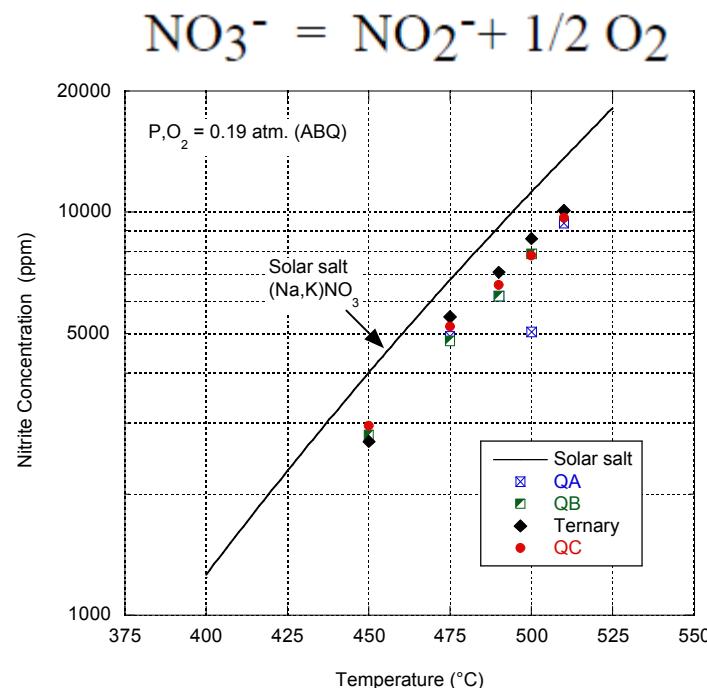
- Team Members:

- Nathan Siegel (SNL)
- Bob Bradshaw (SNL)
- Greg Kolb (SNL)
- Rich Diver (SNL)
- Joe Cordaro (SNL)
- David Raymond (SNL)
- Tim Moss (SNL)
- Sai Jayaraman (U. Notre Dame)

- Publications


- *Improved Molten Salt Formulations for Heat Transfer Fluids in Parabolic Trough Solar Power Systems*, SolarPACES 2008, Las Vegas, NV, Mar. 4-7, 2008, R. W. Bradshaw and D. A. Brosseau
- *Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems*, Paper ES2008-54174, ASME 2nd International Conference on Energy Sustainability, Jacksonville, FL, Aug. 10-14, 2008, R. W. Bradshaw and N. P. Siegel
- *Conceptual Design of an Advanced Trough Utilizing a Molten Salt Working Fluid*, SolarPACES 2008, Las Vegas, NV, Mar. 4-7, 2008, G. J. Kolb and R. B. Diver

- Patents:


Patent application S-112,575, Low-Melting Point Inorganic Nitrate Salt Heat Transfer Fluid, R. W. Bradshaw and D. A. Brosseau, filed May 12, 2008, in USPO review.

- Discovered several low melting point nitrate salts
 - Supports direct use of salt HTFs in troughs
 - Could help reduce parabolic trough LCOE
- Salt characterization is underway
 - Stability has been evaluated
 - Corrosion studies pending
 - Property evaluation near completion

Low MP salt viscosity

Low MP salt thermal stability

- Quaternary nitrates melt < 95 C
- Nitrate-Nitrite salts melt < 80 C
- To date, techniques are largely empirical
- Molecular dynamics will be used to aid materials discovery efforts

Na	K	Ca	Li	Liquidus Temp.	Notes
mol%	mol%	mol%	mol%	°C	
50	50			221	Na-K-NO ₃ eutectic
21	49	30		133	Ca-Na-K-NO ₃ eutectic
18	52		30	120	Li-Na-K-NO ₃ eutectic
	58	11	31	117	Ca-Li-K-NO ₃ eutectic
High	+	+	+	< 95	QA
Med.	+	+	+	< 95	QB
Low	+	+	+	< 95	QC

Melting points of nitrate salts

Materials Compatibility

- New salt formulations appear to be compatible with common engineering metals
 - Several samples (some with welds) of carbon, alloy, and stainless steels were tested for 3000 hours at 500 C and 350 C

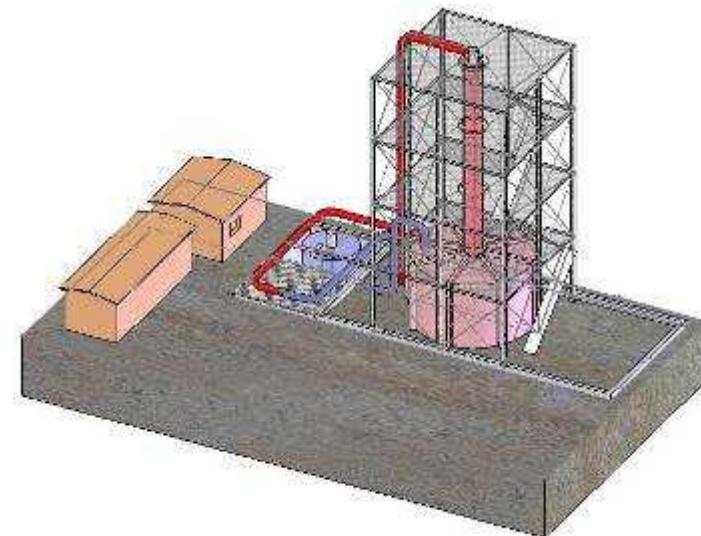
- Salt samples were taken at various intervals
- Materials are now being evaluated:
 - Descaled weight loss
 - Microstructure

Compatibility Tests for New Salts	
Material	Test Temperature, C
316H	500 C
321H	500 C
347H	500 C
304L	500 C
316L	500 C
Alloy: 2.25% Cr, 1% Mo	350 C
Alloy: 9% Cr, 1% Mo, 0.25% V	500 C, 350 C
A516 Gr.70	350 C

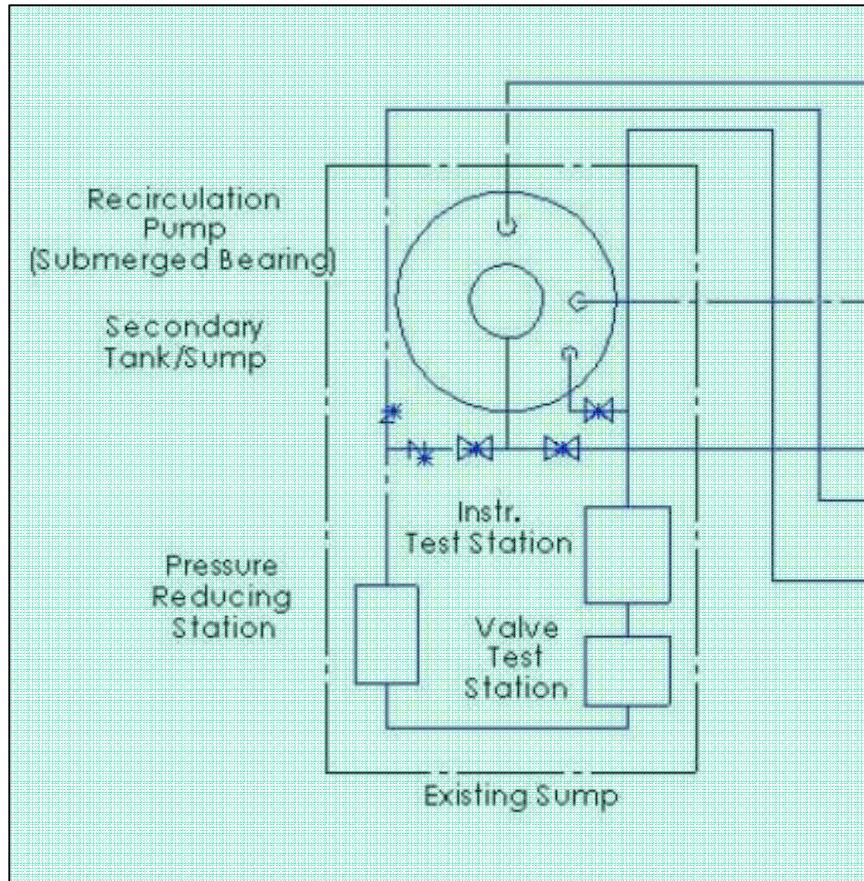
Test matrix for materials compatibility

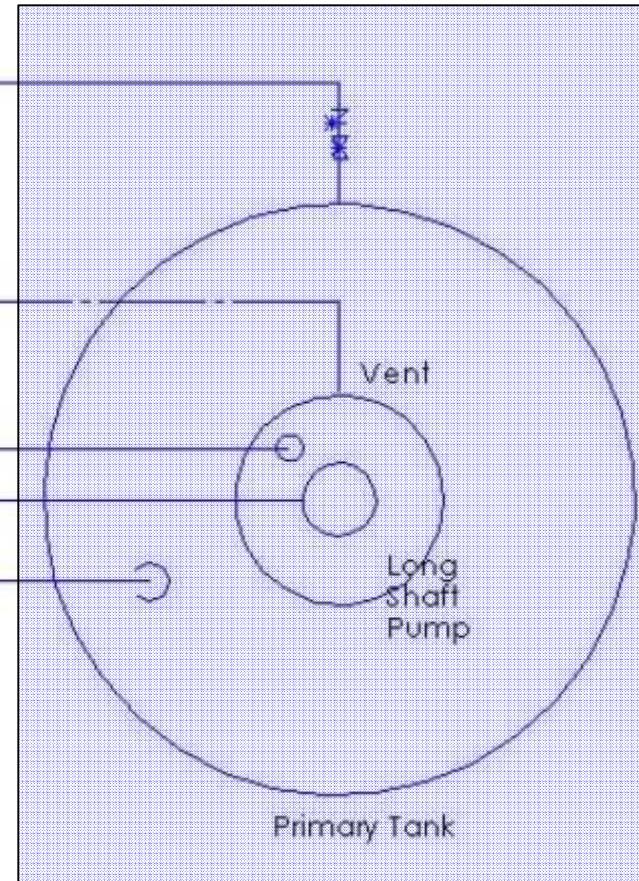
- Using a molten salt HTF in parabolic troughs could enable lower cost operation
- Systems must be developed to recover from a freeze event
- We have begun studies involving freeze recovery via impedance heating of the HCE

Impedance heating system at SNL


Modeling – 2X Trough

- A modeling effort was undertaken to define an advanced trough that enables a reduced LCOE (25% versus current technology)
 - This trough has a 10 m aperture with a 7 cm receiver, or twice the concentration of conventional systems (LS-2)
 - It operates at 500 C outlet temperature with low melting point salt and thermal storage
 - Requires an error budget of 2.5 mrad versus 5 mrad
 - Closed loop tracking
 - Requires a low emissivity coating
 - ~7% low ϵ coating
- Provides benefits even if operating with an oil HTF




- The existing Pump and Valve facility will be upgraded to support the testing of CSP storage components
- Conceptual design is complete
- Upgraded Facility Capabilities
 - Stage 1:
 - Valve development and evaluation
 - Data acquisition and controls evaluation
 - Stage 2:
 - Possible support of central receiver development at the power tower
 - Long shafted pump testing at full flow and variable pressure/head conditions

An Upgraded Pump and Valve Test Facility

Phase 1: Instrumentation and component testing

Phase 2: 15 m long shafted pump testing

- Accommodate prototypic pumps and component testing
 - Pumps
 - Specifications
 - high temperature, low head prototypic pump for trough and tower applications
 - 52 ft long-shaft pump, tank-mounted
 - 6000-11,000 gpm at 200-250 psi
 - Pump Testing
 - Variable head/flow rates (HQ line)
 - Variable flow temperatures (full range)
 - Variable tank height (25%-100% of pump shaft length)
 - 6 ft stand-off from suction-bell to tank wall
 - Other components
 - Valves (packing seal)
 - Instrumentation (flow meters, pressure transducers)
 - Expansion joint(s)
 - Ball-swivel connection(s)
 - Instrumentation

- Heat transfer fluids
 - Continue low melting point fluid discovery/characterization
 - Begin investigating higher temperature fluids for central receiver applications
 - Expand computational materials discovery efforts
- Systems and Components
 - Proceed with construction of salt test facility upgrade
 - Begin to upgrade central receiver test capability
 - Continue and possibly expand freeze recovery test and development
 - Continue developing 2X trough concept
- FOA support and associated facility upgrades